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- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate A > 0, each prey propagates to every vacant neighbour,

- at fixed rate 1, each predator propagates to every neighbouring prey.

Motivations :

5" Model of two competing species, or model of first-passage percolation
with destruction.

5" Other possible analogies:

vacant vertex < vacant vertex
prey — healthy cell
predator S cell infected by a virus
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What is this about?

On a graph, we are interested in the following prey-predator model (introduced
by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate A > 0, each prey propagates to every vacant neighbour,

- at fixed rate 1, each predator propagates to every neighbouring prey.

Motivations :

5" Model of two competing species, or model of first-passage percolation
with destruction.

5" Other possible analogies:

vacant vertex = normal individual
prey — individual trying to spread a rumor (spreader)
predator = individual trying to scotch the rumor (stifler)
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What is this about?

On a graph, we are interested in the following prey-predator model (introduced
by Bordenave '12) :

- each vertex is either occupied by a prey, or a predator, or is vacant,
- at fixed rate A > 0, each prey propagates to every vacant neighbour,

- at fixed rate 1, each predator propagates to every neighbouring prey.

Motivations :

5" Model of two competing species, or model of first-passage percolation
with destruction.

5" Other possible analogies:

vacant vertex = Susceptible (S) individual
prey = Infected (I) individual
predator = Recovered (R) individual
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Other type of models studied in the literature:

— SIR model (Kermack—McKendrick '27), where {I, S} A {I,1}, 1 LR

— Daley—Kendall ('65) rumour propagation model, where
L,SYy 5.1, (RI} 5{RR, {IT} SRR}

— Maki—Thompson ('73) directed rumour propagation model, where
(LS) = (LD, (RI) = (RR), (LI) = (LR).
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Test your intuition! Complete graphs Infinite trees
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Other type of models studied in the literature:

— SIR model (Kermack—McKendrick '27), where {I, S} A {I,1}, 1 LR

— Daley—Kendall ('65) rumour propagation model, where
L,SYy 5.1, (RI} 5{RR, {IT} SRR}

— Maki—Thompson ('73) directed rumour propagation model, where
(1,S) = (LD), (RI) = (RR), (L) = (ILR).

— Williams Bjerknes ('71) tumor growth model (or biased voter model),
where (I,S) & (L1), (S,1) = (S,9).
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Here, (1.5} 2 (1.1}, (R I} 5 (R R

Other type of models studied in the literature:

— SIR model (Kermack—McKendrick '27), where {I, S} A {I,1}, 1 LR

— Daley—Kendall ('65) rumour propagation model, where
L,SYy 5.1, (RI} 5{RR, {IT} SRR}

— Maki—Thompson ('73) directed rumour propagation model, where
(1,S) = (LD), (RI) = (RR), (L) = (ILR).

— Williams Bjerknes ('71) tumor growth model (or biased voter model),
where (I,S) & (L1), (S,1) = (S,9).

— Kordzakhia ('05), where {I, S} & {I,1}, {R, I} = {R,R}, {R,S} = {R,R}.
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Facebook Is About to Lose 80% of Its Users,
Study Says

Social media is like a disease that spreads, and then dies

By Sam Frizell @Sam_Frizell = Jan. 21, 2014 266 Comments

W Tweet 4,155 mSham 741 Pinit Read Later

Facebook’s growth will eventually come to a quick
end, much like an infectious disease that spreads
rapidly and suddenly dies, say Princeton researchers
who are using diseases to model the life cycles of
social media.




Facebook To Lose 80% Of Users By 2017

InformationWeek - 23 janv. 2014

Online social networks spread like disease epidemics, and Facebook will lose 80% of its victims -- | mean, users -- by 2017, according to a study from Princeton University researchers.
The study, "Epidemiological modeling of online social network dynamics” ...

Facebook could lose 80 percent of users by 2017, report claims

Fox News - 23 janv. 2014

"Facebook has already reached the peak of its popularity and has entered a decline phase," they concluded. "The future suggests that Facebook will undergo a rapid decline in the coming
years, losing 80 percent of its peak user base between 2015 and 2017 ...

Facebook will lose 80 percent of its users in next 4 years, Princeton study says
The Star-Ledger - NJ.com - 23 janv. 2014

Most of the 874 million people across the world who sign on to Facebook will stop doing so in the next four years, according to a Princeton University study. The study predicts the social
media site will lose 80 percent of the users it had at its 2010 peak ...

