

1 - Lois des grands nombres

Exercice 1. (Calculer en cent leçons) Déterminer les limites suivantes :

- 1. $\lim_{n\to\infty}\int_{[0,1]^n} f\left(\frac{x_1+\ldots+x_n}{n}\right) dx_1\ldots dx_n$ pour f une fonction continue sur [0,1],
- 2. $\lim_{n\to\infty}\sum_{k=0}^n \binom{n}{k} p^k (1-p)^{n-k} f\left(\frac{k}{n}\right)$ pour f une fonction continue sur [0,1] et $p\in[0,1]$,
- 3. $\lim_{n\to\infty}\sum_{k=0}^{\infty}e^{-\lambda n}\frac{(\lambda n)^k}{k!}f\left(\frac{k}{n}\right)$ pour f une fonction continue et bornée sur \mathbb{R}_+ et $\lambda > 0$.

Exercice 2. (Une loi faible avec fonctions caractéristiques) Soit $X_1,...,X_n,...$ une suite de v.a.i.i.d définies sur un espace probabilisé. On suppose que $\mathbb{E}[|X_1|] < \infty$. Montrer alors (sans utiliser la loi forte des grands nombres) à l'aide des fonctions caractéristiques que

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow{(P)} \mathbb{E}[X_1].$$

Exercice 3. (**Théorème de Bernstein-Weierstrass**) Soit f une fonction continue de [0,1] dans \mathbb{C} . Le n-ième polynôme de Bernstein de f, B_n , est défini par

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right), \qquad x \in \mathbb{R}.$$

- 1. Soit $S_n(x)$ la variable aléatoire étant définie par $S_n(x) = \text{Bin}(n,x)/n$, où Bin(n,x) est une variable aléatoire. de loi binomiale de paramètre n et x. Montrer que $B_n(x) = \mathbb{E}[f(S_n(x))]$.
- 2. En déduire le Théorème de Berstein-Weierstrass

$$||B_n - f||_{\infty} \quad \xrightarrow[n \to \infty]{} \quad \text{o.}$$

Pour des questions, demande de précisions ou explications, n'hésitez pas à m'envoyer un mail à igor.kortchemski@ens.fr, ou bien à venir me voir au bureau V4.

Exercice 4. (Loi faible, non forte) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de loi

$$\mathbb{P}_{X_n} = \frac{1}{2\ln(n+1)n} (\delta_n + \delta_{-n}) + \left(1 - \frac{1}{n\ln(n+1)}\right) \delta_0.$$

- 1. Montrer que $Y_n := \frac{X_1 + ... + X_n}{n}$ converge en probabilité vers o.
- 2. Montrer que presque sûrement, Y_n ne converge pas.

2 - Théorème central limite

Exercice 5. (Un dernier calcul et on s'en va) Déterminer la limite suivante :

$$\lim_{n\to\infty} e^{-n} \sum_{k=0}^n \frac{n^k}{k!}.$$

Exercice 6. (Convergence en loi mais pas en proba) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et de même loi telle que $\mathbb{E}(X_1) = 0$ et $\mathbb{E}(X_1^2) = 1$. On pose $S_n = X_1 + \ldots + X_n$ pour tout $n \geq 1$.

1. Montrer que pour tout A > 0, on a

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}\geq A\right)=1,$$

et en déduire que

$$\mathbb{P}\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{n}}=+\infty\right)=1.$$

2. Justifier que si $(S_{n_k})_{k\geq 1}$ est une suite extraite de $(S_n)_{n\geq 1}$, alors on a :

$$\mathbb{P}\left(\limsup_{k\to\infty}\frac{S_{n_k}}{\sqrt{n_k}}=+\infty\right)=1.$$

3. En déduire que la suite $(n^{-1/2}S_n)_{n\geq 1}$ ne converge pas en probabilité.

3 – Vecteurs gaussiens

Exercice 7. (**Personne n'est jamais assez fort pour ce calcul**) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs dans \mathbb{R}^2 indépendantes et indentiquement distribuées. Étudier le comportement asymptotique de la suite

$$\left(\frac{X_1 + \ldots + X_n - n\mathbb{E}(X_1)}{\sqrt{n}}\right)_{n \ge 1}$$

dans les cas suivants :

- 1. X_1 est de loi $\frac{1}{2}\delta_{(-1,-1)} + \frac{1}{2}\delta_{(1,1)}$,
- 2. X_1 est de loi $\frac{1}{2}\delta_{(-1,-1)} + \frac{1}{4}\delta_{(1,-1)} + \frac{1}{4}\delta_{(1,1)}$.

