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Trees built by preferential attachment

Let (Tff))n;k be a sequence of random trees grown recursively at random:

(animation of preferential attachment here)
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Preferential attachment and influence of the seed

Trees built by preferential attachment

Let ( n ))nzk be a sequence of random trees grown recursively at random:
> T ) = S is a tree with k vertices (the seed),

» for every n>1,T1° , is obtained from TS by adding an edge to a vertex

n+
of T\ ) chosen at random proportionally to its degree.

(animation of preferential attachment here)

This is the preferential attachement model (Szymanski '87; Albert & Barabasi
'99; Bollobas, Riordan, Spencer & Tusnady '01).
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Preferential attachment and influence of the seed

INFLUENCE OF THE SEED
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Preferential attachment and influence of the seed

Question (Bubeck, Mossel & Racz): What is the influence of the seed tree?
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Preferential attachment and influence of the seed

Question (Bubeck, Mossel & Racz): What is the influence of the seed tree?
Can one distinguish asymptotically between different seeds?
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Four simulations of T]tlSM for n = 5000:
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Preferential attachment and influence of the seed

Influence of the seed graph

For finite trees S; and S, set
d(S1,S,) = lim dTV(T1(1$1]’T](ISz))'
n—oo

where dtv denotes the total variation distance for random variables taking
values in the space of finite trees
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Influence of the seed graph

For finite trees S; and S», set
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Proposition (Bubeck, Mossel & Racz '14)

The function d is a pseudo-metric.

Conjecture (Bubeck, Mossel & Racz '14)

The function d is a metric on trees with at least 3 vertices.

Bubeck, Mossel & Racz showed that this is true when S; and 82 do not have
the same degree sequence by studying the maximal degree of TS

Theorem (Curien, Duquesne, K. & Manolescu '14).1

)
The conjecture is true. ]
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Preferential attachment and influence of the seed

Plane trees built by preferential attachment

Let (Tfls))nzk be a sequence of random plane trees grown recursively at
random:
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Let (TT(15>)n2k be a sequence of random plane trees grown recursively at
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Preferential attachment and influence of the seed

Plane trees built by preferential attachment

Let ( " ))nzk be a sequence of random plane trees grown recursively at
random:

> T(,S) =Sisa pIane tree with k vertices (the seed),

» for every n > 1 T8 1 is obtained from T,&S] by adding an edge into a

11+
corner of Tn chosen uniformly at random.

N~ The graph structure of Tfls) is that of preferential attachment.
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

A decorated tree T is a tree T with positive integer labels ({(u), u € T).
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

A decorated tree T is a tree T with positive integer labels ({(u), uw € ). We
imagine that there are £(u) non-distinguishable arrows pointing to each vertex
ueT.

If T is a plane tree, D (T) denotes the number of decorated embeddings of T in
T.

l.e. D.(T) is the number of ways to embed T in T s.t. each arrow pointing to a
vertex of T is associated with a corner of T adjacent to the corresponding vertex
(distinct arrows associated with distinct corners).

A Y ' 4

O
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.
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S
- DTl(T‘r(L )) =
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.

- Do, (TT(LS)) = 2n — 2 (the number of corners of a tree with n vertices).
- What about DTQ(TELS])?

E [DTQ(T(SH) | TT‘IS)}

n+
= DTQ (TT(LSJ )
+(one arrow points to a newly created corner)

+(the two arrows point to the two newly created corners).
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.

- D, (T =2n—2 (the number of corners of a tree with n vertices).
- What about DTQ(Tr(LS])?

2
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.

- D, (T =2n—2 (the number of corners of a tree with n vertices).
- What about DTQ(TELS])?

2

Hence there exist constants o, f, such that
M2(n) = (XnDTz (T1(1$)) - Bn

is a martingale.

Igor Kortchemski Brownian rabbit and preferential attachment 17 /142



Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.
- What about DT3(TT(LS]) ?
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Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.
- What about DT3(TT(LS]) ?

E [Dn (T(S)l) | TT(IS)}
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.
- What about DT3(TT(LS]) ?

3
E[Do (T | T = (1+ ~ )Dﬁ(ﬂf)w
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Preferential attachment and influence of the seed

Our observables: embeddings of decorated trees

Here Ty := unique vertex with label k.
- What about DT3(TT(LS]) ?

