

ENS Paris, 2013-2014

# TD 4 — Intégration, théorèmes de convergence – Corrigé



Exercice 0. (Mesure image)

Soient  $(E, \mathcal{A}, \mu)$  un espace mesuré,  $(F, \mathcal{B})$  un espace mesurable et  $f: E \to F$  une fonction mesurable. On rappelle que l'on définit sur  $(F, \mathcal{B})$  une mesure  $\nu_f$  appelée mesure image de  $\mu$  par f par  $\nu_f(B) = \mu(f^{-1}(B))$ ,  $B \in \mathcal{B}$ . Soit  $\phi: F \to \mathbb{R}_+$  une fonction mesurable. Montrer que

$$\int_{F} \phi(x) \nu_{f}(dx) = \int_{F} \phi(f(x)) \mu(dx).$$

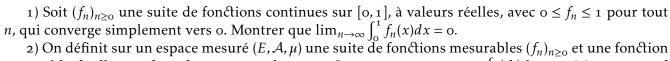
## Corrigé:

Par définition la formule que l'on cherche à obtenir est vérifiée pour les fonctions indicatrices et par linéarité, pour les fonctions étagée (positives). Soit  $\phi: F \to \mathbb{R}_+$  une fonction mesurable. Il existe une suite de fonctions étagées positives  $(\phi_n)_{n\geq 1}$  telle que  $\phi_n$  tende en croissant vers  $\phi$ . On a alors pour tout  $n\geq 1$ ,

$$\int_{F} \phi_{n}(x) \nu_{f}(dx) = \int_{E} \phi_{n}(f(x)) \mu(dx)$$

En utilisant le théorème de convergence monotone on montre que l'égalité est vérifiée pour  $\phi$ .  $\Box$ 

# 1 - Petites questions



2) On définit sur un espace mesuré  $(E, \mathcal{A}, \mu)$  une suite de fonctions mesurables  $(f_n)_{n \geq 0}$  et une fonction mesurable f telle que  $f_n \to f$   $\mu$ -p.p. quand  $n \to \infty$ . On suppose que  $\sup_{n \geq 0} \int_E |f_n| d\mu < \infty$ . Montrer que f est intégrable.

3) (Inégalité de Markov) Soit  $f \in \mathcal{L}_1(E, A, \mu)$ . Montrer que pour tout A > 0,  $\mu(\{|f| \ge A\}) \le \frac{1}{A} \int_E |f| d\mu$ .

4) Soit  $f \in \mathcal{L}_1(E, \mathcal{A}, \mu)$ . Montrer que  $\mu(\{f = +\infty\}) = 0$ . Que dire de la réciproque?

# Corrigé :

1) C'est une application immédiate du théorème de convergence dominée.

2) Il suffit d'utiliser le lemme de Fatou : comme  $|f(x)| = \lim |f_n(x)|$  presque partout :

$$\int |f|d\mu = \int \liminf |f_n|d\mu \le \liminf \left(\int |f_n|\right),$$

et cette dernière quantité est finie puisqu'elle est plus petite que  $\sup_n \int |f_n| d\mu$ .

3) Il suffit d'écrire :

$$\int_{E} |f| d\mu \geq \int_{E} |f| \mathbb{1}_{\{|f| \geq A\}} d\mu \geq \int_{E} A \mathbb{1}_{\{|f| \geq A\}} d\mu = A\mu(\{|f| \geq A\}).$$

Pour des questions, demande de précisions ou explications, n'hésitez pas à m'envoyer un mail à igor.kortchemski@ens.fr, ou bien à venir me voir au bureau V4.

4) D'après l'inégalité de Markov,

$$\mu(\{|f| \ge n\}) \le \frac{1}{n} \int |f| d\mu \xrightarrow[n \to \infty]{} o.$$

On a d'autre part  $\mu(\{f = +\infty\}) \le \mu(\{|f| = +\infty\}) = \lim_{n\to\infty} \mu(\{|f| \ge n\})$  (en effet, les ensembles  $\{|f| \ge n\}$  sont décroissants en n, d'intersection égale à  $\{|f| = +\infty\}$  et ils sont de mesure finie d'après l'inégalité de Markov). La réciproque est clairement fausse (prendre la fonction constante égale à 1 sur  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ .  $\square$ 

# 2 - Intégration, théorèmes de convergence



# $\mathcal{E}_{xercice 1.}$

- 1) Soit f une fonction dérivable sur [0,1], de dérivée f' bornée. Prouver que  $\int_0^1 f'(x)dx = f(1) f(0)$ .
- 2) ( $\star$ ) Trouver une fonction continue presque partout dérivable sur [0,1] telle que f(0) = 0, f(1) = 1 et  $\int_{0}^{1} f'(x)dx = 0$ .

