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God does arithmetic. C. F. Gauss
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1. Introduction

The heart of Mathematics is its problems. Paul Halmos

1. Introduction Number Theory is a beautiful branch of Mathematics.
The purpose of this book is to present a collection of interesting questions
in Number Theory. Many of the problems are mathematical competition
problems all over the world including IMO, APMO, APMC, and Putnam,
etc. The book is available at

http://my.netian.com/∼ideahitme/orange.html

2. How You Can Help This is an unfinished manuscript. I would
greatly appreciate hearing about any errors in the book, even minor ones. I
also would like to hear about

a) challenging problems in elementary number theory,
b) interesting problems concerned with the history of number
theory,
c) beautiful results that are easily stated, and
d) remarks on the problems in the book.

You can send all comments to the author at ultrametric@gmail.com

3. Acknowledgments The author is very grateful to Orlando Doehring ,
who provided old IMO short-listed problems. The author also wish to thank
Arne Smeets, Ha Duy Hung, Tom Verhoeff and Tran Nam Dung
for their nice problem proposals and comments.
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2. Notations and Abbreviations

Notations

Z is the set of integers
N is the set of positive integers
N0 is the set of nonnegative integers
Q is the set of rational numbers
m|n n is a multiple of m.∑

d|n f(d) =
∑

d∈D(n) f(d) (D(n) = {d ∈ N : d|n})
[x] the greatest integer less than or equal to x
{x} the fractional part of x ({x} = x− [x])
π(x) the number of primes p with p ≤ x
φ(n) the number of positive integers less than n that are
relatively prime to n
σ(n) the sum of positive divisors of n
d(n) the number of positive divisors of n
τ Ramanujan’s tau function

Abbreviations

AIME American Invitational Mathematics Examination
APMO Asian Pacific Mathematics Olympiads
IMO International Mathematical Olympiads
CRUX Crux Mathematicorum (with Mathematical Mayhem)
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3. Divisibility Theory I

Why are numbers beautiful? It’s like asking why is Beethoven’s Ninth
Symphony beautiful. If you don’t see why, someone can’t tell you. I know
numbers are beautiful. If they aren’t beautiful, nothing is. Paul Erdös

A 1. (Kiran S. Kedlaya) Show that if x, y, z are positive integers, then
(xy + 1)(yz + 1)(zx + 1) is a perfect square if and only if xy + 1, yz + 1,
zx+ 1 are all perfect squares.

A 2. Find infinitely many triples (a, b, c) of positive integers such that a, b,
c are in arithmetic progression and such that ab+ 1, bc+ 1, and ca+ 1 are
perfect squares.

A 3. Let a and b be positive integers such that ab+ 1 divides a2 + b2. Show
that

a2 + b2

ab+ 1
is the square of an integer.

A 4. (Shailesh Shirali) If a, b, c are positive integers such that

0 < a2 + b2 − abc ≤ c,
show that a2 + b2 − abc is a perfect square. 1

A 5. Let x and y be positive integers such that xy divides x2 +y2 + 1. Show
that

x2 + y2 + 1
xy

= 3.

A 6. (R. K. Guy and R. J. Nowakowki) (i) Find infinitely many pairs of
integers a and b with 1 < a < b, so that ab exactly divides a2 + b2 − 1. (ii)
With a and b as in (i), what are the possible values of

a2 + b2 − 1
ab

.

A 7. Let n be a positive integer such that 2 + 2
√

28n2 + 1 is an integer.
Show that 2 + 2

√
28n2 + 1 is the square of an integer.

A 8. The integers a and b have the property that for every nonnegative
integer n the number of 2na+b is the square of an integer. Show that a = 0.

A 9. Prove that among any ten consecutive positive integers at least one is
relatively prime to the product of the others.

1This is a generalization of A3 ! Indeed, a2 + b2− abc = c implies that a2+b2

ab+1
= c ∈ N.
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A 10. Let n be a positive integer with n ≥ 3. Show that

nn
nn − nnn

is divisible by 1989.

A 11. Let a, b, c, d be integers. Show that the product

(a− b)(a− c)(a− d)(b− c)(b− d)(c− d)

is divisible by 12. 2

A 12. Let k,m, and n be natural numbers such that m + k + 1 is a prime
greater than n+ 1. Let cs = s(s+ 1). Prove that the product

(cm+1 − ck)(cm+2 − ck) · · · (cm+n − ck)
is divisible by the product c1c2 · · · cn.

A 13. Show that for all prime numbers p,

Q(p) =
p−1∏

k=1

k2k−p−1

is an integer.

A 14. Let n be an integer with n ≥ 2. Show that n does not divide 2n − 1.

A 15. Suppose that k ≥ 2 and n1, n2, · · · , nk ≥ 1 be natural numbers having
the property

n2 | 2n1 − 1, n3 | 2n2 − 1, · · · , nk | 2nk−1 − 1, n1 | 2nk − 1.

Show that n1 = n2 = · · · = nk = 1.

A 16. Determine if there exists a positive integer n such that n has exactly
2000 prime divisors and 2n + 1 is divisible by n.

A 17. Let m and n be natural numbers such that

A =
(m+ 3)n + 1

3m
.

is an integer. Prove that A is odd.

A 18. Let m and n be natural numbers and let mn + 1 be divisible by 24.
Show that m+ n is divisible by 24.

A 19. Let f(x) = x3 + 17. Prove that for each natural number n ≥ 2, there
is a natural number x for which f(x) is divisible by 3n but not 3n+1.

A 20. Determine all positive integers n for which there exists an integer m
so that 2n − 1 divides m2 + 9.

A 21. Let n be a positive integer. Show that the product of n consecutive
integers is divisible by n!

2There is a strong generalization. See J1
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A 22. Prove that the number
n∑

k=0

(
2n+ 1
2k + 1

)
23k

is not divisible by 5 for any integer n ≥ 0.

A 23. (Wolstenholme’s Theorem) Prove that if

1 +
1
2

+
1
3

+ · · ·+ 1
p− 1

is expressed as a fraction, where p ≥ 5 is a prime, then p2 divides the
numerator.

A 24. If p is a prime number greater than 3 and k = [2p
3 ]. Prove that

(
p

1

)
+
(
p

2

)
+ · · ·+

(
p

k

)

is divisible by p2.

A 25. Show that
(

2n
n

) | lcm[1, 2, · · · , 2n] for all positive integers n.

A 26. Let m and n be arbitrary non-negative integers. Prove that

(2m)!(2n)!
m!n!(m+ n)!

is an integer. (0! = 1).

A 27. Show that the coefficients of a binomial expansion (a + b)n where n
is a positive integer, are all odd, if and only if n is of the form 2k − 1 for
some positive integer k.

A 28. Prove that the expression

gcd(m,n)
n

(
n

m

)

is an integer for all pairs of positive integers (m,n) with n ≥ m ≥ 1.

A 29. For which positive integers k, is it true that there are infinitely many
pairs of positive integers (m,n) such that

(m+ n− k)!
m! n!

is an integer ?

A 30. Show that if n ≥ 6 is composite, then n divides (n− 1)!.

A 31. Show that there exist infinitely many positive integers n such that
n2 + 1 divides n!.
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A 32. Let p and q be natural numbers such that
p

q
= 1− 1

2
+

1
3
− 1

4
+ · · · − 1

1318
+

1
1319

.