3 2
E (D10 [ T] = (14 32 ) Do T8 + 5y D T,

Hence there exist constants a,, by, ¢, such that
Ms(n) = anD,(T¥) + bn Do, (T¥)) —cn

is a martingale.
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More generally:

,—l Proposition. N\

There exists a partial order < on decorated trees, such that for every
decorated tree T, there exist constants {c,.(T,T’) : T/ < T,n > 2} such
that, for every seed S,

M ()= 3 cnlr, ') Do (TL)

/LT

is a martingale and is bounded in L.
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Preferential attachment and influence of the seed

More generally:

,—l Proposition. N\

There exists a partial order < on decorated trees, such that for every
decorated tree T, there exist constants {c,.(T,T’) : T/ < T,n > 2} such
that, for every seed S,

M ()= 3 cnlr, ') Do (TL)

/LT

is a martingale and is bounded in L.

Proof of the theorem, i.e. limn_ o0 drv(T, TH?) > 0.
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E {M(rslj (no)} #E {M(TSQ] (no)]. Hence

lim drv(T.5), T > liminf dry (MY (), ME? (n)
n—oo

n
n—o0

Igor Kortchemski Brownian rabbit and preferential attachment



Preferential attachment and influence of the seed

More generally:

,—l Proposition. N\

There exists a partial order < on decorated trees, such that for every
decorated tree T, there exist constants {c,.(T,T’) : T/ < T,n > 2} such
that, for every seed S,

M ()= 3 cnlr, ') Do (TL)

/LT

is a martingale and is bounded in L.

Proof of the theorem, i.e. limn_ o0 drv(T, TH?) > 0.
If S1 # S», there exists a decorated tree T and ng such that
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Looptrees and preferential attachment

N~ Question. Does the sequence (T,(iSj) admit scaling limits?
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N~ Question. Does the sequence (T,(iSj) admit scaling limits? It is known that
the diameter of T,({Sj is of order log(n):
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Looptrees and preferential attachment

N~ Question. Does the sequence (T(\S ) admit scallng limits? It is known that

the diameter of T,({gj is of order log(n): Does T,[1 converge towards a

Iog
limiting compact metric space?
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Looptrees and preferential attachment

N~ Question. Does the sequence (T(S ) admit scallng I|m|ts7 It is known that
the diameter of T,({Sj is of order log(n): Does
limiting compact metric space?

(S
Iog T,1 converge towards a

AN~ Answer: no.
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Looptrees and preferential attachment

Discrete looptrees

Given a plane tree 1, define Loop(T) as the graph obtained from T
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Discrete looptrees

Given a plane tree 1, define Loop(T) as the graph obtained from T
IZ" by replacing each vertex u by a loop with deg(u) vertices,
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Looptrees and preferential attachment

Discrete looptrees

Given a plane tree 1, define Loop(T) as the graph obtained from T
IZ" by replacing each vertex u by a loop with deg(u) vertices,
IZ" then by gluing the loops together according to the tree structure of .
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Looptrees and preferential attachment

Discrete looptrees

Given a plane tree 1, define Loop(T) as the graph obtained from T
IZ" by replacing each vertex u by a loop with deg(u) vertices,
IZ" then by gluing the loops together according to the tree structure of .

Figure : A plane tree T and its associated discrete looptree Loop(T).
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Looptrees and preferential attachment

Discrete looptrees

Given a plane tree 1, define Loop(T) as the graph obtained from T
IZ" by replacing each vertex u by a loop with deg(u) vertices,
IZ" then by gluing the loops together according to the tree structure of .

Figure : A plane tree T and its associated discrete looptree Loop(T).

We view Loop(T) as a compact metric space.
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Looptrees and preferential attachment

Scaling limits of trees built by preferential attachment

,—[Theorem (Curien, Duquesne, K., Manolescu).] |

There exists a random compact metric space £°) such that:

n/2. Loop(T()) 2=, £(8),
n—o0

where the convergence holds almost surely for the Gromov—Hausdorff
topology.
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Looptrees and preferential attachment

Scaling limits of trees built by preferential attachment

,—[Theorem (Curien, Duquesne, K., Manolescu).] |

There exists a random compact metric space £°) such that:

n/2. Loop(T()) 2=, £(8),
n—o0

where the convergence holds almost surely for the Gromov—Hausdorff
topology.