#### Corrigé:

1) On définit sur [0,1] la suite  $(g_n)_{n\geq 1}$  par  $g_n(x)=n(f(x+1/n)-f(x))$  si  $x\leq 1-1/n$  et o sinon. Pour  $x\in [0,1[$  fixé,  $g_n(x)$  converge vers f'(x). Soit  $M=\sup_{x\in [0,1]}|f'(x)|$ , qui est fini par hypothèse. D'après le théorème des accroissements finis,  $|g_n(x)|\leq M$  pour tout  $x\leq 1-1/n$ , et cette inégalité est clairement vraie pour  $x\in [1-1/n,1]$ . Ainsi,  $|g_n(x)|\leq M$  pour tout  $x\in [0,1]$ . D'après le théorème de convergence dominée,

$$\int_0^1 f'(x)dx = \lim_{n \to \infty} \int_0^1 g_n(x)dx.$$

Mais, en notant  $F(x) = \int_0^x f(t)dt$ ,

$$\int_{0}^{1} g_{n}(x)dx = n \int_{0}^{1-1/n} f(x+1/n)dx - n \int_{0}^{1-1/n} f(x)dx$$
$$= n \int_{1/n}^{1} f(x)dx - n \int_{0}^{1-1/n} f(x)dx$$
$$= n(F(1) - F(1-1/n)) - n(F(1/n) - F(0)),$$

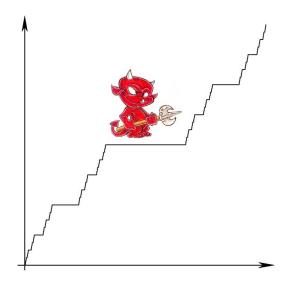
qui converge vers f(1) - f(0) lorsque  $n \to \infty$ . En effet, la continuité de f en 0 et 1 implique F'(0) = f(0) et F'(1) = f(1). Le résultat s'ensuit.

#### Remarque:

- Soit  $G(t) = \int_0^t f'(u)du$ . En écrivant  $(G(t+\epsilon) - G(t))/\epsilon = \int_0^1 f'(t+\epsilon u)du$ , on ne peut pas utiliser le théorème de convergence dominée pour dire que cette quantité converge vers f'(t) lorsque  $\epsilon \to \infty$ . En effet, on a aucune hypothèse sur la continuité de f'.

2

2) Un exemple, l'escalier du diable :



Il s'agit d'une application continue croissante f telle que f(0) = 0, f(1) = 1, de dérivée nulle sur le complémentaire de l'ensemble de Cantor  $K_3$  vu au TD 1. Ainsi, f' = 0 presque partout! Voir http://fr.wikipedia.org/wiki/Escalier de Cantor pour la construction.

**→**○( )○<

**E**xercice 2. (Borel-Cantelli is back) Soient  $f: (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$  une fonction intégrable pour la mesure de Lebesgue et  $\alpha > 0$ . Montrer que pour presque tout  $x \in \mathbb{R}$ ,  $\lim_{n \to \infty} n^{-\alpha} f(nx) = 0$ . Indication donnée à titre indicatif : on pourra considérer, pour  $\eta > 0$ , les ensembles  $A_{\eta,n} = \{x \in \mathbb{R} : n^{-\alpha} | f(nx)| > \eta\}$ ,  $n \ge 1$ .

#### Corrigé:

Pour  $\eta > 0$  et  $n \ge 1$ , on a  $A_{\eta,n} = \frac{1}{n} \{ y \in \mathbb{R} : n^{-\alpha} | f(y)| > \eta \}$ . D'après l'inégalité de Markov, la mesure de  $A_{n,\eta}$  est majorée par

$$\lambda(A_{\eta,n}) = \frac{1}{n}\lambda\left(\left\{y \in \mathbb{R} : |f(y)| > \eta n^{\alpha}\right\}\right) \le \frac{1}{n}\frac{1}{\eta n^{\alpha}}\int_{\mathbb{R}}|f|d\lambda = \frac{1}{n^{\alpha+1}}\frac{1}{\eta}\int_{\mathbb{R}}|f|d\lambda.$$

Ainsi, la série de terme général  $\lambda(A_{n,n})$  est sommable. D'après le lemme de Borel-Cantelli,

$$\lambda\left(\limsup_{n}A_{\eta,n}\right)=0.$$

On a donc montré que, pour tout  $\eta > 0$ , pour  $\lambda$ -presque tout  $x \in \mathbb{R}$ ,  $\limsup_{n \to \infty} n^{-\alpha} f(nx) \le \eta$ . Ainsi, pour  $\lambda$ -presque tout  $x \in \mathbb{R}$ , pour tout  $p \in \mathbb{N}^*$ ,  $\limsup_{n \to \infty} n^{-\alpha} f(nx) \le 1/p$  ce qui signifie que pour  $\lambda$ -presque tout  $x \in \mathbb{R}$ ,  $\lim_{n \to \infty} n^{-\alpha} f(nx) = 0$ .