Facebook Losing Users; 30 Years of Mac Ads; Snapchat 'Ghost’ Verification

PC Magazine - 23 janv. 2014

Topping tech headlines Wednesday, a new study predicts a rapid decline for Facebook, which researchers said will lose 80 percent of its peak user base between 2015 and 2017. Using
epidemiological models to track the spread of infectious diseases and ...

Facebook Might Lose 80% of Users and be the Next 'MySpace,’ Study Says

Moming Ledger - 23 janv. 2014

Facebook Might Lose 80 percent and be the Next MySpace A new study conducted and released by Princeton University has described social networks as similar to
infectious diseases. It pointed out that such sites gain millions of users within just a short span ...

- Facebook Will Lose 80 Percent of Users by 2017
. / Guardian Liberty Voice - 23 janv. 2014

Facebook According to researchers at Princeton University, Facebook will lose 80 percent of its users by 2017. The researchers have also stated that that decline is
already happening now and could reach the total any time within 2015 and the 2017 deadline.

Facebook to 'lose 80% of users by 2017

Irish Times - 23 janv. 2014

Facebook has spread like an infectious disease but we are slowly becoming immune to its attractions, and the platform will be largely abandoned by 2017, say researchers
at Princeton University. The forecast of Facebook's impending doom was made by ...

\,0‘

Facebook will LOSE 80% of its users by 2017 — epidemiological study

Register - 23 janv. 2014

According to the students' paper, Facebook is "just beginning to show the onset of an abandonment phase”, after reaching its popularity peak in 2012, which will lead to it losing 80 per
cent of its peak user base between 2015 and 2017. The paper, which has ...

Facebook Predicts Princeton Won't Exist In 2021

InformationWeek - 24 janv. 2014

Princeton's report, from the university's Department of Mechanical and Aerospace Engineering, used Google search data to predict engagement trends, ultimately concluding that
Facebook was set to lose a whopping 80% of users by 2017. Such a ...

Could Facebook Really Lose 80% of its Users?

DailyFinance - 23 janv. 2014

Facebook has so far been the only super-hot social media network to escape the fate of former top sites like MySpace, Friendster, or even GeoCities/Tripod back in the day. And with its
now-successful stock offering and seeming ubiquity among nearly every ...

? Facebook Will Lose 80 Percent Of Users In Next Three Years, Researchers Say
- Opposing Views - 23 janv. 2014

"'"‘."'-. . People are slowly building up an immunity to Facebook and researchers predict it will lose 80 percent of its peak user base by 2017. Researchers at Princeton University
\ i compared the growth of the social media site to the spread of disease. They believe ...
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Seen on Gil Kalai's blog

You have a box with n red balls and n blue balls.
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at random. If the ball was red, you put it back in the box and take out a blue
ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep doing it until left only with balls of the same color. How many balls
will be left (as a function of n)?

1) Roughly en for some € > 0.

Roughly /n.
Roughly logn.

No

~ W
~— — — —

Roughly a constant.

5) Some other behavior.

Other formulation (O.K. Corral problem, Williams & Mcllroy, 1998) . There are
two groups of n gunmen that shoot at each other. Once a gunman is hit he
stops shooting, and leaves the place happily and peacefully. How many gunmen
will be left after all gunmen in one team have left?
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Figure: Excerpt of the film “Gunfight at the O.K. Corral” (1957)
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Test your intuition!

Vu sur le blog de Gil Kalai

You have a box with n red balls and n blue balls. You take out each time a ball
at random. If the ball was red, you put it back in the box and take out a blue
ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep as before until left only with balls of the same color. How many balls
will be left (as a function of n)?

1) Roughly en for some € > 0.

Roughly /n.
Roughly logn.

No

W
~— — — “—

N

Roughly a constant.

5) Some other behavior.

Other formulation (O.K. Corral problem, Williams & Mcllroy, 1998) . There are
two groups of n gunmen that shoot at each other. Once a gunman is hit he
stops shooting, and leaves the place happily and peacefully. How many gunmen
will be left after all gunmen in one team have left?

Igor Kortchemski Preys & Predators 7/ 465



Test your intuition!

Vu sur le blog de Gil Kalai

You have a box with n red balls and n blue balls. You take out each time a ball
at random. If the ball was red, you put it back in the box and take out a blue
ball. If the ball was blue, you put it back in the box and take out a red ball.

You keep as before until left only with balls of the same color. How many balls
will be left (as a function of n)?

