

ENS Paris, 2013-2014

1 - Petites questions

- 1) Est-ce que l'ensemble des ouverts de R est une tribu?
- 2) Si on note λ la mesure de Lebesgue, rappeler pourquoi $\lambda(\{x\}) = 0$ pour tout $x \in \mathbb{R}$. Alors :

$$\lambda(\mathbb{R}) = \lambda\left(\bigcup_{x \in \mathbb{R}} \{x\}\right) = \sum_{x \in \mathbb{R}} \lambda(\{x\}) = \sum_{x \in \mathbb{R}} o = o.$$

Où est le problème?

- 3) Si \mathcal{F} et \mathcal{G} sont deux tribus, est-ce que $\mathcal{F} \cup \mathcal{G}$ est toujours une tribu?
- 4) Si $(a_n)_{n\geq 1}$ et $(b_n)_{n\geq 1}$ sont deux suites de nombres réels, a-t-on toujours

$$\limsup_{n\to\infty} (a_n + b_n) = \limsup_{n\to\infty} a_n + \limsup_{n\to\infty} b_n?$$

Et si les deux suites sont bornées ? Et si b_n converge ?

2 – Mesures

Exercice 1. (Lemme de Borel-Cantelli) (E, A, μ) est un espace mesuré (μ est une mesure positive) et que (A_n) $_{n\geq 1}$ est une suite d'éléments de A. On rappelle que l'on note

$$\liminf_{n\to\infty} A_n = \bigcup_{n\geq 1} \bigcap_{k>n} A_k, \qquad \limsup_{n\to\infty} A_n = \bigcap_{n\geq 1} \bigcup_{k>n} A_k.$$

1. Montrer que

$$\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n)$$
,

et que si $\mu(\bigcup_{n>1} A_n) < \infty$, alors

$$\mu\left(\limsup_{n\to\infty}A_n\right)\geq \limsup_{n\to\infty}\mu(A_n).$$

Qu'est-ce qui se passe si $\mu(\bigcup_{n\geq 1} A_n) = \infty$?

2. (Lemme de Borel-Cantelli.) On suppose que $\sum_{n\geq 1}\mu(A_n)<\infty$. Montrer que

$$\mu\left(\limsup_{n\to\infty}A_n\right)=0.$$

Pour des questions, demande de précisions ou explications, n'hésitez pas à m'envoyer un mail à igor.kortchemski@ens.fr, ou bien à venir me voir au bureau V4.

3. (Une application du lemme de Borel-Cantelli.) Soit $\varepsilon > 0$. Montrer que pour presque-tout $x \in [0,1]$ (pour la mesure de Lebesgue), il n'existe qu'un nombre fini de rationnels p/q avec p et q premiers entre eux tels que

$$\left|x-\frac{p}{q}\right|<\frac{1}{q^{2+\varepsilon}},$$

i.e. presque tout x est "mal approchable par des rationnels à l'ordre $2 + \varepsilon$ ".

Exercice 2. (Mesure sur \mathbb{Z}) Existe-t-il une mesure de masse finie sur $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}))$ invariante par translation?

3 – Tribus

Exercice 3. (Opérations sur les tribus)

- 1. Soit \mathcal{F} une tribu de Ω et B un élément de \mathcal{F} . Montrer que l'ensemble $\mathcal{F}_B := \{A \cap B, A \in \mathcal{F}\}$ est une tribu de B.
- 2. Soit $(X \times Y, \mathcal{F})$ un espace-produit mesuré et $\pi: X \times Y \longrightarrow X$ la projection canonique. L'ensemble $\mathcal{F}_X := \{\pi(F), F \in \mathcal{F}\}$ est-il une tribu?
- 3. On considère sur \mathbb{N} , pour chaque $n \geq 0$, la tribu $\mathcal{F}_n = \sigma(\{0\}, \{1\}, \dots, \{n\})$. Montrer que la suite de tribus $(\mathcal{F}_n, n \geq 0)$ est croissante mais que $\bigcup_{n \geq 0} \mathcal{F}_n$ n'est pas une tribu. *Indication*: On pourra raisonner par l'absurde et utiliser le sous-ensemble $2\mathbb{N}$.
- 4. (Partiel 2010) Soit (E, A) un espace mesurable. Soit C une famille de parties de E, et soit $B \in \sigma(C)$. Alexandra dit : alors nécessairement, il existe une famille dénombrable $D \subset C$ telle que $B \in \sigma(D)$. A-t-elle raison?
- 5. Soient X, Y deux ensembles et $f: X \to Y$ une application. Soit $A \subset \mathcal{P}(Y)$. Alexandra dit : alors nécessairement, $\sigma(f^{-1}(A)) = f^{-1}(\sigma(A))$. A-t-elle raison?