Rappel: Il a été vu en TD qu'une union quelconque d'ensembles de mesure nulle n'est pas forcément de mesure nulle (penser à  $\mathbb R$  qui est l'union des singletons) et qu'on ne peut pas intervertir « pour tout » et « pour presque tout ».

Exercice 3. (Uniforme continuité de l'intégrale)

Soient  $(E, A, \mu)$  un espace mesuré et  $f : (E, A, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$  une fonction intégrable.

- 1) Montrer que  $\lim_{n\to\infty} \int |f| \mathbb{1}_{\{|f|>n\}} d\mu = 0.$
- 2) Montrer que  $\forall \varepsilon > 0$ ,  $\exists \delta > 0$ ,  $\forall A \in \mathcal{A}$ ,  $\mu(A) < \delta \Rightarrow \int_{A} |f| d\mu < \varepsilon$ .
- 3) Si  $f:(\mathbb{R},\mathcal{B}(\mathbb{R})) \to (\mathbb{R},\mathcal{B}(\mathbb{R}))$  est intégrable pour la mesure de Lebesgue, que peut-on dire de la fonction  $F:u \to \int_{[0,u]} f \, d\lambda$ ?

#### Corrigé:

1) La fonction f étant intégrable, elle est finie  $\mu$ -p.p et donc  $\mathbb{1}_{\{|f|>n\}} \to 0$   $\mu$ -p.p. quand  $n \to \infty$ . Ainsi,  $|f|\mathbb{1}_{\{|f|>n\}} \to 0$   $\mu$ -p.p. quand  $n \to \infty$  et d'après le théorème de convergence dominée,

$$\int_{F} |f| \mathbb{1}_{\{|f| > n\}} d\mu \xrightarrow[n \to \infty]{} o.$$

2) Soit  $\varepsilon >$  o. Il existe donc  $n_{\varepsilon} \in \mathbb{N}$  tel que  $\int_{E} |f| \mathbb{1}_{\{|f| > n_{\varepsilon}\}} d\mu \leq \frac{\varepsilon}{2}$ . Posons  $\delta_{\varepsilon} = \varepsilon/(2n_{\varepsilon})$ . Alors, pour  $A \in \mathcal{A}$  de mesure  $\mu(A) < \delta_{\varepsilon}$ ,

$$\int_{A} |f| d\mu = \int_{A \cap \{|f| > n_{\varepsilon}\}} |f| d\mu + \int_{A \cap \{|f| \le n_{\varepsilon}\}} |f| d\mu \le \int_{E} |f| \mathbb{1}_{\{|f| > n_{\varepsilon}\}} d\mu + n_{\varepsilon} \mu(A) < \varepsilon.$$

3) Montrons que F est uniformément continue. Soit  $\varepsilon > 0$ . On choisit  $\delta > 0$  tel que

$$\forall A \in \mathcal{B}(\mathbb{R}), \ \lambda(A) < \delta \Rightarrow \int_{A} |f| d\mu < \varepsilon.$$

En particulier, si  $0 \le y - x < \delta$  alors  $|F(y) - F(x)| = \left| \int_{[x,y]} f \, d\lambda \right| \le \int_{[x,y]} |f| \, d\lambda < \varepsilon$ .



Exercice 4. (Problème : convergence en mesure)

Soit  $(E, A, \mu)$  un espace mesuré tel que  $\mu(E) < \infty$ . Soient  $(f_n)_{n \ge 0}$  et f des fonctions mesurables de (E, A) dans  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ . On dit que la suite  $(f_n)$  converge vers f en mesure si pour tout  $\varepsilon > 0$ ,

$$\mu(|f-f_n|>\varepsilon)\longrightarrow o.$$

- 1. Montrer que si  $\int_E |f-f_n| d\mu \to$  o, alors  $f_n \to f$  en mesure. Remarquer que la réciproque est fausse.
- 2. Montrer que si  $f_n \to f$   $\mu$ -p.p., alors  $f_n \to f$  en mesure. Remarquer que la réciproque est fausse.
- 3. En utilisant le lemme de Borel-Cantelli, montrer que si  $f_n \to f$  en mesure, alors on peut extraire une suite de  $(f_n)$  qui converge  $\mu$ -p.p. vers f.
- 4. *Un théorème de convergence dominée plus fort.* On suppose que  $f_n \to f$  en mesure et qu'il existe une fonction  $g: E \to \mathbb{R}$  intégrable telle que  $|f_n| \le g$   $\mu$ -p.p. pour tout  $n \ge 1$ .
  - (a) Montrer que  $|f| \le g \mu$ -p.p.
  - (b) En déduire à l'aide de la propriété d'uniforme continuité de l'intégrale que

$$\int_{E} |f_n - f| d\mu \to 0.$$

- 5. L'espace  $L^{o}(E, \mu)$ . On note  $L^{o}(E, \mu)$  l'ensemble des fonctions mesurables quotienté par la relation d'égalité  $\mu$ -p.p.
  - (a) Montrer que l'on définit une distance sur  $L^{o}(E, \mu)$  par

$$\delta(f, g) = \inf\{\varepsilon > 0, \mu(|f - g| > \varepsilon) \le \varepsilon\}$$

et que celle-ci métrise la convergence en mesure.