Prove that p is divisible by 1979.

A 33. Let b > 1, a and n be positive integers such that bn − 1 divides a.
Show that in base b, the number a has at least n non-zero digits.

A 34. Let p1, p2, · · · , pn be distinct primes greater than 3. Show that

2p1p2···pn + 1

has at least 4n divisors.

A 35. Let p ≥ 5 be a prime number. Prove that there exists an integer a
with 1 ≤ a ≤ p− 2 such that neither ap−1 − 1 nor (a+ 1)p−1 − 1 is divisible
by p2.

A 36. Let n and q be integers with n ≥ 5, 2 ≤ q ≤ n. Prove that q − 1
divides

[
(n−1)!
q

]
.

A 37. If n is a natural number, prove that the number (n+1)(n+2) · · · (n+
10) is not a perfect square.

A 38. Let p be a prime with p > 5, and let S = {p − n2|n ∈ N, n2 < p}.
Prove that S contains two elements a and b such that a|b and 1 < a < b.

A 39. Let n be a positive integer. Prove that the following two statements
are equivalent.

◦ n is not divisible by 4
◦ There exist a, b ∈ Z such that a2 + b2 + 1 is divisible by n.

A 40. Determine the greatest common divisor of the elements of the set

{n13 − n | n ∈ Z}.
A 41. Show that there are infinitely many composite n such that 3n−1−2n−1

is divisible by n.

A 42. Suppose that 2n+1 is an odd prime for some positive integer n. Show
that n must be a power of 2.

A 43. Suppose that p is a prime number and is greater than 3. Prove that
7p − 6p − 1 is divisible by 43.

A 44. Suppose that 4n + 2n + 1 is prime for some positive integer n. Show
that n must be a power of 3.

A 45. Let b, m, and n be positive integers b > 1 and m and n are different.
Suppose that bm − 1 and bn − 1 have the same prime divisors. Show that
b+ 1 must be a power of 2.
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A 46. Let a and b be integers. Show that a and b have the same parity if
and only if there exist integers c and d such that a2 + b2 + c2 + 1 = d2.

A 47. Let n be a positive integer with n > 1. Prove that
1
2

+ · · ·+ 1
n

is not an integer.

A 48. Let n be a positive integer. Prove that
1
3

+ · · ·+ 1
2n+ 1

is not an integer.

A 49. Prove that there is no positive integer n such that, for k = 1, 2, · · · , 9,
the leftmost digit (in decimal notation) of (n+ k)! equals k.

A 50. Show that every integer k > 1 has a multiple less than k4 whose
decimal expansion has at most four distinct digits.

A 51. Let a, b, c and d be odd integers such that 0 < a < b < c < d and
ad = bc. Prove that if a + d = 2k and b + c = 2m for some integers k and
m, then a = 1.

A 52. Let d be any positive integer not equal to 2, 5, or 13. Show that one
can find distinct a and b in the set {2, 5, 13, d} such that ab − 1 is not a
perfect square.

A 53. Suppose that x, y, and z are positive integers with xy = z2 +1. Prove
that there exist integers a, b, c, and d such that x = a2 + b2, y = c2 + d2, and
z = ac+ bd.

A 54. A natural number n is said to have the property P , if whenever n
divides an − 1 for some integer a, n2 also necessarily divides an − 1.

(a) Show that every prime number n has the property P .
(b) Show that there are infinitely many composite numbers n
that possess the property P .

A 55. Show that for every natural number n the product(
4− 2

1

)(
4− 2

2

)(
4− 2

3

)
· · ·
(

4− 2
n

)

is an integer.

A 56. Let a, b, and c be integers such that a + b + c divides a2 + b2 + c2.
Prove that there are infinitely many positive integers n such that a + b + c
divides an + bn + cn.

A 57. Prove that for every n ∈ N the following proposition holds : The
number 7 is a divisor of 3n + n3 if and only if 7 is a divisor of 3nn3 + 1.
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A 58. Let k ≥ 14 be an integer, and let pk be the largest prime number
which is strictly less than k. You may assume that pk ≥ 3k/4. Let n be a
composite integer. Prove that

(a) if n = 2pk, then n does not divide (n− k)!
(b) if n > 2pk, then n divides (n− k)!.

A 59. Suppose that n has (at least) two essentially distinct representations
as a sum of two squares. Specifically, let n = s2 + t2 = u2 + v2, where
s ≥ t ≥ 0, u ≥ v ≥ 0, and s > u. Show that gcd(su − tv, n) is a proper
divisor of n.

A 60. Prove that there exist an infinite number of ordered pairs (a, b) of
integers such that for every positive integer t, the number at+b is a triangular
number if and only if t is a triangular number3.

A 61. For any positive integer n > 1, let p(n) be the greatest prime divisor
of n. Prove that there are infinitely many positive integers n with

p(n) < p(n+ 1) < p(n+ 2).

A 62. Let p(n) be the greatest odd divisor of n. Prove that

1
2n

2n∑

k=1

p(k)
k

>
2
3
.

A 63. There is a large pile of cards. On each card one of the numbers 1, 2,
· · · , n is written. It is known that the sum of all numbers of all the cards is
equal to k · n! for some integer k. Prove that it is possible to arrange cards
into k stacks so that the sum of numbers written on the cards in each stack
is equal to n!.

A 64. The last digit of the number x2 + xy + y2 is zero (where x and y are
positive integers). Prove that two last digits of this numbers are zeros.

A 65. Clara computed the product of the first n positive integers and Valerid
computed the product of the first m even positive integers, where m ≥ 2.
They got the same answer. Prove that one of them had made a mistake.

A 66. (Four Number Theorem) Let a, b, c, and d be positive integers such
that ab = cd. Show that there exists positive integers p, q, r, and s such that

a = pq, b = rs, c = pt, and d = su.

A 67. Prove that
(

2n
n

)
is divisible by n+ 1.

A 68. Suppose that a1, · · · , ar are positive integers. Show that lcm[a1, · · · , ar] =
a1 · · · ar(a1, a2)−1 · · · (ar−1, ar)−1(a1, a2, a3)(a1, a2, a3) · · · (a1, a2, · · · ar)(−1)r+1

.

A 69. Prove that if the odd prime p divides ab−1, where a and b are positive
integers, then p appears to the same power in the prime factorization of
b(ad − 1), where d is the greatest common divisor of b and p− 1.

3The triangular numbers are the tn = n(n+ 1)/2 with n ∈ {0, 1, 2, . . . }.
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A 70. Suppose that m = nq, where n and q are positive integers. Prove that
the sum of binomial coefficients

n−1∑

k=0

(
(n, k)q
(n, k)

)

is divisible by m, where (x, y) denotes the greatest common divisor of x and
y.
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4. Divisibility Theory II

Number theorists are like lotus-eaters - having tasted this food they can
never give it up. Leopold Kronecker

B 1. Determine all integers n > 1 such that

2n + 1
n2

is an integer.

B 2. Determine all pairs (n, p) of nonnegative integers such that
◦ p is a prime,
◦ n < 2p, and
◦ (p− 1)n + 1 is divisible by np−1.

