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Let (1,2, ..., n) be the n-cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :T1To -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into n — 1 transpositions).
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For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

A~ Question:

Igor Kortchemski Large discrete random structures



Questions: minimal factorizations

Let (1,2, ..., n) be the n-cycle.
Consider the set

N =1{(T1, ..., Tn_1) transpositions :T1To -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into n — 1 transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#3 = 3.
A~ Question:
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Questions: minimal factorizations

Let (1,2, ..., n) be the n-cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :T1To -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into n — 1 transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#)13 = 3.

A, Question: for n large, what does a typical minimal factorization look
like?
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General framework
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Goal: study X,,.

A, Find the cardinality of X,,. (bijective methods, generating functions)
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General framework

Let XC;, be a set of combinatorial objects of “size” n (permutations, partitions,
graphs, functions, paths, matrices, etc.).

Goal: study X,,.

A, Find the cardinality of X,,. (bijective methods, generating functions)

A~ Understand the typical properties of X,,. Let X,, be an element of X,
chosen uniformly at random. What can be said of X,,?

To answer this question, a possibility is to find a continuous object X
such that X,, — X as n — oo.
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What is it about?

Let (X, )n>1 be a sequence of “discret” objects converging to a “continuous”
object X:

n—oo
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What is it about?

Let (X, )n>1 be a sequence of “discret” objects converging to a “continuous”
object X:

n—oo

Several uses:

N~ From the discrete to the continuous: if a certain property P is satisfied by
all the X,, and passes through the limit, X satisfies 7.
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object X:

n—oo

Several uses:

N~ From the discrete to the continuous: if a certain property P is satisfied by
all the X,, and passes through the limit, X satisfies 7.

N From the continuous to the discrete: if a certain property P is satisfied by
X and passes through the limit, X,, “roughly” satisfies P for n large.
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What is it about?

Let (X, )n>1 be a sequence of “discret” objects converging to a “continuous”
object X:

n—oo

Several uses:

N~ From the discrete to the continuous: if a certain property P is satisfied by
all the X,, and passes through the limit, X satisfies 7.

N From the continuous to the discrete: if a certain property P is satisfied by
X and passes through the limit, X,, “roughly” satisfies P for n large.

N~ Universality: if (Yy)n>1 is another sequence of objects converging to X,
then X,, and Y,, “roughly” have the same properties for n large.
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What is it about?

Let (X )n>1 be a sequence of “discrete” objects converging to a “continuous”
object X:

n—oo

AN~ In what space do the objects live?
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AN In what space do the objects live? Here, a metric space (Z, d) (complete
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What is it about?

Let (X )n>1 be a sequence of “discrete” objects converging to a “continuous”

object X:
X, — X

n—oo

AN In what space do the objects live? Here, a metric space (Z, d) (complete
separable).

AN~ What is the sense of this convergence when these objects are random?
Here, convergence in distribution:

E[F(Xn)]  —  EI[FX)]

n—oo

for every continuous bounded function F: Z — R.
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II. TRIANGULATIONS

II11. MINIMAL FACTORIZATIONS
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Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.

Igor Kortchemski Large discrete random structures



Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.

A Biology: genealogical and phylogenetical trees, etc.

Igor Kortchemski Large discrete random structures



Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.
A Biology: genealogical and phylogenetical trees, etc.

A~ Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections,
etc.
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Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.
A Biology: genealogical and phylogenetical trees, etc.

A~ Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections,
etc.

AN Probability: trees are elementary pieces of various models of random
graphs, having rich probabilistic properties.
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Trees

Plane trees

A~ Question:
A~ Question:
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Trees

Plane trees

Figure: Two different plane trees
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A~ Question:
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Trees

Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees
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Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees

A~ Question: #X, =7
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Trees

Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees

: ] L 2n—2
N~ Question: #X, = £ (7).
A~ Question:
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Trees

Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees

Ar Question: #X, = (377,

A, Question: What does a large typical plane tree look like?
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Trees

Bienayme—Galton—Watson trees

Let 1 be a probability on Z, ={0,1,2,...} with > . ip(i) <1 and pn(1) < 1.
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Trees