- (b) Montrer que ( $L^{o}(E, \mu), \delta$ ) est complet.
- (c) Montrer qu'il n'existe pas de distance sur  $L^{o}(E, \mu)$  qui métrise la convergence  $\mu$ -p.p.

#### Corrigé:

1. On suppose que  $\int_E |f_n - f| d\mu \to o$ . Soit  $\varepsilon > o$ . D'après l'inégalité de Markov,

$$\mu(|f_n-f|>\varepsilon)\leq \frac{1}{\varepsilon}\int_E |f_n-f|\,d\mu,$$

ce qui implique que  $\mu(|f_n - f| > \varepsilon) \to o$ . Réciproquement, considérons la suite de fonctions  $(f_n)_{n \ge 1}$  définie sur  $([0,1],\mathcal{B}([0,1]))$  par

$$f_n = n \mathbb{1}_{[0,1/n]}.$$

Alors  $(f_n)_{n\geq 1}$  converge en mesure vers o. En effet pour tout  $n\geq 1$ ,  $\lambda(f_n>0)=1/n$ . En revanche, pour tout  $n\geq 1$ ,  $\int_{[0,1]}f_n(x)\,dx=1$ .

2. On suppose que  $f_n \to f$   $\mu$ -p.p. Soit  $\varepsilon > 0$ . Alors,

$$\mu\left(\bigcap_{n\geq 1}\bigcup_{m\geq n}\{|f_m-f|>\varepsilon\}\right)=0.$$

Or, la suite  $(\bigcup_{m\geq n}\{|f_m-f|>\varepsilon\})_{n\geq 0}$  est décroissante pour l'inclusion et  $\mu$  est une mesure finie, donc on a,

$$\lim_{n\to\infty}\mu\left(\bigcup_{m>n}\{|f_m-f|>\varepsilon\}\right)=0.$$

En particulier,  $\lim_{n\to\infty} \mu(\{|f_n - f| > \varepsilon\}) = 0$ .

Une autre possibilité est d'appliquer le théorème de convergence dominée à la suite de fonctions  $\mathbb{1}_{|f_n-f|>\epsilon}$ .

Réciproquement, considérons la suite de fonctions  $(f_{n,k})_{n\geq 1,1\leq k\leq n}$  définie sur  $([0,1],\mathcal{B}([0,1]))$  par

$$f_{n,k} = \mathbb{1}_{[(k-1)/n,k/n]}.$$

Alors  $(f_{n,k})_{n\geq 1, 1\leq k\leq n}$  converge en mesure vers o. En effet pour tout  $n\geq 1$  et tout  $1\leq k\leq n$ ,  $\lambda(f_{n,k}>0)=1/n$ . En revanche  $\limsup f_{n,k}=\mathbb{1}_{[0,1]}$ , donc la convergence n'a pas lieu  $\mu$ -p.p.

3. On peut construire une suite strictement croissante d'entiers  $(n_k)_{k\geq 1}$  telle que pour tout  $k\geq 1$ ,

$$\mu\left(\left|f_{n_k}-f\right|>\frac{1}{k}\right)\leq 2^{-k}.$$

Alors, d'après le lemme de Borel-Cantelli, pour  $\mu$ -presque tout x, il existe  $k_o(x)$  tel que pour tout  $k \ge k_o(x)$ ,  $|f_{n_k}(x) - f(x)| \le 1/k$ . Cela implique que  $f_{n_k} \to f$   $\mu$ -p.p. quand  $k \to \infty$ .

4. Première méthode : par l'absurde. On suppose qu'il existe  $\varepsilon > 0$  et une suite extraite  $(f_{n_k})_{k \ge 0}$  telle que pour tout  $k \ge 0$ ,

$$\int_{E} \left| f_{n_{k}} - f \right| d\mu \ge \varepsilon. \tag{1}$$

Or  $f_{n_k} \to f$  en mesure quand  $k \to \infty$  donc d'après la question 3., on peut extraire une sous-suite  $(f_{n_{k_j}})_{j \ge 0}$  de  $(f_{n_k})$  telle que  $f_{n_{k_j}} \to f$   $\mu$ -p.p. Or  $|f_{n_{k_j}}| \le g$  pour tout  $j \ge 0$ . Donc d'après le théorème de convergence dominée,

$$\int_{E} \left| f_{n_{k_{j}}} - f \right| d\mu \xrightarrow[j \to \infty]{} o.$$

Cela contredit l'inégalité (1).