B 3. Determine all pairs (n, p) of positive integers such that
◦ p is a prime, n > 1, and
◦ (p− 1)n + 1 is divisible by np−1. 4

B 4. Find an integer n, where 100 ≤ n ≤ 1997, such that

2n + 2
n

is also an integer.

B 5. Find all triples (a, b, c) of positive integers such that 2c − 1 divides
2a + 2b + 1.

B 6. Find all integers a, b, c with 1 < a < b < c such that

(a− 1)(b− 1)(c− 1) is a divisor of abc− 1.

B 7. Find all positive integers, representable uniquely as

x2 + y

xy + 1
,

where x and y are positive integers.

B 8. Determine all ordered pairs (m,n) of positive integers such that

n3 + 1
mn− 1

is an integer.

4The answer is (n, p) = (2, 2), (3, 3). Note that this problem is a very nice generalization
of the above two IMO problems B1 and B2 !
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B 9. Determine all pairs of integers (a, b) such that

a2

2a2b− b3 + 1
is a positive integer.

B 10. Find all pairs of positive integers m,n ≥ 3 for which there exist
infinitely many positive integers a such that

am + a− 1
an + a2 − 1

is itself an integer.

B 11. Determine all triples of positive integers (a,m, n) such that am + 1
divides (a+ 1)n.

B 12. Which integers are represented by (x+y+z)2

xyz where x, y, and z are
positive integers?

B 13. Find all n ∈ N such that [
√
n] | n.

B 14. Determine all n ∈ N for which (i) n is not the square of any integer,
and (ii) [

√
n]3 divides n2.

B 15. Find all n ∈ N such that 2n−1 | n!.

B 16. Find all positive integers (x, n) such that xn + 2n + 1 is a divisor of
xn+1 + 2n+1 + 1.

B 17. Find all positive integers n such that 3n − 1 is divisible by 2n.

B 18. Find all positive integers n such that 9n − 1 is divisible by 7n.

B 19. Determine all pairs (a, b) of integers for which a2 + b2 + 3 is divisible
by ab.

B 20. Determine all pairs (x, y) of positive integers with y|x2+1 and x|y3+1.

B 21. Determine all pairs (a, b) of positive integers such that ab2 + b + 7
divides a2b+ a+ b.

B 22. Let a and b be positive integers. When a2 + b2 is divided by a + b,
the quotient is q and the remainder is r. Find all pairs (a, b) such that
q2 + r = 1977.

B 23. Find the largest positive integer n such that n is divisible by all the
positive integers less than n1/3.

B 24. Find all n ∈ N such that 3n − n is divisible by 17.

B 25. Suppose that a and b are natural numbers such that

p =
4
b

√
2a− b
2a+ b

is a prime number. What is the maximum possible value of p?
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B 26. Find all positive integers n that have exactly 16 positive integral
divisors d1, d2 · · · , d16 such that 1 = d1 < d2 < · · · < d16 = n, d6 = 18, and
d9 − d8 = 17.

B 27. Suppose that n is a positive integer and let

d1 < d2 < d3 < d4

be the four smallest positive integer divisors of n. Find all integers n such
that

n = d1
2 + d2

2 + d3
2 + d4

2.

B 28. Let 1 = d1 < d2 < · · · < dk = n be all different divisors of positive
integer n written in ascending order. Determine all n such that

d7
2 + d10

2 =
(
n

d22

)2

.

B 29. Let n ≥ 2 be a positive integer, with divisors

1 = d1 < d2 < · · · < dk = n .

Prove that
d1d2 + d2d3 + · · ·+ dk−1dk

is always less than n2, and determine when it is a divisor of n2.

B 30. Find all positive integers n such that (a) n has exactly 6 positive
divisors 1 < d1 < d2 < d3 < d4 < n, and (b) 1 + n = 5(d1 + d2 + d3 + d4).

B 31. Find all composite numbers n, having the property : each divisor d
of n (d 6= 1, n) satisfies inequalities n− 20 ≤ d ≤ n− 12.

B 32. Determine all three-digit numbers N having the property that N is
divisible by 11, and N

11 is equal to the sum of the squares of the digits of N.

B 33. When 44444444 is written in decimal notation, the sum of its digits
is A. Let B be the sum of the digits of A. Find the sum of the digits of B.
(A and B are written in decimal notation.)

B 34. A wobbly number is a positive integer whose digits in base 10 are
alternatively non-zero and zero the units digit being non-zero. Determine
all positive integers which do not divide any wobbly number.

B 35. Find the smallest positive integer n such that
(i) n has exactly 144 distinct positive divisors, and
(ii) there are ten consecutive integers among the positive di-
visors of n.

B 36. Determine the least possible value of the natural number n such that
n! ends in exactly 1987 zeros.

B 37. Find four positive integers, each not exceeding 70000 and each having
more than 100 divisors.
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B 38. For each integer n > 1, let p(n) denote the largest prime factor of n.
Determine all triples (x, y, z) of distinct positive integers satisfying

(i) x, y, z are in arithmetic progression, and
(ii) p(xyz) ≤ 3.

B 39. Find all positive integers a and b such that

a2 + b

b2 − a and
b2 + a

a2 − b
are both integers.

B 40. For each positive integer n, write the sum
∑n

m=1 1/m in the form
pn/qn, where pn and qn are relatively prime positive integers. Determine all
n such that 5 does not divide qn.

B 41. Find all natural numbers n such that the number n(n+1)(n+2)(n+3)
has exactly three prime divisors.

B 42. Prove that there exist infinitely many pairs (a, b) of relatively prime
positive integers such that

a2 − 5
b

and
b2 − 5
a

are both positive integers.

B 43. Determine all triples (l,m, n) of distinct positive integers satisfying

gcd(l,m)2 = l +m, gcd(m,n)2 = m+ n, and gcd(n, l)2 = n+ l.

B 44. What is the greatest common divisor of the set of numbers

{16n + 10n− 1 | n = 1, 2, · · · }?
B 45. (I. Selishev) Does there exist a 4-digit integer (in decimal form) such
that no replacement of three its digits by another three gives a multiple of
1992 ?

B 46. What is the smallest positive integer that consists of the ten digits 0
through 9, each used just once, and is divisible by each of the digits 2 through
9 ?

B 47. Find the smallest positive integer n which makes

21989 | mn − 1

for all odd positive integer m greater than 1.

B 48. Determine the highest power of 1980 which divides
(1980n)!
(n!)1980

.
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5. Arithmetic in Zn

Mathematics is the queen of the sciences and number theory is the queen
of Mathematics. Johann Carl Friedrich Gauss

5.1. Primitive Roots.

C 1. Let n be a positive integer. Show that there are infinitely many primes
p such that the smallest positive primitive root of p is greater than n.

C 2. Let p be a prime with p > 4
(

p−1
φ(p−1)

)2
22k, where k denotes the number

of distinct prime divisors of p − 1, and let M be an integer. Prove that
the set of integers M + 1, M + 2, · · · , M + 2

[
p−1

φ(p−1)2k
√
p
]
− 1 contains a

primitive root to modulus p.

C 3. Show that for each odd prime p, there is an integer g such that 1 <
g < p and g is a primitive root modulo pn for every positive integer n.