Bienayme—Galton—Watson trees

Let 1 be a probability on Z, ={0,1,2,.. .} with > . ip(i) <1land u(l) <1. A
Bienaymé—Galton—\Watson tree with offspring distribution 1 is a random plane
tree such that:

Igor Kortchemski Large discrete random structures



Trees

Bienayme—Galton—Watson trees

Let 1 be a probability on Z, ={0,1,2,.. .} with > . ip(i) <1land u(l) <1. A
Bienaymé—Galton—\Watson tree with offspring distribution 1 is a random plane
tree such that:

1. the root has a random number of children distributed according to u;
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Trees

Bienayme—Galton—Watson trees

Let 1 be a probability on Z, ={0,1,2,.. .} with > . ip(i) <1land u(l) <1. A
Bienaymé—Galton—\Watson tree with offspring distribution 1 is a random plane
tree such that:

1. the root has a random number of children distributed according to u;

2. then, these children each have an independent random number of children
distributed as ., and so on.

Igor Kortchemski Large discrete random structures



Trees

Bienayme—Galton—Watson trees

Let 1 be a probability on Z, ={0,1,2,.. .} with > . ip(i) <1land u(l) <1. A
Bienaymé—Galton—\Watson tree with offspring distribution 1 is a random plane
tree such that:

1. the root has a random number of children distributed according to u;

2. then, these children each have an independent random number of children
distributed as ., and so on.

This happens with probability 1(0)3u(2)2.
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Trees

Bienayme—Galton—Watson trees

Let 1 be a probability on Z, ={0,1,2,.. .} with > . ip(i) <1land u(l) <1. A
Bienaymé—Galton—\Watson tree with offspring distribution 1 is a random plane
tree such that:

1. the root has a random number of children distributed according to u;

2. then, these children each have an independent random number of children
distributed as ., and so on.

This happens with probability 1(0)3u(2)2.

A If n(i) = 211+1 for 1 > 0, a BGW tree conditioned on having n vertices
follows the uniform distribution on the set of all plane trees with n vertices!
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Trees

Coding a tree by its contour function

Code a tree T by its contour function C(T):

Igor Kortchemski Large discrete random structures



Trees

Coding a tree by its contour function

Knowing the contour function, it is easy to reconstruct the tree:
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Trees

Scaling limits (finite variance)

Let p be a critical ( }_;5q ik(i) = 1) offspring distribution having finite positive
variance 0°. Let t,, be a random BGW tree conditioned on having n vertices.
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Trees

Scaling limits (finite variance)

Let p be a critical ( }_;5q ik(i) = 1) offspring distribution having finite positive
variance 0°. Let t,, be a random BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

We have: . ,
(d)
—cm(tn)> @) (— -@(t)) ,
(\/T_L ogtgy T O 0<t<1

where e Is the normalized Brownian excursion.
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Trees

Scaling limits (finite variance)

Let p be a critical ( }_;5q ik(i) = 1) offspring distribution having finite positive
variance 0°. Let t,, be a random BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

We have: . ,
(d)
—cm(tn)> @) (— -@(t)) ,
(\/T_L ogtgy T O 0<t<1

where e Is the normalized Brownian excursion.

| | | | | | | | |
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Trees

Scaling limits (finite variance)

Let p be a critical ( }_;5q ik(i) = 1) offspring distribution having finite positive
variance 0°. Let t,, be a random BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

We have: . ,
(d)
—cm(tn)> @) (— -@(t)) ,
(\/T_L ogtgy T O 0<t<1

where e Is the normalized Brownian excursion.

Remarks

A~ The function e codes a “continuous” tree T, called the Brownian
continuum random tree.
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Trees

Scaling limits (finite variance)

Let p be a critical ( }_;5q ik(i) = 1) offspring distribution having finite positive
variance 0°. Let t,, be a random BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

We have: . ,
(d)
—cm(tn)> @) (— -@(t)) ,
(\/T_L ogtgy T O 0<t<1

where e Is the normalized Brownian excursion.

Remarks

A~ The function e codes a “continuous” tree T, called the Brownian
continuum random tree.