Exercice 8. (Suite récurrente aléatoire) Soient $(U_k)_{k\geq 1}$ une suite de variables aléatoires réelles indépendantes et de loi normale $\mathcal{N}(0,\sigma^2)$ et $\theta\in\mathbb{R}$. On définit la suite $(X_k)_{k\geq 1}$ par $X_1=U_1$ et $X_k=\theta U_{k-1}+U_k$. Montrer que pour tout $n\geq 1$, le vecteur (X_1,\ldots,X_n) est un vecteur gaussien non dégénéré dont on précisera la densité, l'espérance et la matrice de covariance.

$4 - \hat{A}$ chercher pour la prochaine fois

Exercice 9. (Sommes aléatoires) Soit $(X_n)_{n\geq 1}$) une suite de variables aléatoires réelles indépendantes de même loi, centrées, de variance σ^2 . On pose $S_n = \sum_{m=1}^n X_m$. Soit $(N_k)_{k\geq 1}$ une suite de v.a. à valeurs dans \mathbb{N}_* , toutes indépendantes de la suite $(X_n)_{n\geq 1}$. On pose finalement

$$Z_k = \frac{1}{\sqrt{N_k}} S_{N_k}.$$

On suppose que $N_k \to \infty$ p.s. lorsque $k \to \infty$. Montrer que Z_k converge en loi vers une variable aléatoire que l'on déterminera.

5 - Compléments (hors TD)

Exercice 10. (Formule de Stirling)

Question préliminaire : Soit X une variable aléatoire réelle de carré intégrable définie sur $(\Omega, \mathcal{A}, \mathbb{P})$. Montrer que, pour tout a > 0, on a :

$$\mathbb{E}(|X - \inf(X, a)|) \le (\mathbb{E}(X^2)\mathbb{P}(X \ge a))^{1/2}.$$

Soit $(X_n, n \ge 1)$ une suite de variables aléatoires indépendantes définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, de même loi de Poisson de paramètre 1. On pose, pour tout entier $n \ge 1$,

$$S_n = \sum_{i=1}^n X_i \text{ et } Y_n = \frac{S_n - n}{\sqrt{n}}.$$

On note $x^- = \sup(-x, o)$ pour tout $x \in \mathbb{R}$.

1. Pour tout $n \ge 1$, vérifier que S_n suit la loi de Poisson de paramètre n, calculer $\mathbb{E}(Y_n^2)$ et en déduire que pour tout a > 0,

$$\mathbb{P}(Y_n^- \ge a) \le \frac{1}{a^2}.$$

2. Soit Y une variable aléatoire de loi normale $\mathcal{N}(0,1)$. Montrer que la suite $(Y_n^-)_{n\geq 1}$ converge en loi vers Y^- .

3

3. Montrer à l'aide de la question préliminaire que

$$\mathbb{E}(Y_n^-) \underset{n \to \infty}{\longrightarrow} \mathbb{E}(Y^-).$$

4. En déduire la formule de Stirling

$$n! \underset{n\to\infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

Exercice 11. (Une LGN avec un goût de TCL) On rappelle que la loi de Cauchy à pour densité par rapport à la mesure de Lebesgue $f(x) = \frac{1}{\pi(1+x^2)}$, et pour fonction caractéristique

$$\phi(\xi) = \exp(-|\xi|).$$

- 1. Si X et Y sont deux variables de Cauchy indépendantes. Quelles est la loi de $\frac{X+Y}{2}$?
- 2. Si $X_1,...,X_n$ sont des vaiid de loi de Cauchy. Quelle est la loi de

$$\frac{X_1 + ... + X_n}{n}$$
 ?

Qu'en pensez-vous?

3. Retrouver la forme de la fonction caractéristique à partir de la densité de la loi de Cauchy.

Exercice 12. (Équation aléatoire – \gg) Soient X et Y deux variables aléatoires indépendantes de même loi, de variance finie σ^2 . On suppose que $(X + Y)/\sqrt{2}$ est de même loi que X et Y. Que dire de cette loi commune?