C 4. Let g be a Fibonacci primitive root (mod p). i.e. g is a primitive root
(mod p) satisfying g2 ≡ g + 1(mod p). Prove that

(a) Prove that g − 1 is also a primitive root (mod p).
(b) If p = 4k+3, then (g−1)2k+3 ≡ g−2(mod p) and deduce
that g − 2 is also a primitive root (mod p).

C 5. Let p be an odd prime. If g1, · · · , gφ(p−1) are the primitive roots mod
p in the range 1 < g ≤ p− 1, prove that

φ(p−1)∑

i=1

gi ≡ µ(p− 1)(mod p).

C 6. Suppose that m does not have a primitive root. Show that

a
φ(m)

2 ≡ −1 (mod m)

for every a relatively prime m.

C 7. Suppose that p > 3 is prime. Prove that the products of the primitive
roots of p between 1 and p− 1 is congruent to 1 modulo p.

C 8. Let p be a prime. Let g be a primitive root of modulo p. Prove that
there is no k such that gk+2 ≡ gk+1 + 1 ≡ gk + 2 (mod p).
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5.2. Quadratic Residues.

C 9. Find all positive integers n that are quadratic residues modulo all
primes greater than n.

C 10. The positive integers a and b are such that the numbers 15a + 16b
and 16a−15b are both squares of positive integers. What is the least possible
value that can be taken on by the smaller of these two squares?

C 11. Let p be an odd prime number. Show that the smallest positive qua-
dratic nonresidue of p is smaller than

√
p+ 1.

C 12. Let M be an integer, and let p be a prime with p > 25. Show that the
sequence M , M + 1, · · · , M + 3[

√
p]− 1 contains a quadratic non-residue to

modulus p.

C 13. Let p be an odd prime and let Zp denote (the field of) integers modulo
p. How many elements are in the set

{x2 : x ∈ Zp} ∩ {y2 + 1 : y ∈ Zp}?
C 14. Let a, b, c be integers and let p be an odd prime with

p 6 |a and p 6 |b2 − 4ac.

Show that
p∑

k=1

(
ak2 + bk + c

p

)
= −

(
a

p

)
.

5.3. Congruences.

C 15. If p is an odd prime, prove that(
k

p

)
≡
[
k

p

]
(mod p).

C 16. Suppose that p is an odd prime. Prove that
p∑

j=0

(
p

j

)(
p+ j

j

)
≡ 2p + 1 (mod p2).

C 17. (Morley) Show that

(−1)
p−1

2

(
p− 1
p−1

2

)
≡ 4p−1(mod p3)

for all prime numbers p with p ≥ 5.

C 18. Let n be a positive integer. Prove that n is prime if and only if(
n− 1
k

)
≡ (−1)k(mod n)

for all k ∈ {0, 1, · · · , n− 1}.
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C 19. Prove that for n ≥ 2,

n terms︷︸︸︷
22···

2

≡

(n− 1) terms︷︸︸︷
22···

2

(mod n).

C 20. Show that, for any fixed integer n ≥ 1, the sequence

2, 22, 222
, 2222

, · · · (mod n)

is eventually constant.

C 21. Somebody incorrectly remembered Fermat’s little theorem as saying
that the congruence an+1 ≡ a (mod n) holds for all a if n is prime. Describe
the set of integers n for which this property is in fact true.

C 22. Characterize the set of positive integers n such that, for all integers
a, the sequence a, a2, a3, · · · is periodic modulo n.

C 23. Show that there exists a composite number n such that an ≡ a (mod n)
for all a ∈ Z.

C 24. Let p be a prime number of the form 4k + 1. Suppose that 2p+ 1 is
prime. Show that there is no k ∈ N with k < 2p and 2k ≡ 1 (mod 2p+ 1)

C 25. During a break, n children at school sit in a circle around their teacher
to play a game. The teacher walks clockwise close to the children and hands
out candies to some of them according to the following rule. He selects one
child and gives him a candy, then he skips the next child and gives a candy
to the next one, then he skips 2 and gives a candy to the next one, then he
skips 3, and so on. Determine the values of n for which eventually, perhaps
after many rounds, all children will have at least one candy each.

C 26. Suppose that m > 2, and let P be the product of the positive integers
less than m that are relatively prime to m. Show that P ≡ −1(mod m) if
m = 4, pn, or 2pn, where p is an odd prime, and P ≡ 1(mod m) otherwise.

C 27. Let Γ consist of all polynomials in x with integer coefficients. For f
and g in Γ and m a positive integer, let f ≡ g (mod m) mean that every
coefficient of f − g is an integral multiple of m. Let n and p be positive
integers with p prime. Given that f, g, h, r and s are in Γ with rf + sg ≡ 1
(mod p) and fg ≡ h (mod p), prove that there exist F and G in Γ with
F ≡ f (mod p), G ≡ g (mod p), and FG ≡ h (mod pn).

C 28. Determine the number of integers n ≥ 2 for which the congruence

x25 ≡ x (mod n)

is true for all integers x.

C 29. Let n1, · · · , nk and a be positive integers which satify the following
conditions :
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i) for any i 6= j, (ni, nj) = 1,
ii) for any i, ani ≡ 1(mod ni), and
iii) for any i, ni 6 |a− 1.

Show that there exist at least 2k+1 − 2 integers x > 1 with ax ≡ 1(mod x).

C 30. Determine all positive integers n ≥ 2 that satisfy the following con-
dition ; For all integers a, b relatively prime to n,

a ≡ b (mod n)⇐⇒ ab ≡ 1 (mod n).

C 31. Determine all positive integers n such that xy+1 ≡ 0 (mod n) implies
that x+ y ≡ 0 (mod n).

C 32. Let p be a prime number. Determine the maximal degree of a poly-
nomial T (x) whose coefficients belong to {0, 1, · · · , p − 1}, whose degree is
less than p, and which satisfies

T (n) = T (m) (mod p) =⇒ n = m (mod p)

for all integers n,m.

C 33. Let a1, · · · , ak and m1, · · · , mk be integers 2 ≤ m1 and 2mi ≤ mi+1

for 1 ≤ i ≤ k − 1. Show that there are infinitely many integers x which do
not satisfy any of congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), · · · , x ≡ ak (mod mk).

C 34. Show that 1994 divides 10900 − 21000.

C 35. Determine the last three digits of

200320022001
.

C 36. Prove that 198019811982
+ 198219811980

is divisible by 19811981.

C 37. Every odd prime is of the form p = 4n+ 1.
(a) Show that n is a quadratic residue (mod p).
(b) Calculate the value nn (mod p).
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6. Primes and Composite Numbers

Wherever there is number, there is beauty. Proclus Diadochus

6.1. Composite Numbers.

D 1. Prove that the number 5123 + 6753 + 7203 is composite.

D 2. Let a, b, c, d be integers with a > b > c > d > 0. Suppose that
ac+ bd = (b+ d+ a− c)(b+ d− a+ c). Prove that ab+ cd is not prime.

D 3. Find the sum of all distinct positive divisors of the number 104060401.

D 4. Prove that 1280000401 is composite.

D 5. Prove that 5125−1
525−1

is a composite number.

D 6. Find the factor of 233− 219− 217− 1 that lies between 1000 and 5000.

D 7. Show that there exists a positive integer k such that k · 2n + 1 is
composite for all n ∈ N0.