Deuxième méthode. Comme suggéré dans l'énoncé.

(a) Vérifions tout d'abord que  $|f| \le g \mu$ -p.p. Pour tout  $\varepsilon > 0$ , on a

$$\mu(|f| > g + \varepsilon) \le \mu(|f| > |f_n| + \varepsilon) \le \mu(|f - f_n| > \varepsilon).$$

Donc,  $\mu(|f| > g + \varepsilon) = 0$ . Ainsi,  $\mu$ -p.p., pour tout  $n \ge 1$ ,  $|f| \le g + 1/n$  et donc  $|f| \le g$ .

(b) Soit  $\varepsilon > 0$ . On a

$$\int_{E} |f_{n} - f| d\mu = \int_{\{|f_{n} - f| \le \varepsilon\}} |f_{n} - f| d\mu + \int_{\{|f_{n} - f| > \varepsilon\}} |f_{n} - f| d\mu$$

$$\leq \varepsilon \mu(E) + 2 \int_{\{|f_{n} - f| > \varepsilon\}} |g| d\mu$$

La fonction g étant intégrable, on a d'après la propriété d'uniforme continuité de l'intégrale,

$$2\int_{\{|f_n-f|>\varepsilon\}}|g|\,d\mu\underset{n\to\infty}{\longrightarrow} 0.$$

Ainsi,  $\limsup_{n\to\infty} \int_E |f_n - f| d\mu \le \varepsilon \mu(E)$  pour tout  $\varepsilon > 0$ . Donc  $\int_E |f_n - f| d\mu \to 0$ .

(5)(a) Montrons que  $\delta$  est une distance sur  $\mathbb{L}^{\circ}(E,\mu)$ . Soient  $f,g\in\mathbb{L}^{\circ}(E,\mu)$ . Il est évident que  $\delta(f,f)=o$  et  $\delta(f,g)=\delta(g,f)$ . Supposons  $\delta(f,g)=o$ . Alors pour tout  $n\geq 1$ ,  $\mu(|f-g|>1/n)\leq 1/n$  et la suite  $(\{|f-g|>1/n\})_{n\geq 1}$  est croissante pour l'inclusion donc on a

$$\mu(f \neq g) = \mu\left(\bigcup_{n \geq 1} \{|f - g| > 1/n\}\right) = \lim_{n \to \infty} \mu(|f - g| > 1/n) = 0,$$

i.e.  $f = g \mu$ -p.p. Soient maintenant  $f, g, h \in \mathbb{L}^{\circ}(E, \mu)$ . Posons  $a = \delta(f, g)$  et  $b = \delta(g, h)$ . Alors, pour tout  $\varepsilon > 0$ , on a

$$\begin{split} \mu(|f-h| > a+b+2\varepsilon) & \leq & \mu(|f-g|+|g-h| > a+b+2\varepsilon) \\ & \leq & \mu(|f-g| > a+\varepsilon) + \mu(|g-h| > b+\varepsilon) \\ & \leq & a+b+2\varepsilon. \end{split}$$

Cela implique  $\delta(f,h) \leq \delta(f,g) + \delta(g,h)$ . Vérifions que  $\delta$  métrise la convergence en mesure. Soient  $f \in \mathbb{L}^{\circ}(E,\mu)$  et  $(f_n)_{n\geq 1}$  une suite d'éléments de  $\mathbb{L}^{\circ}(E,\mu)$ . On suppose tout d'abord que  $f_n \to f$  en mesure. Soit  $\varepsilon > 0$ . Alors,  $\mu(|f_n - f| > \varepsilon) \to 0$ . Donc, il existe  $n_0 \in \mathbb{N}$  tel que  $\mu(|f_n - f| > \varepsilon) \leq \varepsilon$  pour tout  $n \geq n_0$ . Ainsi,  $\delta(f_n, f) \leq \varepsilon$  pour tout  $n \geq n_0$  ce qui montre que  $\delta(f_n, f) \to 0$ . Supposons maintenant que  $\delta(f_n, f) \to 0$ . Soit  $\eta > 0$  fixé. Pour tout  $\varepsilon \in ]0, \eta]$ , il existe  $n_0$  tel que  $\mu(|f_n - f| > \varepsilon) \leq \varepsilon$  pour tout  $n \geq n_0$ . Ainsi, pour tout  $n \geq n_0$ .

$$\mu(|f_n - f| > \eta) \le \mu(|f_n - f| > \varepsilon) \le \varepsilon$$
,

ce qui montre que  $f_n \to f$  en mesure.