How many balls will be left when you

1) ?ougw y €N for some € > O take out a ball of the opposite color
2) QOUg”\ Yy \/E A constant time n 34.62% (45 votes)
]
3) Roughly logn.
square root n 21.54% (28 votes)
4) Roughly a constant. ]
5) Some other behavior. A constant 19.23% (25 votes)
]
i Some other behavior 13.85% (18 votes)
Other formulation (O.K. Corral problern: yum There are
two groups of n gunmen that shoot at « 1% (4voes 3 NIt he
stops shooting, and leaves the place ha; Il 1y gunmen

will be left after all gunmen in one tean e Votoe. 120
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Kingman ¢ Volkov's solution (1/3)

If urn A has m balls and urn B has n balls, the probability that a ball is
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If urn A has m balls and urn B has n balls, the probability that a ball is

- n
removed from A is —ey But

n  1/m
mtn - Umtim L Expl/m)<Bp(l/n)).
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Kingman ¢ Volkov's solution (2/3)

Let (Xi, Yi)i>1 be independent random variables such that X; are Y;
exponential random variables with mean 1.
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Let (Xi, Yi)i>1 be independent random variables such that X; are Y;
exponential random variables with mean 1.

Consider a piece of wood represented by the interval [—n, n] and made of 2n
pieces such that

length([i—1,1]) = X;, length([—1i,—1+1])=Y; (1 <1< n).

Xl XZ
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Test your intuition!

Kingman ¢ Volkov's solution (2/3)

Let (Xi, Yi)i>1 be independent random variables such that X; are Y;
exponential random variables with mean 1.

Consider a piece of wood represented by the interval [—n, n] and made of 2n
pieces such that

length([i—1,1]) = X;, length([—1i,—1+1])=Y; (1 <1< n).

Light both ends, and stop the fire when the origin is reached. Let R(n) be the
number of remaining pieces. Then R(n) has the same law as the number of
remaining balls in the urn/gunman problem.
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Test your intuition!

Kingman ¢ Volkov's solution (3/3)

In order to estimate the number R(n) of remaining pieces, first estimate the
remaining length L(n):
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In order to estimate the number R(n) of remaining pieces, first estimate the
remaining length L(n):

I_(Tl) — iXi—in
i=1 i=1
Then N N N
Var <Z Xi — ZYI) — Z 2)2 ~ Tl3.
i=1 i=1 j=1
Hence
L(n) ~n32
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Kingman ¢ Volkov's solution (3/3)

In order to estimate the number R(n) of remaining pieces, first estimate the
remaining length L(n):

I_(Tl) — iXi—in
i=1 i=1
Then N N N
Var <Z Xi — ZYI) — Z 2)2 ~ Tl3.
i=1 i=1 j=1
Hence
L(n) ~ n3/2.

Set Sy = X7 + -+ + Xk. We have E[Si] ~ k?, so Sk ~ k2. But, if the left
part burns first, Sgn) =~ L(n). Hence

R(n)? ~ n3/2
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Test your intuition!

Kingman ¢ Volkov's solution (3/3)

In order to estimate the number R(n) of remaining pieces, first estimate the
remaining length L(n):

I_(Tl) — iXi—in
i=1 i=1
Then N N N
Var <Z Xi — ZYI) — Z 2)2 ~ Tl3.
i=1 i=1 j=1
Hence
L(n) ~ n3/2.

Set Sy = X7 + -+ + Xk. We have E[Si] ~ k?, so Sk ~ k2. But, if the left
part burns first, Sgn) =~ L(n). Hence

R(n)? ~ n3/2

so that R(n) ~ n3/4.
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Test your intuition!

This “decoupling’ idea is called the Athreya—Karlin embedding, and is useful to
study more general Pélya urn schemes.
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Complete graphs

We consider Kn 42, a complete graph on N + 2 vertices, and start the dynamics
with one I vertex, one R vertex and N S vertices.
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Complete graphs

We consider Kn 42, a complete graph on N + 2 vertices, and start the dynamics
with one I vertex, one R vertex and N S vertices.

Set

EN . ={at a certain moment, there are no more S vertices}.
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Test your intuition! Complete graphs Infinite trees

We consider Kn 42, a complete graph on N + 2 vertices, and start the dynamics
with one I vertex, one R vertex and N S vertices.

Set

EN . ={at a certain moment, there are no more S vertices}.

Question. How does P (EN ) behave as N — oo ?
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Complete graphs Infinite trees

Test your intuition!

We consider Kn 42, a complete graph on N + 2 vertices, and start the dynamics
with one I vertex, one R vertex and N S vertices.

Set
EN . ={at a certain moment, there are no more S vertices}.

ext

Question. How does P (EX,) behave as N — oo ?