D 8. Show that for all integer k > 1, there are infinitely many natural
numbers n such that k · 22n + 1 is composite.

D 9. Four integers are marked on a circle. On each step we simultaneously
replace each number by the difference between this number and next number
on the circle in a given direction (that is, the numbers a, b, c, d are replaced
by a − b, b − c, c − d, d − a). Is it possible after 1996 such steps to have
numbers a, b, c, and d such that the numbers |bc−ad|, |ac−bd|, and |ab−cd|
are primes ?

D 10. Represent the number 989 ·1001 ·1007+320 as the product of primes.

D 11. In 1772 Euler discovered the curious fact that n2 + n + 41 is prime
when n is any of 0, 1, 2, · · · , 39. Show that there exist 40 consecutive integer
values of n for which this polynomial is not prime.

6.2. Prime Numbers.

D 12. Show that there are infinitely many primes.

D 13. Find all natural numbers n for which every natural number whose
decimal representation has n− 1 digits 1 and one digit 7 is prime.

D 14. Prove that there do not exist polynomials P and Q such that

π(x) =
P (x)
Q(x)

for all x ∈ N.

D 15. Show that there exist two consecutive squares such that there are at
least 1000 primes between them.
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D 16. Prove that for any prime p in the interval
(
n, 4n

3

]
, p divides

n∑

j=0

(
n

j

)4

D 17. Let a, b, and n be positive integers with gcd(a, b) = 1. Without using
Dirichlet’s theorem5, show that there are infinitely many k ∈ N such that
gcd(ak + b, n) = 1.

D 18. Without using Dirichlet’s theorem, show that there are infinitely many
primes ending in the digit 9.

D 19. Let p be an odd prime. Without using Dirichlet’s theorem, show that
there are infinitely many primes of the form 2pk + 1.

D 20. Verify that, for each r ≥ 1, there are infinitely many primes p with
p ≡ 1 (mod 2r).

D 21. Prove that if p is a prime, then pp − 1 has a prime factor that is
congruent to 1 modulo p.

D 22. Let p be a prime number. Prove that there exists a prime number q
such that for every integer n, np − p is not divisible by q.

D 23. Let p1 = 2, p2 = 3, p3 = 5, · · · , pn be the first n prime numbers, where
n ≥ 3. Prove that

1
p1

2
+

1
p2

2
+ · · ·+ 1

pn2
+

1
p1p2 · · · pn <

1
2
.

D 24. Let pn be the nth prime : p1 = 2, p2 = 3, p3 = 5, · · · . Show that the
infinite series

∞∑

n=1

1
pn

diverges.

D 25. Prove that log n ≥ k log 2, where n is a natural number and k is the
number of distinct primes that divide n.

D 26. Find the smallest prime which is not the difference (in some order)
of a power of 2 and a power of 3.

D 27. Prove that for each positive integer n, there exist n consecutive pos-
itive integers none of which is an integral power of a prime number.

D 28. Show that nπ(2n)−π(n) < 4n for all positive integer n.

D 29. Let sn denote the sum of the first n primes. Prove that for each n
there exists an integer whose square lies between sn and sn+1.

5For any a, b ∈ N with gcd(a, b) = 1, there are infinitely many primes of the form
ak + b.
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D 30. Given an odd integer n > 3, let k and t be the smallest positive
integers such that both kn+ 1 and tn are squares. Prove that n is prime if
and only if both k and t are greater than n

4

D 31. Suppose n and r are nonnegative integers such that no number of the
form n2 + r−k(k+ 1) (k ∈ N) equals to −1 or a positive composite number.
Show that 4n2 + 4r + 1 is 1, 9 or prime.

D 32. Let n ≥ 5 be an integer. Show that n is prime if and only if ninj 6=
npnq for every partition of n into 4 integers, n = n1 +n2 +n3 +n4, and for
each permutation (i, j, p, q) of (1, 2, 3, 4).

D 33. Prove that there are no positive integers a and b such that for all
different primes p and q greater than 1000, the number ap+bq is also prime.

D 34. Let pn denote the nth prime number. For all n ≥ 6, prove that

π (
√
p1p2 · · · pn) > 2n.

D 35. There exists a block of 1000 consecutive positive integers containing
no prime numbers, namely, 1001! + 2, 1001! + 3, · · · , 1001! + 1001. Does
there exist a block of 1000 consecutive positive integers containing exactly
five prime numbers?

D 36. (S. Golomb) Prove that there are infinitely many twin primes if and
only if there are infinitely many integers that cannot be written in any of the
following forms :

6uv + u+ v, 6uv + u− v, 6uv − u+ v, 6uv − u− v,
for some positive integers u and v.

D 37. It’s known that there is always a prime between n and 2n− 7 for all
n ≥ 10. Prove that, with the exception of 1, 4, and 6, every natural number
can be written as the sum of distinct primes.

D 38. Prove that if c > 8
3 , then there exists a real numbers θ such that [θc

n
]

is prime for any positive integer n.

D 39. Let c be a nonzero real numbers. Suppose that

g(x) = c0x
r + c1x

r−1 + · · ·+ cr−1x+ cr

is a polynomial with integer coefficients. Suppose that the roots of g(x) are
b1, · · · , br. Let k be a given positive integer. Show that there is a prime p
such that

p > k, |c|, |cr|
and, moreover if t is a real between 0 and 1, and j is one of 1, · · · , r, then

|( cr bj g(tbj) )pe(1−t)b| < (p− 1)!
2r

.

Furthermore, if

f(x) =
erp−1xp−1(g(x))p

(p− 1)!
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then ∣∣∣∣∣∣

r∑

j=1

∫ 1

0
e(1−t)bjf(tbj)dt

∣∣∣∣∣∣
≤ 1

2
.

D 40. Prove that there do not exist eleven primes, all less than 20000, which
can form an arithmetic progression.

D 41. (G. H. Hardy) Let n be a positive integer. Show that n is prime if
and only if

lim
r→∞ lim

s→∞ lim
t→∞

s∑

u=0

(
1−

(
cos

(u!)rπ
n

)2

t

)
= n.
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7. Rational and Irrational Numbers

God made the integers, all else is the work of man. Leopold Kronecker

7.1. Rational Numbers.

E 1. Suppose that a rectangle with sides a and b is arbitrarily cut into squares
with sides x1, · · · , xn. Show that xi

a ∈ Q and xi
b ∈ Q for all i ∈ {1, · · · , n}.

E 2. Find all x and y which are rational multiples of π with 0 < x < y < π
2

and tanx+ tan y = 2.

E 3. Let α be a rational number with 0 < α < 1 and cos(3πα)+2cos(2πα) =
0. Prove that α = 2

3 .

E 4. Suppose that tanα = p
q , where p and q are integers and q 6= 0. Prove

the number tanβ for which tan 2β = tan 3α is rational only when p2 + q2 is
the square of an integer.

E 5. Prove that there is no positive rational number x such that

x[x] =
9
2
.

E 6. Let x, y, z non-zero real numbers such that xy, yz, zx are rational.
(a) Show that the number x2 + y2 + z2 is rational.
(b) If the number x3 + y3 + z3 is also rational, show that x,
y, z are rational.

