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Let (T (S)n )n>k be a sequence of random trees grown recursively at random:

I T
(S)
k = S is a tree with k vertices (the seed),

I for every n > 1, T (S)n+1 is obtained from T
(S)
n by adding an edge to a vertex

of T (S)n

chosen at random proportionally to its degree.

(animation of preferential attachment here)

This is the preferential attachement model (Szymánski ’87; Albert & Barabási
’99; Bollobás, Riordan, Spencer & Tusnády ’01).
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Influence of the seed
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Question (Bubeck, Mossel & Rácz): What is the influence of the seed tree?

Can one distinguish asymptotically between different seeds?
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Four simulations of T (S1)
n for n = 5000:

Igor Kortchemski Brownian rabbit and preferential attachment 8 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Four simulations of T (S2)
n for n = 5000:

Igor Kortchemski Brownian rabbit and preferential attachment 9 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Referendum

Four simulations of T (S1)
n , T

(S2)
n for n = 5000:

Do we have S1 = S2?

Igor Kortchemski Brownian rabbit and preferential attachment 10 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Referendum

Four simulations of T (S1)
n , T

(S2)
n for n = 5000:

Do we have S1 = S2?

Igor Kortchemski Brownian rabbit and preferential attachment 10 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Referendum

Four simulations of T (S1)
n , T

(S2)
n for n = 5000:

S1 S2

Do we have S1 = S2?

Igor Kortchemski Brownian rabbit and preferential attachment 10 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Four simulations of T (S
′
1)

n for n = 5000:

Igor Kortchemski Brownian rabbit and preferential attachment 11 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Four simulations of T (S
′
2)

n for n = 5000:

Igor Kortchemski Brownian rabbit and preferential attachment 12 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Referendum

Four simulations of T (S
′
1)

n , T
(S′

2)
n for n = 5000:

Do we have S ′
1 = S

′
2?

Igor Kortchemski Brownian rabbit and preferential attachment 13 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Referendum

Four simulations of T (S
′
1)

n , T
(S′

2)
n for n = 5000:

Do we have S ′
1 = S

′
2?

Igor Kortchemski Brownian rabbit and preferential attachment 13 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Referendum

Four simulations of T (S
′
1)

n , T
(S′

2)
n for n = 5000:

S’1 S’2

Do we have S ′
1 = S

′
2?

Igor Kortchemski Brownian rabbit and preferential attachment 13 / 672



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Influence of the seed graph
For finite trees S1 and S2, set

d(S1,S2) = lim
n→∞ dTV(T

(S1)
n , T (S2)

n ),

where dTV denotes the total variation distance for random variables taking
values in the space of finite trees

(dTV(X, Y) = supA |P(X ∈ A) − P(Y ∈ A)|).

Proposition (Bubeck, Mossel & Rácz ’14)
The function d is a pseudo-metric.

Conjecture (Bubeck, Mossel & Rácz ’14)
The function d is a metric on trees with at least 3 vertices.
Bubeck, Mossel & Rácz showed that this is true when S1 and S2 do not have
the same degree sequence by studying the maximal degree of T (S)n .

The conjecture is true.

Theorem (Curien, Duquesne, K. & Manolescu ’14).
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Plane trees built by preferential attachment

Let (T (S)n )n>k be a sequence of random plane trees grown recursively at
random:

I T
(S)
k = S is a plane tree with k vertices (the seed),

I for every n > 1, T (S)n+1 is obtained from T
(S)
n by adding an edge into a

corner of T (S)n

chosen uniformly at random.

y The graph structure of T (S)n is that of preferential attachment.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Our observables: embeddings of decorated trees

A decorated tree τ is a tree τ with positive integer labels (`(u),u ∈ τ).

We
imagine that there are `(u) non-distinguishable arrows pointing to each vertex
u ∈ τ.

If T is a plane tree, Dτ(T) denotes the number of decorated embeddings of τ in
T .

I.e. Dτ(T) is the number of ways to embed τ in T s.t. each arrow pointing to a
vertex of τ is associated with a corner of T adjacent to the corresponding vertex
(distinct arrows associated with distinct corners).

2

2

11
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Our observables: embeddings of decorated trees
Here τk := unique vertex with label k.

- Dτ1
(T

(S)
n ) =

2n− 2 (the number of corners of a tree with n vertices).
- What about Dτ2

(T
(S)
n )?

E
[
Dτ2

(T
(S)
n+1)

∣∣ T (S)n

]
=

(
1+

2

2n− 2

)
Dτ2

(T (S)n ) + 1.

Hence there exist constants αn,βn such that

M2(n) = αnDτ2
(T (S)n ) − βn

is a martingale.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

More generally:

There exists a partial order 4 on decorated trees

, such that for every
decorated tree τ, there exist constants {cn(τ,τ′) : τ′ 4 τ,n > 2} such
that, for every seed S,

M
(S)
τ (n) =

∑
τ′4τ

cn(τ,τ
′) ·Dτ′(T (S)n )

is a martingale and is bounded in L2.

Proposition.