(5)(b) On peut construire une suite extraite  $(f_{n_k})_{k\geq 1}$  telle que  $\mu(|f_{n_{k+1}}-f_{n_k}|>2^{-k})\leq 2^{-k}$  pour tout  $k\geq 1$  (s'en convaincre, c'est important). Notons

$$A_k = \left\{ |f_{n_{k+1}} - f_{n_k}| > 2^{-k} \right\}.$$

Alors  $\sum_{k\geq 1}\mu(A_k)<\infty$ . Donc, d'après le lemme de Borel-Cantelli,  $\mu(\limsup_k A_k)=0$ . Ainsi, la série

$$\sum_{k>1} |f_{n_{k+1}}(x) - f_{n_k}(x)|$$

converge pour  $\mu$ -presque tout x. Donc la suite  $(f_{n_k}(x))_{k\geq 1}$  converge pour  $\mu$ -presque tout x. On note f sa limite  $\mu$ -p.p. (on pose f=0 sur l'ensemble de mesure nulle où f n'est pas définie, noter que f est bien définie  $\mu$ -p.p.). Alors d'après la question 1.,  $f_{n_k} \to f$  en mesure. Ainsi  $\delta(f_{n_k}, f) \to 0$  et donc  $\delta(f_n, f) \to 0$ .

(5)(c) Supposons qu'il existe une distance d sur  $\mathbb{L}^{\circ}(E,\mu)$  qui métrise la convergence  $\mu$ -p.p. D'après la question 1., on peut construire une suite de fonctions mesurables  $(f_n)_{n\geq 0}$  sur  $(E,\mathcal{A},\mu)$  qui converge en mesure vers o mais pas  $\mu$ -p.p. Ainsi, il existe  $\varepsilon > 0$  et une suite extraite  $(f_{n_k})_{k\geq 0}$  telle que  $d(f_{n_k},0) \geq \varepsilon$  pour tout  $k\geq 0$ . Or  $f_{n_k} \to 0$  en mesure. Donc, d'après la question 2., on peut construire une suite extraite  $(f_{n_{k_j}})_{j\geq 0}$  qui converge  $\mu$ -p.p. vers 0. Cela contredit l'inégalité  $d(f_{n_{k_j}},0) \geq \varepsilon$  pour tout  $j\geq 0$ .



## Exercice 5.

Soit  $f: ]0,1[ \to \mathbb{R}$  une fonction positive, monotone et intégrable. Quelle est la limite de la suite

$$\left(\int_0^1 f(x^n)dx\right)_{n\geq 1}?$$

#### Corrigé:

La fonction f étant monotone, elle admet une limite à droite en o que nous noterons  $\alpha$  ( $\alpha \in \mathbb{R} \cup \{+\infty\}$ ).

1. <u>Premier cas</u> : la fonction f est décroissante et  $\alpha < \infty$ . Alors la suite de fonctions positives  $(f_n)_{n \ge 1}$  définies par

$$f_n(x) = f(x^n), x \in ]0,1[,$$

est croissante et converge  $\lambda$ -p.p. vers  $\alpha$ . Donc d'après le théorème de convergence monotone,

$$\int_{]0,1[} f(x^n) dx \xrightarrow[n \to \infty]{} \int_{]0,1[} \alpha d\lambda = \alpha.$$

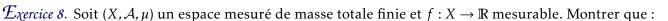
2. <u>Deuxième cas</u> : la fonction f est décroissante et  $\alpha = \infty$ . Alors  $(f_n)_{n \ge 1} \uparrow + \infty \lambda$ -p.p. donc d'après le théorème de convergence monotone,

$$\int_{]0,1[} f(x^n) dx \xrightarrow[n \to \infty]{} +\infty.$$

3. <u>Troisième cas</u> : la fonction f est croissante (on a  $\alpha < \infty$  dans ce cas). Alors la suite de fonctions  $(f_n)_{n \ge 1}$  est décroissante et converge  $\lambda$ -p.p. vers  $\alpha$ . De plus  $f_1 = f$  est intégrable donc

$$\int_{]0,1[} f(x^n) dx \underset{n \to \infty}{\longrightarrow} \alpha.$$

4 – Compléments (hors TD)



$$f\in\mathcal{L}_1(X,\mathcal{A},\mu)\qquad\Longleftrightarrow\qquad \sum_{n\geq 1}\mu(\{|f|\geq n\})<\infty.$$

Que se passe-t-il si la masse totale est infinie?