‘Theorem (K. '13).\

We have (

0 if Ae€(0,1)
P(EY. ) S Lif A=
1 it A>1.
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DECOUPLING USING YULE PROCESSES

Qmﬁ
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Transition rates

Let S¢, I+, Ry be the population sizes at time t.

Total rate of {S, I} — {I, I}
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Transition rates

Let S¢, I+, Ry be the population sizes at time t.

Total rate of {S, I} — {I, I} : A-Si- I

Total rate {R, I} — {R, R} : [ - Ry.
Hence, at time t, the probability that {S, I} — {I, I} happens before
{R, I} = {R, R} is

AS . I . ASy
AS I + LRy AS + R’
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Complete graphs

Transition rates

Let S¢, I+, Ry be the population sizes at time t.

Total rate of {S, I} — {I, I} : A-Si- I

Total rate {R, I} — {R, R} : [ - Ry.
Hence, at time t, the probability that {S, I} — {I, I} happens before
{R, I} = {R, R} is

AS . I . ASy
AS I + LRy AS + R’

A~ We are going to be able to decouple the evolutions of S and R.

Igor Kortchemski Preys & Predators 15/ /17
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COUPLING AND DECOUPLING VIA TWO YULE PROCESSES

Qmﬁ
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Complete graphs

Yule processes

Definition (Yule process)

In a Yule process (Y(t))t>0 of parameter A, starting with one individual, each
individual lives a random time distributed according to a Exp(A) random
variable, and at its death gives birth to two individuals
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Yule processes

Definition (Yule process)

In a Yule process (Y(t))t>0 of parameter A, starting with one individual, each
individual lives a random time distributed according to a Exp(A) random
variable, and at its death gives birth to two individuals, and Y(t) denotes the

total number of individuals at time t.
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Complete graphs

Yule processes

Definition (Yule process)

In a Yule process (Y(t))t>0 of parameter A, starting with one individual, each
individual lives a random time distributed according to a Exp(A) random
variable, and at its death gives birth to two individuals, and Y(t) denotes the

total number of individuals at time t.

A In particular, the intervals between each discontinuity are distributed
according to independent Exp(A), Exp(2A), Exp(3A), ... random variables.

17/ /17
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Complete graphs

Coupling with two Yule processes

Let (R(t))i>0 be a Yule process of parameter 1, and (Sn(t))¢>0 a Yule process
of parameter A, time-reversed at its N-th jump.
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Coupling with two Yule processes

Let (R(t))i>0 be a Yule process of parameter 1, and (Sn(t))¢>0 a Yule process
of parameter A, time-reversed at its N-th jump.

N
CE]e\JXt Eext
F—_—— —- J;a( - - » SN F—_—— - ¢ T » SN
T T

Figure: Ex. N =7, where red crosses represent infections and purple ones recoveries.
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Coupling with two Yule processes

Let (R(t))i>0 be a Yule process of parameter 1, and (Sn(t))¢>0 a Yule process
of parameter A, time-reversed at its N-th jump.

The prey-predator dynamics can be described by using R and Sy, which
describe in what order the infections and recoveries happen!

N
CE]e\JXt Eext
F—_—— —- J;a( - - » SN F—_—— - ¢ T » SN
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Figure: Ex. N =7, where red crosses represent infections and purple ones recoveries.
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Coupling with two Yule processes

Let (R(t))i>0 be a Yule process of parameter 1, and (Sn(t))¢>0 a Yule process
of parameter A, time-reversed at its N-th jump.

The prey-predator dynamics can be described by using R and Sy, which
describe in what order the infections and recoveries happen!

N
Cnyt Eext
R H——H——K¢ J;a( - - » ON R H——H——K¢ — - T » SN
T T

Figure: Ex. N =7, where red crosses represent infections and purple ones recoveries.

T is the time when a type of vertices (S or |) disappears.
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Coupling with two Yule processes

Let (R(t))i>0 be a Yule process of parameter 1, and (Sn(t))¢>0 a Yule process
of parameter A, time-reversed at its N-th jump.

The prey-predator dynamics can be described by using R and Sy, which
describe in what order the infections and recoveries happen!

N
CE]e\JXt Eext
F—_—— —- J;a( - - » SN F—_—— - ¢ T » SN
T T

Figure: Ex. N =7, where red crosses represent infections and purple ones recoveries.

T is the time when a type of vertices (S or |) disappears.