AN, ldeas: code t,, by another function (Lukasiewicz path), which is a
(conditioned) random walk, use (a conditioned) Donsker’s invariance principle,
go back to the contour function (Duquesne & Le Gall, Marckert & Mokkadem).
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Trees

Scaling limits (finite variance)

Let p be a critical ( }_;5q ik(i) = 1) offspring distribution having finite positive
variance 0°. Let t,, be a random BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

We have: . ,
(d)
—cm(tn)> @) (— -@(t)) ,
(\/T_L ogtgy T O 0<t<1

where e Is the normalized Brownian excursion.

A Consequence 1: for every a > 0,

2 n—00

P [E - Height(t,,) > a - \/ﬂ} — Z(4k2a2 — 1)e‘2k2a2.
k=1
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Trees

Scaling limits (finite variance)

Let p be a critical ( }_;5q ik(i) = 1) offspring distribution having finite positive
variance 0°. Let t,, be a random BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

We have: . ,
(d)
—cm(tn)> @) (— -@(t)) ,
(\/T_L ogtgy T O 0<t<1

where e Is the normalized Brownian excursion.

A~ Consequence 2: for every ¢ > 0,

P (there exists a vertex of t,, with 3 grafted subtrees of sizes > en) — 0.
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Trees

Universality

The Brownian continuum random tree is the scaling limit of:
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Trees

Universality

The Brownian continuum random tree is the scaling limit of:

» different families of trees: non-plane trees (Marckert & Miermont,
Panagiotou & Stufler, Stufler), Markov-branching trees (Haas &
Miermont), cut-trees (Bertoin & Miermont).
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Trees

Universality

The Brownian continuum random tree is the scaling limit of:

» different families of trees: non-plane trees (Marckert & Miermont,
Panagiotou & Stufler, Stufler), Markov-branching trees (Haas &
Miermont), cut-trees (Bertoin & Miermont).

» different families of tree-like structures: stack triangulations (Albenque &
Marckert), graphs from subcritical classes (Panagiotou, Stufler & Weller),

dissections (Curien, Haas & K), various maps (Janson & Stefansson,
Bettinelli, Caraceni, K & Richier).
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Triangulations

I. TREES

II. TRIANGULATIONS

—==>0 =D 0<>

II1I. MINIMAL FACTORIZATIONS
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Triangulations

Triangulations

A~ Question:
A~ Question:
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Triangulations

Triangulations

Figure: A triangulation of Xyp.
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Triangulations

Triangulations

Let X,, be the set of all triangulations of the polygon whose vertices are
2i77]

e (j=0,1,..., n—1).

Figure: A triangulation of Xyp.
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Triangulations

Triangulations

Let X,, be the set of all triangulations of the polygon whose vertices are
2i77]

e (j=0,1,..., n—1).

Figure: A triangulation of Xyp.

A~ Question: #X,, =7
A~ Question:
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Triangulations

Triangulations

Let X,, be the set of all triangulations of the polygon whose vertices are
2i77]

e (j=0,1,..., n—1).

Figure: A triangulation of Xyp.

A~ Question: #X, = — (2:11__34).
A~ Question:
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Triangulations

Triangulations

Let X,, be the set of all triangulations of the polygon whose vertices are
2i77]

e (j=0,1,..., n—1).

Figure: A triangulation of Xyp.

A~ Question: #X,, = ﬁ (2:11__34).

A, Question: What does a large typical triangulation look like?
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Triangulations

What space for triangulations?
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Triangulations

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z, d).
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Triangulations

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d). If
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}

are the r-neighborhoods of X and Y
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Triangulations

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d). If
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}
are the r-neighborhoods of X and Y, we set

du(X,Y) =inf{r >0; X C Y, and Y C X,}.
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Triangulations

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d). If
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}
are the r-neighborhoods of X and Y, we set

du(X,Y) =inf{r >0; X C Y, and Y C X,}.
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices.
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)

n—oo
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)
n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.
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Triangulations Minimal factorizations

Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).
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Minimal factorizations

Triangulations

Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(e).
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Minimal factorizations

Triangulations

Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. 2% L)

n—0oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(e).
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Minimal factorizations

Triangulations

Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(e).

chord length =
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Minimal factorizations

Triangulations

Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(e).
It is the probability measure with density:
1 3x —1
Tx2(1 —x)2y/1 — 2x

1 dx.