\. J

We will see that n1/2 is the order of large degrees in T,
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Looptrees and preferential attachment

Scaling limits of trees built by preferential attachment

,—[Theorem (Curien, Duquesne, K., Manolescu).] |

There exists a random compact metric space £°) such that:

n/2. Loop(T()) 2=, £(8),
n—o0

where the convergence holds almost surely for the Gromov—Hausdorff
topology.

.7
-

Figure : The looptree of a large tree built by preferential attachement.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

Rémy'’s algorithm. Start with the tree B; = (B1; Ag, A1) with two vertices
labeled Ag and A;.
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Main idea: coupling with Rémy's algorithm

Rémy'’s algorithm. Start with the tree B; = (B1; Ag, A1) with two vertices
labeled Ag and A;. At every step n > 1:

- pick an edge e of B,, uniformly at random,
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

Rémy'’s algorithm. Start with the tree B; = (B1; Ag, A1) with two vertices
labeled Ag and A;. At every step n > 1:

- pick an edge e of B,, uniformly at random,

- add a vertex v on e (thus splitting e into two edges) and attaching a new
edge to v linking it to a new leaf labeled A, 1.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

Rémy'’s algorithm. Start with the tree B; = (B1; Ag, A1) with two vertices
labeled Ag and A;. At every step n > 1:

- pick an edge e of B,, uniformly at random,

- add a vertex v on e (thus splitting e into two edges) and attaching a new
edge to v linking it to a new leaf labeled A, 1.

Proposition (Rémy '85)
For every fixed n > 1, the tree B,, is uniformly distributed over the set of all
binary trees with 1 + 1 labeled leaves.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

AN~ Useful notation: for 1 < i< n, denote by Span(B,,; Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B.,; Ag, A1
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

For n =5, Span(Bs; Ag).
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B.,; Ag, A1
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

For n =5, Span(Bs; Ag, A1).
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B.,; Ag, A1
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

For n =5, Span(Bs; Ag, A1, Az).
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

Forn = 5, Span(B5; Ao, Al, Ag, Ag)
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

Forn = 5, Span(B5; Ao, Al, Ag, Ag, A4)
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

N~ Useful quantity: for 1 <1< n, the distance of A; to
Span(B.; Ag, Aq, ... A1)
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

N~ Useful quantity: for 1 <1< n, the distance of A; to
Span(B.; Ag, Aq, ... A1)

For i = 1, this distance is 4.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

N~ Useful quantity: for 1 <1< n, the distance of A; to
Span(B.; Ag, Aq, ... A1)

For i = 1, this distance is 4.
For i = 2, this distance is 2.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

N~ Useful quantity: for 1 <1< n, the distance of A; to
Span(B.; Ag, Aq, ... A1)

For i = 1, this distance is 4.
For i = 2, this distance is 2.
For i = 3, this distance is 1.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

N~ Useful quantity: for 1 <1< n, the distance of A; to
Span(B.; Ag, Aq, ... A1)

For i = 1, this distance is 4.
For i = 2, this distance is 2.
For i = 3, this distance is 1.
For 1 = 4, this distance is 1.
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Looptrees and preferential attachment

Main idea: coupling with Rémy's algorithm

A~ Useful notation: for 1 < i< n, denote by Span(B,.;Ag, A1, ..., Ai_1)
the subtree of B,, spanned by the leaves Ag, Ay, ..., Ai_1.

N~ Useful quantity: for 1 <1< n, the distance of A; to
Span(B.; Ag, Aq, ... A1)

For i = 1, this distance is 4.
For 1 = 2, this distance is 2.
For i = 3, this distance is 1.
For 1 = 4, this distance is 1.
For i = 5, this distance is 1.
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Pekdz, Ross, Rollin '14)

There is a coupling between Rémy's algorithm and preferential attachment such
that the degree of 1 at time 1. in T, ° is the distance of A; to
Span(B,;Ag, Ay, ..., A1) forevery 1 <1< n.
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Pekdz, Ross, Rollin '14)

There is a coupling between Rémy's algorithm and preferential attachment such
that the degree of 1 at time 1. in T, ° is the distance of A; to

Span(B,;Ag, Ay, ..., A1) forevery 1 <1< n.

A~ Idea: if, at time n, a new edge is joined to vertex i in T, °, then split an
edge of the path going from A; to Span(B,;Ag, A1, ..., Ai_1).
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Pekdz, Ross, Rollin '14)

There is a coupling between Rémy's algorithm and preferential attachment such
that the degree of 1 at time 1. in T, ° is the distance of A; to
Span(B,;Ag, Ay, ..., A1) forevery 1 <1< n.