Proof of the theorem, i.e. limn→∞ dTV(T
(S1)
n , T

(S2)
n ) > 0 .

If S1 6= S2, there exists a decorated tree τ and n0 such that
E
[
M

(S1)
τ (n0)

]
6= E

[
M

(S2)
τ (n0)

]

.

Hence

lim
n→∞ dTV(T

(S1)
n , T (S2)

n ) > lim inf
n→∞ dTV(M

(S1)
τ (n),M

(S2)
τ (n))

> 0.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

I. Preferential attachment and influence of the seed

II. Looptrees and preferential attachment

III. Extensions and conjectures
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

y Question. Does the sequence (T
(S)
n ) admit scaling limits?

It is known that
the diameter of T (S)n is of order log(n): Does 1

log(n) · T
(S)
n converge towards a

limiting compact metric space?

y Answer: no.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Discrete looptrees
Given a plane tree τ, define Loop(τ) as the graph obtained from τ

� by replacing each vertex u by a loop with deg(u) vertices,
� then by gluing the loops together according to the tree structure of τ.

Figure : A plane tree τ and its associated discrete looptree Loop(τ).

We view Loop(τ) as a compact metric space.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Scaling limits of trees built by preferential attachment

There exists a random compact metric space L(S) such that:

n−1/2 · Loop(T (S)n )
a.s.−−−→
n→∞ L(S),

where the convergence holds almost surely for the Gromov–Hausdorff
topology.

Theorem (Curien, Duquesne, K., Manolescu).

Figure : The looptree of a large tree built by preferential attachement.

Igor Kortchemski Brownian rabbit and preferential attachment 23 / −π



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Scaling limits of trees built by preferential attachment

There exists a random compact metric space L(S) such that:

n−1/2 · Loop(T (S)n )
a.s.−−−→
n→∞ L(S),

where the convergence holds almost surely for the Gromov–Hausdorff
topology.

Theorem (Curien, Duquesne, K., Manolescu).

We will see that n1/2 is the order of large degrees in T (S)n .

Figure : The looptree of a large tree built by preferential attachement.

Igor Kortchemski Brownian rabbit and preferential attachment 23 / −π



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Scaling limits of trees built by preferential attachment

There exists a random compact metric space L(S) such that:

n−1/2 · Loop(T (S)n )
a.s.−−−→
n→∞ L(S),

where the convergence holds almost surely for the Gromov–Hausdorff
topology.

Theorem (Curien, Duquesne, K., Manolescu).

Figure : The looptree of a large tree built by preferential attachement.

Igor Kortchemski Brownian rabbit and preferential attachment 23 / −π



Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm

Rémy’s algorithm. Start with the tree B1 = (B1;A0,A1) with two vertices
labeled A0 and A1.

At every step n > 1:
- pick an edge e of Bn uniformly at random,

- add a vertex v on e (thus splitting e into two edges) and attaching a new
edge to v linking it to a new leaf labeled An+1.

Proposition (Rémy ’85)
For every fixed n > 1, the tree Bn is uniformly distributed over the set of all
binary trees with n+ 1 labeled leaves.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)
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For n = 5, Span(B5;A0).

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.

A 5
A 1
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A 3 A 2A 4

For n = 5, Span(B5;A0,A1,A2).

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.
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A 1

A 0

A 3 A 2A 4

For n = 5, Span(B5;A0,A1,A2,A3).

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.

A 5
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A 0

A 3 A 2A 4

For n = 5, Span(B5;A0,A1,A2,A3,A4).

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)
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the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)

A 5
A 1

A 0

A 3 A 2A 4

For i = 1, this distance is 4.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)

A 5
A 1

A 0

A 3 A 2A 4

For i = 1, this distance is 4.
For i = 2, this distance is 2.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)

A 5
A 1

A 0

A 3 A 2A 4

For i = 1, this distance is 4.
For i = 2, this distance is 2.
For i = 3, this distance is 1.
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Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.
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For i = 3, this distance is 1.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Main idea: coupling with Rémy’s algorithm
y Useful notation: for 1 6 i 6 n, denote by Span(Bn;A0,A1, . . . ,Ai−1)
the subtree of Bn spanned by the leaves A0,A1, . . . ,Ai−1.

y Useful quantity: for 1 6 i 6 n, the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1)
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A 1
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A 3 A 2A 4

For i = 1, this distance is 4.
For i = 2, this distance is 2.
For i = 3, this distance is 1.
For i = 4, this distance is 1.
For i = 5, this distance is 1.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

To simplify, we consider the case S = ( of a planted tree with one vertex (i.e.
a unique vertex with a half-edge attached to it).

Proposition (Peköz, Ross, Röllin ’14)
There is a coupling between Rémy’s algorithm and preferential attachment such
that the degree of i at time n in T(n is the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1) for every 1 6 i 6 n.

y Idea: if, at time n, a new edge is joined to vertex i in T(n , then split an
edge of the path going from Ai to Span(Bn;A0,A1, . . . ,Ai−1).
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A 1
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that the degree of i at time n in T(n is the distance of Ai to
Span(Bn;A0,A1, . . . ,Ai−1) for every 1 6 i 6 n.

y Idea: if, at time n, a new edge is joined to vertex i in T(n , then split an
edge of the path going from Ai to Span(Bn;A0,A1, . . . ,Ai−1).