<x<

W=
N|—=
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Minimal factorizations

Triangulations

Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. -2 Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(e).
It is the probability measure with density:
1 3x —1
Tx2(1 —x)2y/1 — 2x

1 dx.

<x<

W=
N|—=

AN~ Application (Curien & K.): study of the length of the longest chord of a
uniform dissection (faces of any degree allowed).
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

04 06 08 1
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

04 06 08 1

Let t be a time of local minimum.
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

ol.ft t Olﬁ ols 1

Let t be a time of local minimum.
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

ol.ft t Olﬁ ols 1

Let t be a time of local minimum. Set gy = sup{s < t; &s = ¢} and
di =inf{s > t; e = e¢}.
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

08 1

Let t be a time of local minimum. Set g; = sup{s < t; & = @} and
di = inf{s > t; s = e¢}.

Igor Kortchemski Large discrete random structures



Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

L e

08 1

Let t be a time of local minimum. Set g; = sup{s < t; & = @} and

d¢ = inf{s > t; @s = ¢}. Draw the chords |e 279, e 27| [~ 2Tt o~ 2imdy]
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

6—2?;71'6175
e—Qiﬂgt

\ 6—2i7rt

08 1

Let t be a time of local minimum. Set gy = sup{s < t; &s = @} and

di = inf{s > t; s = @¢}. Draw the chords [e 279t e 27| [e ATt e—2imdy]
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

6—2?;71'6175
e—Qiﬂgt

—2mt

08 1

Let t be a time of local minimum. Set gy = sup{s < t; &s = @} and

di = inf{s > t; s = @¢}. Draw the chords [e 279t e 27| [e ATt e—2imdy]

Do this for all the times of local minimum.
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

L e

0. 02 04 06 08 1

Let t be a time of local minimum. Set g; = sup{s < t; & = @} and

d¢ = inf{s > t; @s = ¢}. Draw the chords |e 279, e 27| [~ 2Tt o~ 2imdy]

Do this for all the times of local minimum.
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Triangulations

Constructing the Brownian triangulation

Start with the Brownian excursion e:

L e

0. 02 04 06 08 1

Let t be a time of local minimum. Set g; = sup{s < t; & = @} and
d¢ = inf{s > t; @s = ¢}. Draw the chords |e 279, e 27| [~ 2Tt o~ 2imdy]
Do this for all the times of local minimum.

The closure of this union, L(e), is called the Brownian triangulation.
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Minimal factorizations

I. TREES

II. TRIANGULATIONS

II1I. MINIMAL FACTORIZATIONS

—=>0 =D 0<>
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Minimal factorizations

Minimal factorizations

A~ Question:

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

A~ Question:

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,...,1) be the n cycle.

Consider the set
N, ={(t1,...,Tn_1) transpositions : T1To---Th_1 = (1,2,..., 1)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question:

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,...,1) be the n cycle.

Consider the set
N, ={(t1,...,Tn_1) transpositions : T1To---Th_1 = (1,2,..., 1)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question: #M, =7

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :TiTo - Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :TiTo - Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#9015 = 3.
A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :TiTo - Tn—1 = (1,2,..., n)}
of minimal factorizations (of the n-cycle into transpositions).

AN Question: #M01,, =n""2 (Dénes, 1959)

For example (multiply from left to right):
(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#3 = 3.
A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :TiTo - Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into transpositions).
AN~ Question: #Mt, =n""2 (Dénes, 1959)

For example (multiply from left to right):
(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#)13 = 3.

A, Question: for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures



Minimal factorizations

What space for minimal factorizations ?

—_—
\/

{
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Minimal factorizations

What space for minimal factorizations ?

—_—
\/

{

A Idea: compact subsets of the unit disk.
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Minimal factorizations

If (T1,...,Trn_1) is @ minimal factorization of length n and 1 < k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the blocks of T11T5 - - - Ty.
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Minimal factorizations

If (t4,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the blocks of T11T5 - - - Ty.

AN Example for n =12 and k = 6:
(£1,3), (6,12), (1,5), (7,12),(9,10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N
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Minimal factorizations

If (t4,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the blocks of T11T5 - - - Ty.

AN Example for n =12 and k = 6:
(£1,3), (6,12), (1,5), (7,12),(9,10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N
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Minimal factorizations

If (t4,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the blocks of T11T5 - - - Ty.

