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Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞.

If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices. View Tn as a compact metric space. Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices. View Tn as a compact metric space. Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices.

View Tn as a compact metric space. Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices. View Tn as a compact metric space.

Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices. View Tn as a compact metric space. Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map)

, in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices. View Tn as a compact metric space. Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices. View Tn as a compact metric space. Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limits of random maps

Goal: choose a random map Mn of size n and study its global geometry as
n→∞. If possible, show that a continuous limit exists (Chassaing & Schaeffer
’04).

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n vertices. View Tn as a compact metric space. Show that
n−1/4 · Tn converges towards a random compact metric space (the Brownian
map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

(see Le Gall’s proceeding at ICM ’14 for more information and references)

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 4 / 475



Motivation Definition: Boltzmann dissections Theorem Applications Proof

A simulation of the Brownian CRT
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Motivation Definition: Boltzmann dissections Theorem Applications Proof

Random maps having the CRT as a scaling limit

I Albenque & Marckert (’07): Uniform stack triangulations with 2n faces

I Janson & Steffánsson (’12): Boltzmann-type bipartite maps with n edges,
having a face of macroscopic degree.

I Bettinelli (’11): Uniform quadrangulations with n faces with fixed
boundary �

√
n.
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Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections
Let Pn be the polygon whose vertices are e

2iπj
n (j = 0, 1, . . . ,n− 1).

A dissection of Pn is the union of the sides Pn and of a collection of
noncrossing diagonals.

�
We will view dissections as compact metric spaces.
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Motivation Definition: Boltzmann dissections Theorem Applications Proof

Dissections à la Boltzmann

Let Dn be the set of all dissections of Pn.

Fix a sequence (µi)i>2 of nonnegative real numbers.

Associate a weight π(ω) with every dissection ω ∈ Dn:

π(ω) =
∏

f faces of ω

µdeg(f)−1.

Then define a probability measure on Dn by normalizing the weights:

Zn =
∑
ω∈Dn

π(ω)

and when Zn 6= 0, set for every ω ∈ Dn:

Pµn(ω) =
1

Zn
π(ω).

We call Pµn(ω) a Boltzmann probability distribution.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 9 / 147
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Dissections à la Boltzmann

Assume that νi = λi−1µi for every i > 2 with λ > 0.

Then Pνn = Pµn.

Proposition.

Suppose that there exists λ > 0 such that
∑
i>2 iλ

i−1µi = 1. Set

ν0 = 1−
∑
i>2

λi−1µi, ν1 = 0, νi = λ
i−1µi (i > 2),

Then Pνn = Pµn and ν is a critical probability measure on Z+ with ν1 = 0.
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Dissections à la Boltzmann: examples

I Uniform p-angulations (p > 3). Set

µ
(p)
0 = 1−

1

p− 1
, µ

(p)
p−1 =

1

p− 1
, µ

(p)
i = 0 (i 6= 0, i 6= p− 1).

Then Pµ
(p)

n is the uniform measure over all p-angulations of Pn.

I Uniform dissections. Set

µ0 = 2−
√
2, µ1 = 0, µi =

(
2−
√
2

2

)i−1

i > 2,

then Pµn is the uniform measure on the set of all dissections of Pn.
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I. Definition

II. Theorem: scaling limits of random dissections

III. Application
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Motivation Definition: Boltzmann dissections Theorem Applications Proof

Scaling limit of random dissections

Let µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.
∑
i>0 e

λiµi <∞
for some λ > 0.

Let Dµn be a random dissection distributed according to Pµn.

What does Dµn look like, for n large, as a metric space?

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 13 /
√
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Simulations

Figure : A uniform dissection of P45.
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Simulations

Figure : A uniform dissection of P260.
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Simulations

Figure : A uniform dissection of P387.
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Simulations

Figure : A uniform dissection of P637.