#### Corrigé:

On a

$$\begin{split} \int_{E} |f| \mu &= \sum_{n \geq 0} \int_{E} |f| \mathbb{1}_{\{n \leq |f| < n+1\}} d\mu \\ &\leq \sum_{n \geq 0} (n+1) \mu(\{n \leq |f| < n+1\}) \\ &= \sum_{n \geq 0} (n+1) (\mu(\{|f| \geq n\}) - \mu(\{|f| \geq n+1\}) \\ &= \sum_{n \geq 0} \mu(\{|f| \geq n\}) + \sum_{n \geq 0} n \mu(\{|f| \geq n\}) - \sum_{n \geq 0} (n+1) \mu(\{|f| \geq n+1\}) \\ &= \mu(E) + \sum_{n \geq 1} \mu(\{|f| \geq n\}). \end{split}$$

Pour la dernière égalité, on a utilisé le fait que  $\mu(\{|f| \ge 0\}) = \mu(E)$ . On montre de la même manière que

$$\int_{E} |f| \, d\mu \ge \sum_{n \ge 1} \mu(\{|f| \ge n\}).$$

On obtient l'équivalence demandée.

Dans le cas où  $\mu(E) = \infty$ , on peut avoir  $\sum_{n \ge 1} \mu(\{|f| \ge n\}) < \infty$  avec f non intégrable. Considérer par exemple  $f = \mathbbm{1}_{\mathbb{R}}$  sur  $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ .

Exercice 9. (Quand est-ce que convergence p.p. implique convergence dans  $\mathcal{L}_1$ ?) Soit  $(E, \mathcal{A}, \mu)$  un espace mesuré avec  $\mu(E) < \infty$ . Une famille  $(f_i)_{i \in I}$  de fonctions mesurables de E dans  $\mathbb{R}$  est dite **uniformément intégrable** si

$$\lim_{c \to \infty} \sup_{i \in I} \int_{\{|f_i| \ge c\}} |f_i| d\mu = 0.$$
 (2)

- a) Montrer que toute famille finie de  $\mathcal{L}_1(E, \mathcal{A}, \mu)$  (noté  $\mathcal{L}_1(\mu)$  dans la suite) est uniformément intégrable.
- b) Montrer que la famille  $(f_i)_{i \in I}$ ) est uniformément intégrable si, et seulement si, les deux conditions suivantes sont satisfaites :
  - (i)  $\sup_{i \in I} \int |f_i| d\mu < \infty$
  - (ii)  $\forall \, \varepsilon > 0, \exists \, \eta > 0, \forall \, A \in \mathcal{A}, \qquad \mu(A) < \eta \Longrightarrow \forall \, i \in I, \int_A |f_i| d\mu < \varepsilon.$
- c) Montrer que si les familles  $(f_i)_{i \in I}$  et  $(g_i)_{i \in I}$  sont uniformément intégrables, alors il en est de même pour la famille  $(f_i + g_i)_{i \in I}$ ).
- d) Soit  $(f_n)_{n\geq 1}$  une suite de fonctions qui converge  $\mu$ -p.p. vers une fonction f. Montrer que  $(f_n)_{n\geq 1}$  est uniformément intégrable si, et seulement si,  $f\in \mathcal{L}_1(\mu)$  et

$$\int_{E} |f_n - f| d\mu \quad \underset{n \to \infty}{\longrightarrow} \quad \text{o.}$$

#### Corrigé:

a) Si I est fini, il suffit de montrer que  $\lim_{c\to\infty}\int_{\{|f_i|\geq c\}}|f_i|d\mu=0$  pour  $i\in I$  fixé. Ceci découle du théorème de convergence dominée, car

$$\int_{\{|f_i| \ge c\}} |f_i| d\mu = \int_E |f_i| \mathbb{1}_{\{|f_i| \ge c\}} d\mu,$$

et  $|f_i|\mathbbm{1}_{\{|f_i|\geq c\}}$  converge  $\mu$ -p.p. vers o lorsque  $c\to\infty$  en étant majoré par  $|f_i|$ , qui est intégrable.

b) Montrons d'abord l'implication. On remarque que pour  $i \in I$  et  $c \ge 0$ ,

$$\int_{E} |f| d\mu \le c\mu(E) + \int_{\{|f_i| \ge c\}} |f| d\mu.$$

D'après (2), il existe C > o tel que  $\sup_{i \in I} \int_{\{|f_i| \ge C\}} |f_i| d\mu < \infty$ . On a alors

$$\sup_{i\in I}\int |f_i|d\mu \leq C\mu(E) + \sup_{i\in I}\int_{\{|f_i|\geq C\}} |f_i|d\mu < \infty,$$

ce qui prouve (i).