AN Example for n =12 and k = 6:
(£1,3), (6,12), (1,5), (7,12),(9,10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N

o U 14 g U

o/o ooo
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Minimal factorizations

If (t4,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the blocks of T11T5 - - - Ty.

AN Example for n =12 and k = 6:
(£1,3), (6,12), (1,5), (7,12),(9,10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N

product=(1,3,5)(6,7,11,12),(9,10)

10 10

9 11
. 9O o O11

8 o 12 S . 12
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Minimal factorizations

If (t4,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the blocks of T11T5 - - - Ty.

AN Example for n =12 and k = 6:
(£1,3), (6,12), (1,5), (7,12),(9,10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N

product=(1,3,5)(6,7,11,12),(9,10)

9 10 11 9

O/O
8 o 12 S . 12
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Minimal factorizations

A simulation forn = 2000
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‘Theorem (Féray, K.).

&

~

Triangulations

Minimal factorizations

J

Let (4., ...

(ii)

(iii)

%

()

n—1

) be a uniform minimal factorization of length n and
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‘Theorem (Féray, K.).

&

~

Triangulations

Minimal factorizations

J

Let (™., 0

n—1

(i) If K, = o(y/n):
(ii)

(iii)

) be a uniform minimal factorization of length n and
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‘Theorem (Féray, K.).

~

Minimal factorizations

Triangulations

J

Let (4., ...
1 <K,<n-—1withK,, = .
(i) If K, = o(y/n):

c € (0, 00):

(ii) If

) be a uniform minimal factorization of length n and

Large discrete random structures
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Triangulations

~

Minimal factorizations

‘Theorem (Féray, K.).

- J

Let (tl(n), L ,t(n) ) be a uniform minimal factorization of length n and

n—1

1 <K,<n-—1withK,, = .

(i) If K, = o(y/n):
(ii) |f5% » ¢ € (0, 00):
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Triangulations Minimal factorizations

‘Theorem (Féray, K.).\
(& J
Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1withK,, = .

(i) If K, = o(y/n):
(ii) |f5% » ¢ € (0, 00):
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Triangulations

Minimal factorizations

‘Theorem (Féray, K.).\
(& J
Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1withK,, = .

(I) |t Kn — O(\/T_I)Z (San'CPKn)
(ii) |f5% » ¢ € (0, 00):

(iii)If\K/% > 00 and o — 00

(iv) If 2=5n 5 ¢ € [0, 00):

— (S, S).
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Triangulations Minimal factorizations

~

‘Theorem (Féray, K.).

Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and
1 <K,<n-—1withK,, = .
() F Kn =o(vn): (T, Px.) -5 (SS)

n—oo
(i) If \K/% >»c € (0,00): there exists a random compact subset L. such
that

(T, Pe.) -2 (Lo, Le).
n—oo

(iii) If & — oo and "= — oo

(iv) If 2=5n 5 ¢ € [0, 00):
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Triangulations Minimal factorizations

~

‘Theorem (Féray, K.).

Let (tl(n) ..... tT(:l)l) be a uniform minimal factorization of length n and
1 <K,<n-—1withK,, = .
() F Kn =o(vn): (T, Px.) -5 (SS)

n—oo
(i) If \K/% >»c € (0,00): there exists a random compact subset L. such
that

(d)

(Fxn o Px.) — (Lei L),
K., \ n—K, \ .
(iii) If 00 and T~ 00
(d)
(Fx..r Px.) 7 (L(e), L(e))
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Triangulations Minimal factorizations

~

‘Theorem (Féray, K.).

Let (tl(n) ..... tT(:l)l) be a uniform minimal factorization of length n and
1 <K,<n-—1withK,, = .
() F Kn =o(vn): (T, Px.) -5 (SS)
n—oo
(i) If \K/% >»c € (0,00): there exists a random compact subset L. such
that
(T, Pe.) -2 (Lo, Le).
n—oo
K., \ n—K, \ .
(iii) If 00 and T~ 00
(d)
(Fx..r Px.) 7 (L(e), L(e))
(iv) If n\_/%“ > ¢ € |0, 00)
Fe. L 1e), P B L. withLy=8)
n—oo n—oo
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Triangulations Minimal factorizations

Figure: A simulation of Ls.
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Minimal factorizations

Proposition.