A~ Idea: if, at time n, a new edge is joined to vertex i in T, °, then split an
edge of the path going from A; to Span(B,;Ag, A1, ..., Ai_1).

“\.1

.
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Step: n=1
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Pekdz, Ross, Rollin '14)

There is a coupling between Rémy's algorithm and preferential attachment such
that the degree of 1 at time 1. in T, ° is the distance of A; to
Span(B,;Ag, Ay, ..., A1) forevery 1 <1< n.

A~ Idea: if, at time n, a new edge is joined to vertex i in T, °, then split an
edge of the path going from A; to Span(B,;Ag, A1, ..., Ai_1).

ke
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A, Ay

Step: n=1 n=2
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Pekdz, Ross, Rollin '14)

There is a coupling between Rémy's algorithm and preferential attachment such
that the degree of 1 at time 1. in T, ° is the distance of A; to
Span(B,;Ag, Ay, ..., A1) forevery 1 <1< n.

A~ Idea: if, at time n, a new edge is joined to vertex i in T, °, then split an
edge of the path going from A; to Span(B,;Ag, A1, ..., Ai_1).

g
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=
s
kg
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z

Ay Ao Ao

Step: n=1 n=2 n=3
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Pekdz, Ross, Rollin '14)

There is a coupling between Rémy's algorithm and preferential attachment such
that the degree of 1 at time 1. in T, ° is the distance of A; to
Span(B,;Ag, Ay, ..., A1) forevery 1 <1< n.

A~ Idea: if, at time n, a new edge is joined to vertex i in T, °, then split an
edge of the path going from A; to Span(B,;Ag, A1, ..., Ai_1).

Ay Ay A, Ay Ay A, Ay Ag A A,
N \V
.
A, A, Ay A,
Step: n=1 n=2 n=3 n=4
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Looptrees and preferential attachment

To simplify, we consider the case S = —o of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Pekdz, Ross, Rollin '14)

There is a coupling between Rémy's algorithm and preferential attachment such
that the degree of 1 at time 1. in T, ° is the distance of A; to
Span(B,;Ag, Ay, ..., A1) forevery 1 <1< n.

A~ Idea: if, at time n, a new edge is joined to vertex i in T, °, then split an
edge of the path going from A; to Span(B,;Ag, A1, ..., Ai_1).

4 4
A, 131 A, Ay Ay A, Ay Ag A A, Ay A3 A A, A,
.
Ay Ay Ay A A,

Step: n=1 n=2 n=3 n=4 n=5s
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Recall that B,, = (B,.; Ag, A1,...,An).
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Recall that B, = (B,,; Ag, A1, ..., An). Let Glu(B,,) be the graph obtained
from B,, by identifying:
- Aq with Ap
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Recall that B, = (B,,; Ag, A1, ..., An). Let Glu(B,,) be the graph obtained
from B,, by identifying:
- A with Ag
- for every 2 <1< n, Aj with Py, the vertex of Span(By,; Ag, A1,...,Ai_1)
which is the closest to A;.
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Recall that B, = (B,,; Ag, A1, ..., An). Let Glu(B,,) be the graph obtained
from B,, by identifying:
- A with Ag
- for every 2 <1< n, Aj with Py, the vertex of Span(By,; Ag, A1, ..., Ai 1)
which is the closest to A;.

Proposition (Curien, Duquesne, K., Manolescu).}
We have:

(Loop(T,,°)im > 1) < (Glu(B,);n > 1).
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Recall that B, = (B,,; Ag, A1, ..., An). Let Glu(B,,) be the graph obtained
from B,, by identifying:
- A with Ag
- for every 2 <1< n, Aj with Py, the vertex of Span(By,; Ag, A1,...,Ai_1)
which is the closest to A;.

Proposition (Curien, Duquesne, K., Manolescu).}

We have:
—. 0 :
(Loop(T,°)im>=1) = (Glu(B,);n>=1).
&S S G Send N e N
I s
/.\ ’ AI\/AS/AQ A‘YAJAHM Ay AgA Ay A
‘;n Ay Ag Ay A,
Step: n=1 n=2 n=3 n=4 n=s
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Looptrees and preferential attachment

Recall that B, = (B,,; Ag, A1, ..., An). Let Glu(B,,) be the graph obtained
from B,, by identifying:
- A with Ag
- for every 2 <1< n, Aj with Py, the vertex of Span(By,; Ag, A1,...,Ai_1)
which is the closest to A;.