T is the smallest between:
I the first moment when there are more discontinuities of R than

discontinuities of Sy (I disappears first, CEX

12" the N-th discontinuity of Sy (S disappears first, EX .)
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IDENTIFICATION OF THE CRITICAL PARAMETER A =1

Qmﬁ
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Complete graphs

Notation.

Denote by Sy (1), Sn(2), ..., Sn(N) the discontinuities Sy and by
R(1),...,R(N) the discontinuities of R(t).
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Notation.

Denote by Sy (1), Sn(2), ..., Sn(N) the discontinuities Sy and by
R(1),...,R(N) the discontinuities of R(t).

cEN N
Eext Eext
S 8@ 5@ 5@ S5 56 S S 82 5@ 5@ $5) SNOREN©)
h—_——— - l ¥—¢—» 3N —_——— - ¥—¢—>» S\
R R@  RB) RA RE)T R(7) R(1) R  RB) R(4) R(5) JRO6) R(?)

Figure: Example for N = 7, where the crosses represent discontinuities.
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Notation.

Denote by Sy (1), Sn(2), ..., Sn(N) the discontinuities Sy and by
R(1),...,R(N) the discontinuities of R(t).

Proposition

Sn(N) has the same distribution as
R(N) has the same distribution

cEN N
Eext Eext
S 8@ 53 5@ $5) SNOBEN©) S 82 5@ 5@ $5) SNOREN©)
h—_——— - l ¥—¢—» 3N —_——— - ¥—¢—>» S\
R R@  RB) RA RE)T R(7) R(1) R  RB) R(4) R(5) JRO6) R(?)

Figure: Example for N = 7, where the crosses represent discontinuities.
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Complete graphs

Notation.

R(1),...
Proposition

Denote by Sy (1), Sn(2), ..., Sn(N) the discontinuities Sy and by
, R(N) the discontinuities of R(t).

Sn (N has the same distribution as Exp(AN) + Exp(A(N — 1)) + - - - + Exp(A).

R(N) has the same distribution

cEN
Eext
S 8@ 53 5@ $5) 56 S
IR H—H—K% l X—x¢ » SN
R RQ@  RB) RA ROT R(7)

EN
ext
s S@ 5@ 5@ e 56 S
———- - - - ——- > SN
R(1) R R@) R@4) R() ‘TRE) R?)

Figure: Example for N = 7, where the crosses represent discontinuities.
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Notation.

Denote by Sy (1), Sn(2), ..., Sn(N) the discontinuities Sy and by
R(1),...,R(N) the discontinuities of R(t).

Proposition

Sn (N has the same distribution as Exp(AN) + Exp(A(N — 1)) + - - - + Exp(A).
R(N) has the same distribution Exp(1) + Exp(2) + - - - + Exp(N).

cEN N
Eext Eext
S 8@ 5@ 5@ S5 56 S S 82 5@ 5@ $5) SNOREN©)
h—_——— - l ¥—¢—» 3N —_——— - ¥—¢—>» S\
R R@  RB) RA RE)T R(7) R(1) R  RB) R(4) R(5) JRO6) R(?)

Figure: Example for N = 7, where the crosses represent discontinuities.
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Notation.

Denote by Sy (1), Sn(2), ..., Sn(N) the discontinuities Sy and by
R(1),...,R(N) the discontinuities of R(t).

Proposition

Sn (N has the same distribution as Exp(AN) + Exp(A(N — 1)) + - - - + Exp(A).
R(N) has the same distribution Exp(1) + Exp(2) + - - - + Exp(N).

A typical situation for A > 1: A typical situation for A < 1:
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Complete graphs

Notation.
Denote by Sy (1), Sn(2), ..., Sn(N) the discontinuities Sy and by

R(1),...,R(N) the discontinuities of R(t).

Proposition
Sn (N has the same distribution as Exp(AN) + Exp(A(N — 1)) + - - - + Exp(A).
R(N) has the same distribution Exp(1) + Exp(2) + - - - + Exp(N).

A typical situation for A < 1:

A typical situation for A > 1:

» SN
» R
Hence
(0 if Ae(0,1)
P(Eoe) — { = if A=
N — o0
\ 1 if A>1.
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STUDY OF THE FINAL STATE OF THE SYSTEM

Qmﬁ
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Complete graphs

Definition
Denote by S/™, 1N RN the number of S, I, R vertices at the first time T
when a type (S or I) of vertices disappears.
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Complete graphs

Definition
Denote by S/™, 1N RN the number of S, I, R vertices at the first time T
when a type (S or I) of vertices disappears.

ct N N
Eext F—

ext
Sn(N) Sn(N)
_—— - - — » O N _—— - - - —- » SN
- rtrJa : » R ce———3 R
T R(N T R(N)
SNy =9 T(N) — O,R(N) — 7 SNy =0, IN) =3 RIN) = ¢

Figure: Ex. N = 7, where red crosses represent infections and purple ones recoveries.
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Complete graphs

Definition
Denote by S/™, 1N RN the number of S, I, R vertices at the first time T
when a type (S or I) of vertices disappears.