1 12 23
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A 0
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Recall that Bn = (Bn;A0,A1, . . . ,An).

Let Glu(Bn) be the graph obtained
from Bn by identifying:

- A1 with A0

- for every 2 6 i 6 n, Ai with Pi, the vertex of Span(Bn;A0,A1, . . . ,Ai−1)
which is the closest to Ai.

We have:

(Loop(T(n );n > 1)
(d)
= (Glu(Bn);n > 1).

Proposition (Curien, Duquesne, K., Manolescu).

y Key fact: Rémy’s algorithm converges to the Brownian Continuum
Random Tree.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

What is the Brownian Continuum Random Tree?

First define the contour function of a tree:
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

What is the Brownian Continuum Random Tree?

Knowing the contour function, it is easy to recover the tree by gluing:

(animation here)
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

What is the Brownian Continuum Random Tree?
The Brownian tree T is obtained by gluing from the Brownian excursion e.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.1

0.15

0.2

0.25

0.3

0.35
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Figure : A simulation of e.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

A simulation of the Brownian CRT

Figure : A non isometric plane embedding of a realization of Te.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Proposition (Curien & Haas ’13)
There exists a pair (Te, (Xi; i > 0)), where Te is a Brownian CRT and (Xi; i > 0)
is a collection of i.i.d. vertices sampled according to its mass measure

, such that(
n−1/2 · Bn;A0, . . . ,Ak

) a.s.−−−→
n→∞

(
2
√
2 · Te;X0, . . . ,Xk

)
.

for every k > 1 (for the k+ 1-pointed GH topology).

Now define L by making the following identifications in Te:

- X1 with X0

- for every i > 2, Xi with Pi, the vertex of Span(Te;X0,X1, . . . ,Xi−1) which
is the closest to Xi.

Then
n−1/2 ·Glu(Bn)

a.s.−−−→
n→∞ L.

and hence
n−1/2 · Loop(T(n )

a.s.−−−→
n→∞ L,
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n−1/2 · Bn;A0, . . . ,Ak
) a.s.−−−→

n→∞
(
2
√
2 · Te;X0, . . . ,Xk

)
.

for every k > 1 (for the k+ 1-pointed GH topology).

Now define L by making the following identifications in Te:
- X1 with X0

- for every i > 2, Xi with Pi, the vertex of Span(Te;X0,X1, . . . ,Xi−1) which
is the closest to Xi.

Then
n−1/2 ·Glu(Bn)

a.s.−−−→
n→∞ L.

and hence
n−1/2 · Loop(T(n )

a.s.−−−→
n→∞ L,
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

What happens for Galton–Watson trees?
Let µ be a critical (

∑
i>0 iµi = 1) probability measure on {0, 1, 2, . . .} and let

Tn be a µ-Galton–Watson tree conditioned to have n vertices.

Does Loop(Tn)
have scaling limits?
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What happens for Galton–Watson trees?
Let µ be a critical (

∑
i>0 iµi = 1) probability measure on {0, 1, 2, . . .} and let

Tn be a µ-Galton–Watson tree conditioned to have n vertices. Does Loop(Tn)
have scaling limits?

If µ has finite variance σ2 (and an exponential moment), then

n−1/2 ·Loop(Tn)
(d)−−−→
n→∞

2

σ
· 1
4

(
σ2 + 4− (µ0 + µ2 + µ4 + · · · )

)
·

Te.

Theorem (Curien, Haas & K. ’13).
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Figure : A non isometric plane embedding of a realization of a looptree of a large
critical Galton–Watson tree with finite variance.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Let µ be a critical (
∑
i>0 iµi = 1) probability measure on {0, 1, 2, . . .} and let

Tn be a µ-Galton–Watson tree conditioned to have n vertices.

Fix α ∈ (1, 2) and assume that µi ∼ C/i1+α as i → ∞.

There exists a
random compact metric space Lα such that

n−1/α · Loop(Tn)
(d)−−−→
n→∞ Lα,

and is called the stable looptree of index α. In addition, L3/2 is the
scaling limit of the boundary of (critical) site percolation on Angel &
Schramm’s Uniform Infinite Planar Triangulation.

Theorem (Curien & K. ’13).
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Figure : A non isometric plane embedding of a realization of L3/2, the stable looptree
of index 3/2.
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Preferential attachment and influence of the seed Looptrees and preferential attachment Extensions and conjectures

Conjectures: back to preferential attachment

What happens for linear preferential attachment, i.e. when instead of
being chosen proportionally to deg(u) a vertex u is chosen proportionally
to deg(u) + a with a > −1?

Question.

For every plane trees S1,S2, we have

lim
n→∞ dTV(T

(S1)
n , T (S2)

n ) = dTV(L
(S1),L(S2)).

Conjecture.
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