Proposition (Curien, Duquesne, K., Manolescu).]
We have:

Ck.l
Al
*
\
\
\
\
N
e
AH
Step: n=1 n=2 n=3 n=4 n=>s
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Recall that B, = (B,,; Ag, A1, ..., An). Let Glu(B,,) be the graph obtained
from B,, by identifying:
- A with Ag
- for every 2 <1< n, Aj with Py, the vertex of Span(By,; Ag, A1,...,Ai_1)
which is the closest to A;.

Proposition (Curien, Duquesne, K., Manolescu).}
We have:

(Loop(T,,°)im > 1) ) (Glu(B,);n > 1).

AN~ Key fact: Rémy'’s algorithm converges to the Brownian Continuum
Random Tree.
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Looptrees and preferential attachment

What is the Brownian Continuum Random Tree?

First define the contour function of a tree:
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Looptrees and preferential attachment

What is the Brownian Continuum Random Tree?

Knowing the contour function, it is easy to recover the tree by gluing:

(animation here)
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Looptrees and preferential attachment

What is the Brownian Continuum Random Tree?

The Brownian tree T is obtained by gluing from the Brownian excursion e.

0.351

0.3

Figure : A simulation of e.
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Looptrees and preferential attachment

A simulation of the Brownian CRT

S v

Figure : A non isometric plane embedding of a realization of T..
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Looptrees and preferential attachment

Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure
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Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure, such that

(M2 BuiAe A =S (2V2: T X, X)),

forevery k > 1
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Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure, such that

(M2 BuiAe A =S (2V2: T X, X)),

for every k > 1 (for the k + 1-pointed GH topology).
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Looptrees and preferential attachment

Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure, such that

(M2 BuiAe A =S (2V2: T X, X)),

for every k > 1 (for the k + 1-pointed GH topology).

Now define £ by making the following identifications in T:
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Looptrees and preferential attachment

Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure, such that

a.s

(M2 BuiAe A =S (2V2: T X, X)),

for every k > 1 (for the k + 1-pointed GH topology).

Now define £ by making the following identifications in T:
- Xl with XQ
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Looptrees and preferential attachment

Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure, such that

(M2 BuiAe A =S (2V2: T X, X)),

for every k > 1 (for the k + 1-pointed GH topology).

Now define £ by making the following identifications in T:
- X1 with Xo

- for every 1 > 2, X; with Py, the vertex of Span(Te; Xo, X1, ..., Xi_1) which
is the closest to X;.
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Looptrees and preferential attachment

Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure, such that

(M2 BuiAe A =S (2V2: T X, X)),

for every k > 1 (for the k + 1-pointed GH topology).

Now define £ by making the following identifications in T:

- Xl with XQ
- for every 1 > 2, X; with Py, the vertex of Span(Te; Xo, X1, ..., Xi_1) which
is the closest to X;.
Then
nY2.Glu(B,) = L.
n—oo
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Looptrees and preferential attachment

Proposition (Curien & Haas '13)

There exists a pair (T,, (Xi;1 > 0)), where T, is a Brownian CRT and (X;;1i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure, such that

(M2 BuiAe A =S (2V2: T X, X)),

for every k > 1 (for the k + 1-pointed GH topology).

Now define £ by making the following identifications in T:

- Xl with XQ
- for every 1 > 2, X; with Py, the vertex of Span(Te; Xo, X1, ..., Xi_1) which
is the closest to X;.
Then
nY2.Glu(B,) = L.
n—oo
and hence

n-t2. Loop(T.”) —= £,
n—oo
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Extensions and conjectures

I. PREFERENTIAL ATTACHMENT AND INFLUENCE OF THE SEED

II. LOOPTREES AND PREFERENTIAL ATTACHMENT

ITI. EXTENSIONS AND CONJECTURES

=0
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Extensions and conjectures

What happens for Galton—Watson trees?

Let 1 be a critical (3_;-, ijti = 1) probability measure on {0,1,2,...} and let
T, be a p-Galton—Watson tree conditioned to have n vertices.
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Extensions and conjectures

What happens for Galton—Watson trees?