N
CE@XJE E]e\lxt
Sn(N) Sni(N)
_—— - - l)&x » O N _—— - - - —- » SN
T R(N) T R(N)
S(N) — 2)I(N) — O) R(N) — 7 S(N) — O)I(N) — 3) R(N) — 6

Figure: Ex. N = 7, where red crosses represent infections and purple ones recoveries.

Question. What can be said of the asymptotic behavior of S!™/) TN RIN) 55
N — o0 ?
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Complete graphs

Definition
Denote by S/™, 1N RN the number of S, I, R vertices at the first time T
when a type (S or I) of vertices disappears.

N
CE@XJE E]e\lxt
Sn(N) Sni(N)
_—— - - l)&x » O N _—— - - - —- » SN
T R(N) T R(N)
S(N) — 2)I(N) — O) R(N) — 7 S(N) — O)I(N) — 3) R(N) — 6

Figure: Ex. N = 7, where red crosses represent infections and purple ones recoveries.

Question. What can be said of the asymptotic behavior of S!™/) TN RIN) 55
N — o0 ?

This should be related to the asymptotic behavior of Yule processes.
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Yule processes and terminal value

Proposition

Let (Y(t))t>0 be a Yule process of parameter A.
1) We have the convergence

_ a.s.
(& }\th — E,
t—00

where € is a Exp(1) random variable, called terminal value of Y.
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Yule processes and terminal value

Proposition

Let (Y(t))t>0 be a Yule process of parameter A.
1) We have the convergence

_ a.s.
(& }\th — E,
t—00

where € is a Exp(1) random variable, called terminal value of Y.

2) Fort > 0 and k > 1, we have P(Y; = k) = e (1 — e )1,
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Complete graphs

Yule processes and terminal value

Proposition

Let (Y(t))t>0 be a Yule process of parameter A.
1) We have the convergence

_ a.s.
(& }\th — E,
t—00

where € is a Exp(1) random variable, called terminal value of Y.

2) Fort > 0 and k > 1, we have P(Y; = k) = e (1 — e )1,

Corollary
if TN denotes the N-th jump time of Y, then

Ay — In(N) =3 —In(&)

N — o0
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Number of susceptible individuals remaining

Theorem (K. '13).
(i) Fix A € (0,1).

(i) Fix A =1.

(i) Fix A > 1.
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Theorem (K. '13).
(i) Fix A € (0,1). Then

N1-A N oo Exp(1)7.

(i) Fix A =1.

(iii) Fix A > 1. Then S'™/ converges in probability towards 0 as
N — oo.
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Complete graphs

Number of susceptible individuals remaining

Theorem (K. '13).
(i) Fix A € (0,1). Then

N1-A N oo Exp(1)7.

(i) Fix A =1. Then for every i > 0,

P (S“\” _ i) 12t

N — o0

(iii) Fix A > 1. Then S'™/ converges in probability towards 0 as
N — oo.
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Idea of the proof: case A =1

N
On the event “E_. 4,

e ———— —— — ¥—%—I SN
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Idea of the proof: case A =1

N
On the event “E_. 4,

Let € be the terminal value of the Yule process associated with Sy, and € is the
terminal value of RR.
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Complete graphs

Idea of the proof: case A =1

N
On the event “E_ 4,

ROOOEIE—IH—HH—¢

Let € be the terminal value of the Yule process associated with Sy, and € is the

terminal value of K.

We have Sy (N) ~ In(N) —In(€), R(N) ~

Igor Kortchemski

Preys & Predators

In(N) — In(&)
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Idea of the proof: case A =1

N
On the event “E_. 4,

e ———— —— — ¥—%—I SN

Let € be the terminal value of the Yule process associated with Sy, and € is the
terminal value of RR.

We have Sy (N) ~ In(N) —In(€), R(N) ~ In(N) — In(&), with £/& > 1.
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Complete graphs

Idea of the proof: case A =1

N
On the event “E_. 4,

e ———— —— — ¥—%—I SN

Let € be the terminal value of the Yule process associated with Sy, and € is the
terminal value of RR.

We have Sy (N) ~ In(N) —In(€), R(N) ~ In(N) — In(&), with £/& > 1.