───

Exercice 4. Prouver que $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.

4 – Divers

Exercice 5.

1. Montrer que pour tout $\epsilon >$ o, il existe O_{ϵ} un ouvert dense de $\mathbb R$ de mesure (de Lebesgue)

$$\lambda(O_{\epsilon}) \le \epsilon$$
.

2. En déduire que pour tout $\epsilon >$ o, il existe F_{ϵ} un fermé d'intérieur vide tel que pour tout $A \in \mathcal{B}(\mathbb{R})$:

$$\lambda(A \cap F_{\epsilon}) \ge \lambda(A) - \epsilon$$
.

Exercice 6. (Ensembles de Cantor)

Soit $(d_n, n \ge 0)$ une suite d'éléments de]0,1[, et soit $K_0 = [0,1]$. On définit une suite $(K_n, n \ge 0)$ de la façon suivante : connaissant K_n , qui est une réunion d'intervalles fermés disjoints, on définit K_{n+1} en retirant dans chacun des intervalles de K_n un intervalle ouvert centré au centre de chaque intervalle, de longueur d_n fois celle de l'intervalle. On pose $K = \bigcap_{n \ge 0} K_n$.

- 1. Montrer que *K* est un compact non dénombrable d'intérieur vide dont tous les points sont d'accumulation.
- 2. Calculer la mesure de Lebesgue de *K*.
- 3. On note K_3 l'ensemble de Cantor obtenu en posant $d_n = \frac{1}{3}$ pour tout n. Vérifier que

$$K_3 = \left\{ \sum_{n \ge 1} \frac{a_n}{3^n} ; (a_n) \in \{0, 2\}^{\mathbb{N}} \right\}$$

et qu'il est mesure de Lebesgue nulle.

Exercice 7. Soit (Ω, A) un espace mesurable tel que $\{\omega\} \in A$ pour tout $\omega \in \Omega$. Soit μ une mesure positive sur A. On dit que μ est portée par $S \in A$ si $\mu(S^c) = 0$, que $\omega \in \Omega$ est un atome ponctuel pour μ si $\mu(\{\omega\}) \neq 0$, que μ est diffuse si elle n'a pas d'atomes ponctuels, que μ est purement atomique si elle est portée par l'ensemble de ses atomes ponctuels.

- 1. Donner des exemples de mesures diffuses et de mesures purement atomiques.
- 2. Que peut-on dire d'une mesure qui est diffuse et purement atomique?
- 3. Soit μ une mesure positive sur \mathcal{A} . Montrer qu'il existe une mesure diffuse μ_d et une mesure purement atomique μ_a sur \mathcal{A} telles que $\mu = \mu_d + \mu_a$.
- 4. Montrer que l'ensemble des atomes ponctuels d'une mesure σ -finie μ est dénombrable.

5 – À chercher pour la prochaine fois

Exercice 8. Soit $(\Omega, \mathcal{F}, \mu)$ un espace mesuré tel que $\mu(\Omega) = 1$. Soient $\mathcal{A}, \mathcal{B} \subset \mathcal{P}(\Omega)$ deux sous-ensembles de $\mathcal{P}(\Omega)$ constitué d'ensembles mesurables. On suppose que \mathcal{A} et \mathcal{B} sont stables par intersections finies et que pour tous $A \in \mathcal{A}, B \in \mathcal{B}$:

$$\mu(A \cap B) = \mu(A) \cdot \mu(B)$$
.