E 7. If x is a positive rational number, show that x can be uniquely expressed
in the form

x = a1 +
a2

2!
+
a3

3!
+ · · · ,

where a1, a2, · · · are integers, 0 ≤ an ≤ n − 1, for n > 1, and the series
terminates. Show also that x can be expressed as the sum of reciprocals of
different integers, each of which is greater than 106.

E 8. Find all polynomials W with real coefficients possessing the following
property : if x+ y is a rational number, then W (x) +W (y) is rational.

E 9. Prove that every positive rational number can be represented in the
form

a3 + b3

c3 + d3

for some positive integers a, b, c, and d.

E 10. The set S is a finite subset of [0, 1] with the following property : for
all s ∈ S, there exist a, b ∈ S⋃{0, 1} with a, b 6= s such that s = a+b

2 . Prove
that all the numbers in S are rational.
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E 11. Let S = {x0, x1, · · · , xn} ⊂ [0, 1] be a finite set of real numbers with
x0 = 0 and x1 = 1, such that every distance between pairs of elements occurs
at least twice, except for the distance 1. Prove that all of the xi are rational.

E 12. Does there exist a circle and an infinite set of points on it such that
the distance between any two points of the set is rational ?

E 13. Prove that numbers of the form
a1

1!
+
a2

2!
+
a3

3!
+ · · · ,

where 0 ≤ ai ≤ i−1 (i = 2, 3, 4, · · · ) are rational if and only if starting from
some i on all the ai’s are either equal to 0 ( in which case the sum is finite)
or all are equal to i− 1.

E 14. Let k and m be positive integers. Show that

S(m, k) =
∞∑

n=1

1
n(mn+ k)

is rational if and only if m divides k.

E 15. Find all rational numbers k such that 0 ≤ k ≤ 1
2 and cos kπ is

rational.

E 16. Prove that for any distinct rational numbers of a, b, c, the number
1

(b− c)2
+

1
(c− a)2

+
1

(a− b)2

is the square of some rational number.

7.2. Irrational Numbers.

E 17. Find the smallest positive integer n such that

0 < n
1
4 − [n

1
4 ] < 0.00001.

E 18. Prove that for any positive integers a and b
∣∣∣a
√

2− b
∣∣∣ > 1

2(a+ b)
.

E 19. Prove that there exist positive integers m and n such that∣∣∣∣
m2

n3
−
√

2001
∣∣∣∣ <

1
108

.

E 20. Let a, b, c be integers, not all zero and each of absolute value less than
one million. Prove that ∣∣∣a+ b

√
2 + c

√
3
∣∣∣ > 1

1021
.

E 21. Let a, b, c be integers, not all equal to 0. Show that
1

4a2 + 3b2 + 2c2
≤ |3
√

4a+ 3
√

2b+ c|.
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E 22. (Hurwitz) Prove that for any irrational number ξ, there are infinitely
many rational numbers m

n ((m,n) ∈ Z×N) such that
∣∣∣ξ − n

m

∣∣∣ < 1√
5m2

.

E 23. Show that π is irrational.

E 24. Show that e =
∑∞

n=0
1
n! is irrational.

E 25. Show that cos π7 is irrational.

E 26. Show that 1
π arccos

(
1√

2003

)
is irrational.

E 27. Show that cos 1◦ is irrational.

E 28. An integer-sided triangle has angles pθ and qθ, where p and q are
relatively prime integers. Prove that cos θ is irrational.

E 29. It is possible to show that csc 3π
29 − csc 10π

29 = 1.999989433.... Prove
that there are no integers j, k, n with odd n satisfying csc jπ

n − csc kπ
n = 2.

E 30. For which angles θ, a rational number of degrees, is it the case that
tan2θ + tan22θ is irrational ?

E 31. (K. Mahler, 1953) Prove that for any p, q ∈ N with q > 1 the following
inequality holds. 6 ∣∣∣∣π −

p

q

∣∣∣∣ ≥ q−42

E 32. For each integer n ≥ 1, prove that there is a polynomial Pn(x) with
rational coefficients such that

x4n(1− x)4n = (1 + x)2Pn(x) + (−1)n4n.

Define the rational number an by

an =
(−1)n−1

4n−1

∫ 1

0
Pn(x) dx, n = 1, 2, · · · .

Prove that an satisfies the inequality

|π − an| < 1
45n−1

, n = 1, 2, · · · .

E 33. (K. Alladi, M. Robinson, 1979) Suppose that p, q ∈ N satisfy the
inequality e(

√
p+ q −√q)2 < 1.7 Show that ln

(
1 + p

q

)
is irrational.

6This is a deep theorem in transcendental number theory. Note that it follows from this
result that π is irrational ! In fact, it’s known that for sufficiently large q, the exponent
42 can be replaced by 30. Here is a similar result due to A. Baker : For any rationals p

q
,

one has |ln 2− p
q
| ≥ 10−100000q−12.5. [AI, pp. 106]

7Here, e =
P
n≥0

1
n!

.
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E 34. Show that the cube roots of three distinct primes cannot be terms in
an arithmetic progression.

E 35. Let n be an integer greater than or equal to 3. Prove that there is a
set of n points in the plane such that the distance between any two points is
irrational and each set of three points determines a non-degenerate triangle
with a rational area.

E 36. You are given three lists A, B, and C. List A contains the numbers of
the form 10k in base 10, with k any integer greater than or equal to 1. Lists
B and C contain the same numbers translated into base 2 and 5 respectively:

A B C
10 1010 20
100 1100100 400
1000 1111101000 13000
...

...
...

Prove that for every integer n > 1, there is exactly one number in exactly
one of the lists B or C that has exactly n digits.

E 37. (Beatty) Prove that if α and β are positive irrational numbers satis-
fying 1

α + 1
β = 1, then the sequences

[α], [2α], [3α], · · ·
and

[β], [2β], [3β], · · ·
together include every positive integer exactly once.

E 38. For a positive real number α, define

S(α) = {[nα] | n = 1, 2, 3, · · · }.
Prove that N cannot be expressed as the disjoint union of three sets S(α),
S(β), and S(γ).

E 39. Let f(x) =
∏∞
n=1

(
1 + x

2n

)
. Show that at the point x = 1, f(x) and

all its derivatives are irrational.

E 40. Let {an}n≥1 be a sequence of positive numbers such that

an+1
2 = an + 1, n ∈ N.

Show that the sequence contains an irrational number.

E 41. Show that tan
(
π
m

)
is irrational for all positive integers m ≥ 5.

E 42. Prove that if g ≥ 2 is an integer, then two series
∞∑

n=0

1
gn2 and

∞∑

n=0

1
gn!

both converge to irrational numbers.
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E 43. Let 1 < a1 < a2 < · · · be a sequence of positive integers. Show that
2a1

a1!
+

2a2

a2!
+

2a3

a3!
+ · · ·

is irrational.

E 44. (N. Agahanov) Do there exist real numbers a and b such that
(1) a+ b is rational and an + bn is irrational for all n ∈ N with n ≥ 2 ?
(2) a+ b is irrational and an + bn is rational for all n ∈ N with n ≥ 2 ?

E 45. Let p(x) = x3 + a1x
2 + a2x + a3 have rational coefficients and have

roots r1, r2, and r3. If r1 − r2 is rational, must r1, r2, and r3 be rational ?

E 46. Let α = 0.d1d2d3 · · · be a decimal representation of a real number
between 0 and 1. Let r be a real number with |r| < 1.