Thus, S'N) ~ value of a Yule process of parameter A at time In(E/E),
conditionnally on £/& > 1.
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Idea of proof: case A € (0, 1)

brcrmrr— i —— e — — — — — ¥ 8N
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Idea of proof: case A € (0, 1)

brcrmrr— i —— e — — — — — ¥ 8N

Recall that € is the terminal value of the Yule process associated with Sy, and
€ is the terminal value of R.
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Complete graphs

Idea of proof: case A € (0, 1)

Sn(N)
brcrmrr— i —— e — — — — — ¥ 8N

< >

1
~ (X — 1) In(N)

AORA L R o
R ARARIRN XX Se,
T~R (N )

R

Recall that € is the terminal value of the Yule process associated with Sy, and
€ is the terminal value of R.

We have Sy (N) ~ +(In(N) —In(€)), R(N) = In(N) — In(&).
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Complete graphs

Idea of proof: case A € (0, 1)

Sn(N)
brcrmrr— i —— e — — — — — ¥ 8N

< >

1
~ (X — 1) In(N)

AR+ o
R ARARIRN XX Se,
T~R (N )

R

Recall that € is the terminal value of the Yule process associated with Sy, and
€ is the terminal value of R.

We have Sy (N) ~ +(In(N) —In(€)), R(N) = In(N) — In(&).

Thus, S'™) ~ value of a Yule process of parameter A at time (1/A — 1) In(N).
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Complete graphs

Idea of proof: case A € (0, 1)

Sn(N)
brcrmrr— i —— e — — — — — ¥ 8N

< >

1
~ (X — 1) In(N)

AR+ o
R ARARIRN XX Se,
T~R (N )

R

Recall that € is the terminal value of the Yule process associated with Sy, and
€ is the terminal value of R.

We have Sy (N) ~ +(In(N) —In(€)), R(N) = In(N) — In(&).

Thus, S'™) ~ value of a Yule process of parameter A at time (1/A — 1) In(N).
Which is of order e 1/A=1)In(N) — N1=A
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Complete graphs

Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix A € (0,1).

(i) Fix A =1.

(iii) Fix A > 1. Then
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Theorem (K. '13).
(i) Fix A € (0,1). Then

N—RMN) (g \
NI-A N o0 Exp(1)"

(i) Fix A =1.

(iii) Fix A > 1. Then
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Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix A € (0,1). Then

N—RMN) (g \
NI-A N o0 Exp(1)"

(i) Fix A=1. Then

RT @ Ly,
N N —o00 2 :

(iii) Fix A > 1. Then
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Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix A € (0,1). Then

RN gy 1 1
AR O 1 d
N Nowe 20T [T o)X

(iii) Fix A > 1. Then
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Number of recovered individuals remaining

Theorem (K. '13).
(i) Fix A € (0,1). Then

RN gy 1 1
AR O 1 d
N Nowe 20T [T o)X

(iii) Fix A > 1. Then

R(N) (d)
NIVE, e Exp(Exp(1)Y?).
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Calculations involving Yule processes

Key idea: Kendall's representaton of Yule processes.
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Calculations involving Yule processes

Key idea: Kendall's representaton of Yule processes.

Theorem (Kendall '66)

Let (Pi)i>0 be a Poisson process of parameter 1 starting from 0, and € be an
exponential random variable of parameter 1. Then

t — g)g(ext_l) —I— ].

is a Yule process of parameter N with terminal value €.
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Calculations involving Yule processes

Key idea: Kendall's representaton of Yule processes.

Theorem (Kendall '66)

Let (P¢)t>0 be a Poisson process of parameter 1 starting from 0, and € be an
exponential random variable of parameter 1. Then

t— :])8(67"‘—1) +1
is a Yule process of parameter N with terminal value €.

R(N) = In (1 + T—“) S (1)

TR
20 ] N
. o
" , £ ", ", ", 0
B S ER A ‘0 ‘y,, tt, ', ‘o, “, B s
', , 2, 2, ', A =
g, 10 ", " ., % H
,, ey, 7, . ", B =
2, 2, 2, 2, 2, - H
'*,, *, 2, ', “, B
e, ?, , ’, e, - =
%, , 2, 4, e, A =
e, ", ", ., 3 H
2, ., ", %, - =

Figure: lllustration of the coupling of Yule processes with Poisson processes
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Calculations involving Yule processes

Key idea: Kendall's representaton of Yule processes.