Fix 1 <k <n—1and let P be a non-crossing partition with n vertices
and n — k blocks. Then
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Minimal factorizations

Proposition.

Fix 1 <k <n—1and let P be a non-crossing partition with n vertices
and n — k blocks. Then
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Minimal factorizations

Proposition.

Fix 1 <k <n—1and let P be a non-crossing partition with n vertices
and n — k blocks. Then

A~ Consequence 1:

P (t{“) — (a,a+ i)) -
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Minimal factorizations

Proposition.

Fix 1 <k <n—1and let P be a non-crossing partition with n vertices
and n — k blocks. Then

_ kK —k—1) T1 B|'PI—2 I BB
o I\ e (AL e
A~ Consequence 1:
m) . B (TI—Q)I | 11—2 | (n_i)(n—i—Q) N L
P(tl _((1,(1—|—1)) o nn—2 (1_1)| (Tl—l—].)l 13/2

for n and 1 large, which explains the y/n transition.
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Minimal factorizations

A~ Consequence 2:
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A~ Consequence 2:
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A~ Consequence 2:

It follows that P(."
treel
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A~ Consequence 2:

It follows that P(£,™¢.™ ... #.™) is coded by a bitype biconditioned BGW
tree!

(different conditioning than those considered for multitype BGW trees by
Marckert, Miermont, Berzunza)
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Minimal factorizations

A proof of the half of (i), regime K, = o(y/n).
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Assume that K, = o(y/n) and that 5. — S. We show that

CPKn — S.
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Minimal factorizations

Assume that K, = o(y/n) and that 5. — S. We show that

AN~ The convergence Jx — S means that for n large, T is made of a
dense collection of “small’ chords.
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Triangulations Minimal factorizations

Assume that K, = o(y/n) and that 5. — S. We show that

AN~ The convergence Jx — S means that for n large, T is made of a
dense collection of “small’ chords.

AN~ To show that P — S, one has to rule out the possibility that a
succession of “small” chords of J_ builds a “large” connected component
(because the blocks of Py are the connected components of Fi ).
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Triangulations Minimal factorizations

Assume that K, = o(y/n) and that 5. — S. We show that

AN~ The convergence Jx — S means that for n large, T is made of a
dense collection of “small’ chords.

AN~ To show that P — S, one has to rule out the possibility that a
succession of “small” chords of J_ builds a “large” connected component
(because the blocks of Py are the connected components of Fi ).

macroscopic chord
belonging to Py \
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Triangulations Minimal factorizations

Assume that K, = o(y/n) and that 5. — S. We show that

AN~ The convergence Jx — S means that for n large, T is made of a
dense collection of “small’ chords.

AN~ To show that P — S, one has to rule out the possibility that a
succession of “small” chords of J_ builds a “large” connected component
(because the blocks of Py are the connected components of Fi ).

A ldea: Use the fact that 7, 1 — L(e) (!).

macroscopic chord
belonging to Py \
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Triangulations Minimal factorizations

Assume that K, = o(y/n) and that 5. — S. We show that

AN~ The convergence Jx — S means that for n large, T is made of a
dense collection of “small’ chords.

AN~ To show that P — S, one has to rule out the possibility that a
succession of “small” chords of J_ builds a “large” connected component
(because the blocks of Py are the connected components of Fi ).

A ldea: Use the fact that 7, 1 — L(e) (!).

macroscopic chord
belonging to Py \

If this happens, there will be no macroscopic chord with endpoints in the red
region in J,, 1.
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Triangulations Minimal factorizations

Assume that K, = o(y/n) and that 5. — S. We show that

AN~ The convergence Jx — S means that for n large, T is made of a
dense collection of “small’ chords.

AN~ To show that P — S, one has to rule out the possibility that a
succession of “small” chords of J_ builds a “large” connected component
(because the blocks of Py are the connected components of Fi ).

A ldea: Use the fact that 7, 1 — L(e) (!).

macroscopic chord
belonging to Py \

If this happens, there will be no macroscopic chord with endpoints in the red
region in F,,_1. This cannot happen in the Brownian triangulation.
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