(a) If α and r are rational, must
∑∞

i=1 dir
i be rational ?

(b) If
∑∞

i=1 dir
i and r are rational, α must be rational ?
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8. Diophantine Equations I

In the margin of his copy of Diophantus’ Arithmetica, Pierre de Fermat
wrote : To divide a cube into two other cubes, a fourth power or in general
any power whatever into two powers of the same denomination above the
second is impossible, and I have assuredly found an admirable proof of this,
but the margin is too narrow to contain it.

F 1. One of Euler’s conjecture8 was disproved in the 1980s by three American
Mathematicians9 when they showed that there is a positive integer n such that

n5 = 1335 + 1105 + 845 + 275.

Find the value of n.

F 2. The number 21982145917308330487013369 is the thirteenth power of a
positive integer. Which positive integer?

F 3. Does there exist a solution to the equation

x2 + y2 + z2 + u2 + v2 = xyzuv − 65

in integers x, y, z, u, v greater than 1998?

F 4. Find all pairs (x, y) of positive rational numbers such that x2+3y2 = 1.

F 5. Find all pairs (x, y) of rational numbers such that y2 = x3 − 3x+ 2.

F 6. Show that there are infinitely many pairs (x, y) of rational numbers
such that x3 + y3 = 9.

F 7. Determine all pairs (x, y) of positive integers satisfying the equation

(x+ y)2 − 2(xy)2 = 1.

F 8. Show that the equation

x3 + y3 + z3 + t3 = 1999

has infinitely many integral solutions. 10

F 9. Determine all integers a for which the equation

x2 + axy + y2 = 1

has infinitely many distinct integer solutions x, y.

8In 1769, Euler, by generalizing Fermat’s Last Theorem, conjectured that “it is im-
possible to exhibit three fourth powers whose sum is a fourth power”, “four fifth powers
whose sum is a fifth power, and similarly for higher powers” [Rs]

9L. J. Lander, T. R. Parkin, and J. L. Selfridge
10More generally, the following result is known : let n be an integer, then the equation

x3 + y3 + z3 + w3 = n has infinitely many integral solutions (x, y, z, w) if there can be
found one solution (x, y, z, w) = (a, b, c, d) with (a + b)(c + d) negative and with either
a 6= b and c 6= d. [Eb2, pp.90]
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F 10. Prove that there are unique positive integers a and n such that

an+1 − (a+ 1)n = 2001.

F 11. Find all (x, y, n) ∈ N3 such that gcd(x, n+ 1) = 1and xn + 1 = yn+1.

F 12. Find all (x, y, z) ∈ N3 such that x4 − y4 = z2.

F 13. Find all pairs (x, y) of positive integers that satisfy the equation 11

y2 = x3 + 16.

F 14. Show that the equation x2 + y5 = z3 has infinitely many solutions in
integers x, y, z for which xyz 6= 0.

F 15. Prove that there are no integers x and y satisfying x2 = y5 − 4.

F 16. Find all pairs (a, b) of different positive integers that satisfy the equa-
tion W (a) = W (b), where W (x) = x4 − 3x3 + 5x2 − 9x.

F 17. Find all positive integers n for which the equation

a+ b+ c+ d = n
√
abcd

has a solution in positive integers.

F 18. Determine all positive integer solutions (x, y, z, t) of the equation

(x+ y)(y + z)(z + x) = xyzt

for which gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

F 19. Find all (x, y, z, n) ∈ N4 such that x3 + y3 + z3 = nx2y2z2.

F 20. Determine all positive integers n for which the equation

xn + (2 + x)n + (2− x)n = 0

has an integer as a solution.

F 21. Prove that the equation

6(6a2 + 3b2 + c2) = 5n2

has no solutions in integers except a = b = c = n = 0.

F 22. Find all integers a, b, c, x, y, z such that

a+ b+ c = xyz, x+ y + z = abc, a ≥ b ≥ c ≥ 1, x ≥ y ≥ z ≥ 1.

F 23. Find all (x, y, z) ∈ Z3 such that x3 + y3 + z3 = x+ y + z = 3.

11It’s known that there are (infinitely) many integers k so that the equation y2 = x3 +k
has no integral solutions. For example, if k has the form k = (4n − 1)3 − 4m2, where m
and n are integers such that no prime p ≡ −1 (mod 4) divides m, then the equation
y2 = x3 + k has no integral solutions. For a proof, see [Tma, pp. 191].
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F 24. Prove that if n is a positive integer such that the equation

x3 − 3xy2 + y3 = n.

has a solution in integers (x, y), then it has at least three such solutions.
Show that the equation has no solutions in integers when n = 2891.

F 25. What is the smallest positive integer t such that there exist integers
x1, x2, · · · , xt with

x1
3 + x2

3 + · · ·+ xt
3 = 20022002 ?

F 26. Solve in integers the following equation

n2002 = m(m+ n)(m+ 2n) · · · (m+ 2001n).

F 27. Prove that there exist infinitely many positive integers n such that
p = nr, where p and r are respectively the semi-perimeter and the inradius
of a triangle with integer side lengths.

F 28. Let a, b, c be positive integers such that a and b are relatively prime
and c is relatively prime either to a and b. Prove that there exist infinitely
many triples (x, y, z) of distinct positive integers such that

xa + yb = zc.

F 29. Find all pairs of integers (x, y) satisfying the equality

y(x2 + 36) + x(y2 − 36) + y2(y − 12) = 0

F 30. Let a, b, c be given integers a > 0, ac− b2 = P = P1P2 · · ·Pn, where
P1, · · · , Pn are (distinct) prime numbers. Let M(n) denote the number of
pairs of integers (x, y) for which ax2 + bxy + cy2 = n. Prove that M(n) is
finite and M(n) = M(pk · n) for every integers k ≥ 0.

F 31. Determine integer solutions of the system

2uv − xy = 16,

xv − yu = 12.

F 32. Let n be a natural number. Solve in whole numbers the equation

xn + yn = (x− y)n+1.

F 33. Does there exist an integer such that its cube is equal to 3n2 + 3n+ 7,
where n is integer?

F 34. Are there integers m and n such that 5m2 − 6mn+ 7n2 = 1985?

F 35. Find all cubic polynomials x3 + ax2 + bx + c admitting the rational
numbers a, b and c as roots.

F 36. Prove that the equation a2 + b2 = c2 + 3 has infinitely many integer
solutions (a, b, c).

F 37. Prove that for each positive integer n there exist odd positive integers
xn and yn such that xn2 + 7yn2 = 2n.
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F 38. Suppose that p is an odd prime such that 2p+ 1 is also prime. Show
that the equation xp + 2yp + 5zp = 0 has no solutions in integers.

F 39. Let A,B,C,D,E be integers B 6= 0 and F = AD2−BCD+B2E 6= 0.
Prove that the number N of pairs of integers (x, y) such that

Ax2 +Bxy + Cx+Dy + E = 0,

satisfies N ≤ 2d(|F |), where d(n) denotes the number of positive divisors of
positive integer n.

F 40. Determine all pairs of rational numbers (x, y) such that

x3 + y3 = x2 + y2.