Igor Kortchemski (ÉNS Paris) Scaling limits of random dissections 14 /
√

8/3



Motivation Definition: Boltzmann dissections Theorem Applications Proof

Simulations

Figure : A uniform dissection of P8916.
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Scaling limit of random dissections
Let µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.

∑
i>0 e

λiµi <∞
for some λ > 0. Let Dµn be a random dissection distributed according to Pµn.

There exists a constant c(µ) such that:

1√
n
·Dµn

(d)−−−→
n→∞ c(µ) · Te,

where Te is a random compact metric space, called the Brownian CRT and
the convergence holds in distribution for the Gromov–Hausdorff topology
on compact metric spaces.

In addition, c(µ) =
2

σ
√
µ0
· 1
4

(
σ2 +

µ0µ2Z+

2µ2Z+
− µ0

)
,

where µ2Z+
= µ0 + µ2 + µ4 + · · · and σ2 ∈ (0,∞) is the variance of µ.

Theorem (Curien, Haas & K.).
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What is the Brownian Continuum Random Tree?
First define the contour function of a tree:
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What is the Brownian Continuum Random Tree?
Knowing the contour function, it is easy to recover the tree by gluing:
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What is the Brownian Continuum Random Tree?
The Brownian tree Te is obtained by gluing from the Brownian excursion e.
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Figure : A simulation of e.
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A simulation of the Brownian CRT

Figure : A non isometric plane embedding of a realization of Te.
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Recap
Let µ be a probability measure over {0, 2, 3, . . .} of mean 1 s.t.
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I. Definition

II. Theorem

III. Combinatorial applications

IV. Proof
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Applications

Combinatorial properties of random dissections have been studied by various
authors :

I Uniform triangulations : Devroye, Flajolet, Hurtado, Noy & Steiger
(maximal degree, longest diagonal, 1999) and Gao & Wormald (maximal
degree, 2000),

I Uniform dissections (and triangulations) : Bernasconi, Panagiotou & Steger
(degrees, maximal degree, 2010) and Drmota, de Mier & Noy (diameter,
2012).

y When µi ∼ c/i1+α as i→∞, loops remain in the scaling limit, which is
the stable looptree of index α ∈ (1, 2) (Curien & K.). The looptree of index
α = 3/2 describes the scaling limit of boundaries of critical site percolation on
the Uniform Infinite Planar Triangulation (Curien & K.).
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Applications
The diameter Diam(Dµn) is the maximal distance between two points of Dµn.

We have for every p > 0:

E
[
Diam(Dµn)

p
]

∼
n→∞

c(µ)p ·
∫∞
0

xpfD(x)dx · np/2

.

In particular, for p = 1, E
[
Diam(Dµn)

]
∼

n→∞ c(µ) · 2
√
2π

3
·
√
n.

Corollary.

For uniform dissections, we get E
[
Diam(Dµn)

]
∼

1

21
(3+

√
2)29/4

√
πn

' 0.99988
√
πn. This strenghtens a result of Drmota, de Mier & Noy who

proved that

(3+
√
2)21/4

7

√
πn 6 E

[
Diam(Dµn)

]
6 2 · (3+

√
2)21/4

7

√
πn

' 0.74
√
πn ' 1.5

√
πn.
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Proof
g Step 1. Consider the dual tree of Dµn:

Figure : A dissection and its dual tree Tµn.

y Key fact. T
µ
n is a (planted) Galton–Watson tree with offspring distribution

µ conditioned on having n− 1 leaves.

It is known (Rizzolo or K.) that:

1√
n
· Tµn

(d)−→
n→∞ 2

σ
√
µ0
· Te.
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Proof
g Step 2. We show that:

Dµn ' 1

4

(
σ2 +

µ0µ2Z+

2µ2Z+
− µ0

)
· Tµn.

To this end, we compare the length of geodesics in D
µ
n and in T

µ
n by using an

“exploration” Markov Chain:

Figure : A geodesic in Tµn (in light blue) and the associated geodesic in Dµn (in red).

�
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