Montrer que pour tous $U \in \sigma(A)$ et $V \in \sigma(B)$ on a :

$$\mu(U \cap V) = \mu(U) \cdot \mu(V)$$
.

6 – Compléments (hors TD)

Exercice 9. ("Cardinal" d'une tribu) Le but de l'exercice est de montrer qu'il n'existe pas de tribu \mathcal{A} infinie dénombrable. Soit (E, \mathcal{A}) un espace mesurable. On définit, pour tout $x \in E$, l'atome de la tribu \mathcal{A} engendré par x par,

$$\dot{x} = \bigcap_{\{A \in \mathcal{A} : x \in A\}} A.$$

- 1. Montrer que les atomes de A forment une partition de E.
- 2. Montrer que si \mathcal{A} est au plus dénombrable alors \mathcal{A} contient ses atomes et que chaque élément de \mathcal{A} s'écrit comme une réunion au plus dénombrable d'atomes.
- 3. Conclure.
- 4. Donner une nouvelle démonstration de question 3 de l'exercice 3.

Exercice 10. (Support) Soit μ une mesure borélienne sur \mathbb{R}^n (ou plus généralement sur un espace métrique séparable localement compact). On pose

$$S := \{x \in \mathbb{R}^n, \mu(B(x,r)) > 0, \text{ pour tout } r > 0\}.$$

Montrer que S est fermé, que $\mu(\mathbb{R}^n \backslash S) = 0$, et que $\mu(S \backslash F) = \mu(\mathbb{R}^n \backslash F) > 0$ pour tout fermé F strictement contenu dans S. (On appelle S le support de la mesure μ .)

Exercice 11. (\star – Mesure atomique) Soit (X, \mathcal{F}, μ) un espace mesuré. Un ensemble $A \in \mathcal{F}$ est un atome pour μ si o $< \mu(A) < \infty$ et pour tout $B \subset A$ mesurable, $\mu(B) = 0$ ou $\mu(B) = \mu(A)$. Soit (X, \mathcal{F}, μ) un espace mesuré avec $\mu(X) = 1$ et tel que μ n'ait pas d'atomes. Montrer que l'image de μ est [0,1] (c'est-à-dire que pour tout $t \in [0,1]$, il existe $A \in \mathcal{F}$ tel que $\mu(A) = t$).

Exercice 12. (Un problème d'additivité)

On note $l^{\infty} = \{\mathbf{a} = (a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, \|\mathbf{a}\|_{\infty} := \sup_{n \in \mathbb{N}} a_n < \infty\}$, l'ensemble des suites réelles bornées.

1. Montrer que $(l^{\infty}, \|.\|_{\infty})$ est un espace vectoriel normé complet.

On admet (théorème de Hahn-Banach) qu'il existe une forme linéaire $F: l^{\infty} \longrightarrow \mathbb{R}$ continue qui satisfait les deux propriétés suivantes : Soit $\mathbf{a} = (a_n)_{n \in \mathbb{N}} \in l^{\infty}$

- $--F(\mathbf{a}) \leq ||\mathbf{a}||_{\infty},$
- Si $\lim_{n\to\infty} a_n = \alpha$ existe alors $F(\mathbf{a}) = \alpha$.

2. Soit $A \subset \mathbb{N}$ et $\mathfrak{1}_A \in l^{\infty}$ définie par $\left\{ \begin{array}{l} \mathfrak{1}_A(n) = \mathfrak{1}, \text{ si } n \in A, \\ \text{o sinon} \end{array} \right.$. Si $\mathrm{P}(A) = F(\mathfrak{1}_A)$, montrer que

- $P(\emptyset) = o, P(\mathbb{N}) = 1$,
- $P(A^c) = 1 P(A)$,
- $-- P(A \cup B) = P(A) + P(B) \text{ si } A \cap B = \emptyset.$
- 3. Montrer que P n'est pas une mesure.

Exercice 13. (\star) Est-ce que $\mathcal{B}(X \times Y) = \mathcal{B}(X) \otimes \mathcal{B}(Y)$ pour tous espaces métriques X, Y?

Fin