Theorem (Kendall '66)

Let (Pi)i>0 be a Poisson process of parameter 1 starting from 0, and € be an
exponential random variable of parameter 1. Then

t — g)g(ext_l) —I— ].

is a Yule process of parameter N with terminal value €.

This allows to calculate explicitly the limiting laws in the previous theorems
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Calculations involving Yule processes

Key idea: Kendall's representaton of Yule processes.

Theorem (Kendall '66)

Let (Pi)i>0 be a Poisson process of parameter 1 starting from 0, and € be an
exponential random variable of parameter 1. Then

t — g)g(ext_l) —I— ].

is a Yule process of parameter N with terminal value €.

This allows to calculate explicitly the limiting laws in the previous theorems, and
to justify the approximation:

A typical situation for A > 1: A typical situation for A < 1:
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Infinite trees

I. TEST YOUR INTUITION!

II. PREYS & PREDATORS ON A COMPLETE GRAPH

I11. PREYS & PREDATORS ON AN INFINITE TREE

—=>0 =D 0<>
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Infinite trees

‘Prey-predators on trees

Let T be a rooted tree
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‘Prey-predators on trees

Let T be a rooted tree, and T be the tree obtained by adding a parent to the
root of T.
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Infinite trees

‘Prey-predators on trees

Let T be a rooted tree, and T be the tree obtained by adding a parent to the
root of T. Start the prey-predator process with one predator at the root of T
and a prey at the root of T.
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Infinite trees

‘Prey-predators on trees

Let T be a rooted tree, and T be the tree obtained by adding a parent to the
root of T. Start the prey-predator process with one predator at the root of T
and a prey at the root of T.

What is the probability pt(A) that the preys survive indefinitely?
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Infinite trees

‘Prey-predators on Galton—Watson trees

Let v be a probability measure on Z, . Set d:= ) ;- ,1v(i) and assume that
d > 1. Let T be a Galton—Watson tree with offspring distribution v.
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Infinite trees

‘Prey-predators on Galton—Watson trees

Let v be a probability measure on Z, . Set d:= ) ;- ,1v(i) and assume that
d > 1. Let T be a Galton—Watson tree with offspring distribution v.

Theorem (Kordzakhia '05)

If T is an infinite d-ary tree, and

Ac :=2d—1—24/d(d—1),

then p(A) =0 for A < Ac and pg(A) >0 for A > A..
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Theorem (Kordzakhia '05)

If T is an infinite d-ary tree, and

Ac :=2d—1—24/d(d—1),

then p(A) =0 for A < Ac and pg(A) >0 for A > A..

Theorem (Bordenave '12)

Almost surely, we have py(A) =0 for A < Ac. and pg(A) >0 for A > Ac.
Denote by Z the total number of Infected individuals.

Theorem (Bordenave '12)

If A < A, we have (under an integrability assumption on v)

(1 —A+ /A2 —2A(2d — 1) + 1)2
4(d—1)A

sup{u > 1, E[Z"%] < oo} =
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Infinite trees

Tail of the number of Infected individuals

Theorem (K. '13).
(i) Assume that A = A.. Then

P(Z >n) ~

n—oo

(i) Assume that A € (0,A.). Then

P(Z > n) ~

n—0o0
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Infinite trees

Tail of the number of Infected individuals

Theorem (K. '13).
(i) Assume that A = A.. Then

d 1
P(Z > n) S (1+\/ﬁ) : n(n(m) 2’

(i) Assume that A € (0,A.). Then

(1A +/A2-2A(2d —1) +1)?

P(Z > n) ~ C(A,d)-n A(d—1)A

n—0o0

For A = A., we have E [Z] < oo, but E [ZIn(Z)] = .

A~ Idea: explicit coupling with a branching random walk killed at the origin,
and use results of Aidékon, Hu & Zindy.
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Infinite trees

Coupling with a branching random walk_

Let V be the branching random walk produced with the point process

u
L= Z O{e—Exp; (A)}s
1=1

starting from 0, where U is a r.v distributed as v, where € is an independent
Exp(1) r.v and (Exp;(A))i>1 are independent i.i.d. Exp(A).
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Let V be the branching random walk produced with the point process

u
L= Z O{e—Exp; (A)}s
1=1

starting from 0, where U is a r.v distributed as v, where € is an independent
Exp(1) r.v and (Exp;(A))i>1 are independent i.i.d. Exp(A).

Kill V at 0, by only considering {u € T;V(v) > 0,Vv € [0, u]}.

Proposition.

The number Z of infected individuals has the same distribution as

#ue T;V(v) >0,V e [0, u]}.
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