Pour (ii), on imite la preuve de l'uniforme continuité de l'intégrale : on fixe  $\epsilon >$  0 et on choisit C > 0 tel que  $\sup_{i \in I} \int_{\{|f_i| > C\}} |f_i| d\mu < \epsilon/2$ . Si  $\mu(A) \le \epsilon/(2C\mu(E))$ , on a pour tout  $i \in I$  :

$$\int_A |f_i| d\mu \leq \int_{A, |f_i| \leq C} |f_i| d\mu + \int_{|f_i| \geq C} |f_i| d\mu \leq \mu(A) C \mu(E) + \int_{|f_i| \geq C} |f_i| d\mu \leq \epsilon.$$

Montrons maintenant la réciproque. Notons  $\gamma = \sup_{i \in I} \int |f_i| d\mu < \infty$ . D'après l'inégalité de Markov, pour  $i \in I$  et  $c \ge 0$  on a  $\mu(\{|f_i| \ge c\}) \le \gamma/c$ . Fixons  $\epsilon > 0$  et soit  $\eta > 0$  tel que la condition (ii) soit vérifiée. Pour  $c \ge \gamma/\eta$  on a alors ,  $\mu(\{|f_i| \ge c\}) \le \eta$  pour tout  $i \in I$ , ce qui implique

$$\sup_{i \in I} \int_{\{|f_i| \ge c\}} |f_i| d\mu \le \epsilon$$

grâce à (ii). Le résultat s'ensuit.

- c) C'est une conséquence facile de la question b) en utilisant l'inégalité triangulaire.
- d) Montrons d'abord l'implication. En écrivant  $|f| \le |f_n| + |f f_n|$ , on voit aisément que  $f \in \mathcal{L}_1(\mu)$ . Soit  $\epsilon > 0$ . On écrit, pour  $\epsilon \ge 0$ :

$$\int_{E} |f_{n} - f| d\mu \le \int_{X} \min(|f_{n} - f|, c) d\mu + \int_{\{|f_{n} - f| \ge c\}} |f_{n} - f| d\mu.$$

D'après a), f est uniformément intégrable, et donc d'après c) la suite  $(f_n - f)_{n \ge 1}$  est uniformément intégrable. Il existe donc C > 0 tel que pour tout  $n \ge 1$ ,

$$\int_{\{|f_n - f| \ge C\}} |f_n - f| d\mu \le \epsilon.$$

On a donc

$$\int_{E} |f_n - f| d\mu \le \int_{X} \min(|f_n - f|, C) d\mu + \epsilon.$$

Mais le premier terme de la quantité de droite tend vers o d'après le théorème de convergence dominée. On a donc  $\int_E |f_n - f| d\mu \le 2\epsilon$  pour n suffisamment grand, ce qui prouve l'implication désirée

Montrons finalement la réciproque. La condition  $\int_E |f_n - f| d\mu \to 0$  garantit que la suite  $(f_n - f)_{n \ge 1}$  est uniformément intégrable. Nous avons déjà vu que f est uniformément intégrable. Il s'ensuit que la suite  $(f_n - f + f)_{n \ge 1} = (f_n)_{n \ge 1}$  est uniformément intégrable, ce qui conclut l'exercice.



*Exercice 10.* ( $\star$ ) Soient (E, A,  $\mu$ ) un espace mesuré et ( $A_n$ ) $_{n\geq 1}$  une suite d'éléments de A. Soit  $f:(E,A,\mu)\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$  une fonction intégrable telle que

$$\int_{E} \left| \mathbb{1}_{A_n} - f \right| d\mu \quad \underset{n \to \infty}{\longrightarrow} \quad \text{o.}$$

Montrer qu'il existe  $A \in \mathcal{A}$  tel que  $f = \mathbb{1}_A$ ,  $\mu$  presque partout.

### Corrigé:

Montrons d'abord que  $|f| \le 2$   $\mu$ -p.p. À cet effet, on remarque que d'après l'inégalité triangulaire  $\{|f| > 2\} \subset \{|\mathbb{1}_{A_n} - f| > 1\}$ , donc d'après l'inégalité de Markov

$$\mu(\{|f| > 2\}) \le \int_E |\mathbb{1}_{A_n} - f| d\mu \xrightarrow[n \to \infty]{} o.$$

Ainsi,  $\mu(\{|f| > 2\})$  = o, ce qui prouve que  $|f| \le 2 \mu$ -p.p.

Pour prouver que  $f=\mathbb{1}_A$ ,  $\mu$ -p.p, nous allons démontrer que  $f=f^2$   $\mu$ -p.p. (et alors  $A=\{f=1\}$ ). À cet effet, on écrit

$$\begin{split} \int_{E} |f - f^{2}| d\mu & \leq \int_{E} |f - \mathbb{1}_{A_{n}}| d\mu + \int_{E} |f^{2} - \mathbb{1}_{A_{n}}| d\mu \\ & = \int_{E} |f - \mathbb{1}_{A_{n}}| d\mu + \int_{E} |f - \mathbb{1}_{A_{n}}| \cdot |f + \mathbb{1}_{A_{n}}| d\mu \\ & \leq 4 \int_{E} |\mathbb{1}_{A_{n}} - f| d\mu, \end{split}$$

car  $|\mathbb{1}_{A_n} - f| \le 3 \mu$ -p.p. Ainsi, on obtient le résultat.



Fin