Let 1 be a critical (3_;5, ijti = 1) probability measure on {0,1,2,...} and let
T be a p-Galton—Watson tree conditioned to have n vertices. Does Loop(7,,)
have scaling limits?
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Extensions and conjectures

What happens for Galton—Watson trees?

Let 1 be a critical (3_;5, ijti = 1) probability measure on {0,1,2,...} and let
T be a p-Galton—Watson tree conditioned to have n vertices. Does Loop(7,,)
have scaling limits?

,—[Theorem (Curien, Haas & K. '13).] N
If w has finite variance 02 (and an exponential moment), then
n~2. Loop(T,) &
n—00
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Extensions and conjectures

What happens for Galton—Watson trees?

Let 1 be a critical (3_;5, ijti = 1) probability measure on {0,1,2,...} and let
T be a p-Galton—Watson tree conditioned to have n vertices. Does Loop(7,,)
have scaling limits?

,—[Theorem (Curien, Haas & K. '13).] N
If w has finite variance 02 (and an exponential moment), then
—1/2 (d)
n -Loop(T,,) —— Te.
n—00
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Extensions and conjectures

What happens for Galton—Watson trees?

Let 1 be a critical (3_;5, ijti = 1) probability measure on {0,1,2,...} and let
T be a p-Galton—Watson tree conditioned to have n vertices. Does Loop(7,,)
have scaling limits?

,—[Theorem (Curien, Haas & K. '13).] N

If w has finite variance 02 (and an exponential moment), then

(d) 2
(0}

_ 1
n V2. Loop(T,) —— 'Z(0'2+4—(H0+H2+H4+"'))~‘Te.
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Extensions and conjectures

Figure : A non isometric plane embedding of a realization of a looptree of a large
critical Galton—Watson tree with finite variance.

Igor Kortchemski Brownian rabbit and preferential attachment 35/ N,



Preferential attachment and influence of the seed and preferential attachment Extensions and conjectures

Let p be a critical (3_;5, iti = 1) probability measure on {0,1,2,...} and let
T, be a u-Galton—Watson tree conditioned to have n vertices.

,—[Theorem (Curien & K. '13).] \

Fix « € (1,2) and assume that pu; ~ C/i*** as i — oo.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Let p be a critical (3_;5, iti = 1) probability measure on {0,1,2,...} and let
T, be a u-Galton—Watson tree conditioned to have n vertices.

,—[Theorem (Curien & K. '13).] \
Fix « € (1,2) and assume that p; ~ C/i*** as i — oco. There exists a
random compact metric space £, such that

—1/a (d) .
n Loop(T7n) —— L,
n—oo
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Let p be a critical (3_;5, iti = 1) probability measure on {0,1,2,...} and let
T, be a u-Galton—Watson tree conditioned to have n vertices.

,—[Theorem (Curien & K. '13).] \

Fix « € (1,2) and assume that p; ~ C/i*** as i — oco. There exists a
random compact metric space £, such that

n—l/cx : LOOP(Tn) (@) ” ch;

n—oo

and is called the stable looptree of index «.
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Preferential attachment and influence of the seed ees a eferential attachme Extensions and conjectures

Let p be a critical (3_;5, iti = 1) probability measure on {0,1,2,...} and let
T, be a u-Galton—Watson tree conditioned to have n vertices.

,—[Theorem (Curien & K. '13).] \

Fix « € (1,2) and assume that p; ~ C/i*** as i — oco. There exists a
random compact metric space £, such that

n—l/cx . LOOP(Tn) (@) ? ch;
n—oo
and is called the stable looptree of index o. In addition, L3, is the
scaling limit of the boundary of (critical) site percolation on Angel &
Schramm’s Uniform Infinite Planar Triangulation.
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Extensions and conjectures

Figure : A non isometric plane embedding of a realization of L3,,, the stable looptree
of index 3/2.
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Extensions and conjectures

Conjectures: bacK to preferential attachment

Question.

What happens for linear preferential attachment, i.e. when instead of
being chosen proportionally to deg(w) a vertex w is chosen proportionally
to deg(u) + a with a > —17?
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Extensions and conjectures

Conjectures: bacK to preferential attachment

~ Question. \

What happens for linear preferential attachment, i.e. when instead of
being chosen proportionally to deg(w) a vertex w is chosen proportionally
to deg(u) + a with a > —17?

\ J

,—{ Conjecture. N\

For every plane trees S, S,, we have

lim_dry (T, T5) = dry (L5, £152)).

n—oo
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