F 41. Suppose that A = 1, 2, or 3. Let a and b be relatively prime integers
such that a2 + Ab2 = s3 for some integer s. Then, there are integers u and
v such that s = u2 +Av2, a = u3 − 3Avu2, and b = 3u2v −Av3.

F 42. Find all integers a for which x3 − x+ a has three integer roots.

F 43. Find all solutions in integers of x3 + 2y3 = 4z3.

F 44. For a n ∈ N, show that the number of integral solutions (x, y) of

x2 + xy + y2 = n

is finite and a multiple of 6.

F 45. (Fermat) Show that there cannot be four squares in arithmetical pro-
gression.

F 46. (Gauss) Let a, b, c, d, e, f be integers such that b2 − 4ac > 0 is not a
perfect square and 4acf + bde− ae2 − cd2 − fb2 6= 0. Let

f(x, y) = ax2 + bxy + cy2 + dx+ ey + f

Suppose that f(x, y) = 0 has an integral solution. Show that f(x, y) = 0 has
infinitely many integral solutions.

F 47. Show that the equation x4 + y4 + 4z4 = 1 has infinitely many rational
solutions.

F 48. Solve the equation x2 + 7 = 2n in integers.

F 49. Show that the only solutions of the equation x3 − 3xy2 − y3 = 1 are
given by (x, y) = (1, 0), (0,−1), (−1, 1), (1,−3), (−3, 2), (2, 1).

F 50. Show that the equation y2 = x3 +2a3−3b2 has no solution in integers
if ab 6= 0, a 6≡ 1 (mod 3), 3 6 |b, a is odd if b is even, and p = t2 + 27u2 is
soluble in integers t and u of p|a and p ≡ 1 (mod 3).

F 51. Prove that the product of five consecutive integers is never a perfect
square.

F 52. Do there exist two right-angled triangles with integer length sides that
have the lengths of exactly two sides in common?
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F 53. Suppose that a, b, and p are integers such that b ≡ 1 (mod 4), p ≡
3 (mod 4), p is prime, and if q is any prime divisor of a such that q ≡
3 (mod 4), then qp|a2 and p 6 |q − 1 (if q = p, then also q|b). Show that the
equation

x2 + 4a2 = yp − bp
has no solutions in integers.

F 54. Show that the number of integral-sided right triangles whose ratio of
area to semi-perimeter is pm, where p is a prime and m is an integer, is
m+ 1 if p = 2 and 2m+ 1 if p 6= 2.
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9. Diophantine Equations II

The positive integers stand there, a continual and inevitable challenge to
the curiosity of every healthy mind. Godfrey Harold Hardy

G 1. Given that

34! = 95232799cd96041408476186096435ab000000(10),

determine the digits a, b, c, and d.

G 2. Prove that the equation (x1−x2)(x2−x3)(x3−x4)(x4−x5)(x5−x6)(x6−
x7)(x7−x1) = (x1−x3)(x2−x4)(x3−x5)(x4−x6)(x5−x7)(x6−x1)(x7−x2)
has a solution in natural numbers where all xi are different.

G 3. (P. Erdös) Show that the equation
(
n
k

)
= ml has no integral solution

with l ≥ 2 and 4 ≤ k ≤ n− 4.

G 4. Solve in positive integers the equation 10a + 2b − 3c = 1997.

G 5. Solve the equation 28x = 19y + 87z, where x, y, z are integers.

G 6. Show that the equation x7 + y7 = 1998z has no solution in positive
integers.

G 7. Solve the equation 2x − 5 = 11y in positive integers.

G 8. Solve the equation 7x − 3y = 4 in positive integers.

G 9. Show that |12m − 5n| ≥ 7 for all m,n ∈ N.

G 10. Show that there is no positive integer k for which the equation

(n− 1)! + 1 = nk

is true when n is greater than 5.

G 11. Determine all pairs (x, y) of integers such that

(19a+ b)18 + (a+ b)18 + (19b+ a)18

is a positive square.

G 12. Let b be a positive integer. Determine all 200-tuple integers of non-
negative integers (a1, a2, · · · , a2002) satisfying

n∑

j=1

aj
aj = 2002bb.

G 13. Is there a positive integers m such that the equation
1
a

+
1
b

+
1
c

+
1
abc

=
m

a+ b+ c

has infinitely many solutions in positive integers a, b, c ?
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G 14. Consider the system

x+ y = z + u,

2xy = zu.

Find the greatest value of the real constant m such that m ≤ x
y for any

positive integer solution (x, y, z, u) of the system, with x ≥ y.

G 15. Determine all positive rational numbers r 6= 1 such that r
1
r−1 is

rational.

G 16. Show that the equation {x3} + {y3} = {z3} has infinitely many ra-
tional non-integer solutions.

G 17. Let n be a positive integer. Prove that the equation

x+ y +
1
x

+
1
y

= 3n

does not have solutions in positive rational numbers.

G 18. Find all pairs (x, y) of positive rational numbers such that xy = yx

G 19. Find all pairs (a, b) of positive integers that satisfy the equation

ab
2

= ba.

G 20. Find all pairs (a, b) of positive integers that satisfy the equation

aa
a

= bb.

G 21. Let a, b, and x be positive integers such that xa+b = abb. Prove that
a = x and b = xx.

G 22. Find all pairs (m,n) of integers that satisfy the equation

(m− n)2 =
4mn

m+ n− 1
.

G 23. Find all pairwise relatively prime positive integers l,m, n such that

(l +m+ n)
(

1
l

+
1
m

+
1
n

)

is an integer.

G 24. Let x, y, and z be integers with z > 1. Show that

(x+ 1)2 + (x+ 2)2 + · · ·+ (x+ 99)2 6= yz.

G 25. Find all values of the positive integers m and n for which

1! + 2! + 3! + · · ·+ n! = m2

G 26. Prove that if a, b, c, d are integers such that d = (a+2
1
3 b+2

2
3 c)2 then

d is a perfect square (i. e. is the square of an integer).

G 27. Find a pair of relatively prime four digit natural numbers A and B
such that for all natural numbers m and n, |Am −Bn| ≥ 400.
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G 28. Find all triples (a, b, c) of positive integers to the equation

a!b! = a! + b! + c!.

G 29. Find all pairs (a, b) of positive integers such that

(3√a+ 3
√
b− 1)2 = 49 + 203

√
6.

G 30. For what positive numbers a is

3
√

2 +
√
a+ 3

√
2−√a

an integer ?

G 31. Find all integer solutions to 2(x5 + y5 + 1) = 5xy(x2 + y2 + 1).

G 32. A triangle with integer sides is called Heronian if its are is an in-
teger. Does there exist a Heronian triangle whose sides are the arithmetic,
geometric and harmonic means of two positive integers ?

G 33. What is the smallest perfect square that ends in 9009?

G 34. (Leo Moser) Show that the Diophantine equation
1
x1

+
1
x2

+ · · ·+ 1
xn

+
1

x1x2 · · ·xn = 1

has at least one solution for every positive integers n.

G 35. Prove that the number 99999 + 111111
√

3 cannot be written in the
form (A+B

√
3)2, where A and B are integers.

G 36. Find all triples of positive integers (x, y, z) such that

(x+ y)(1 + xy) = 2z.

G 37. If R and S are two rectangles with integer sides such that the perime-
ter of R equals the area of S and the perimeter of S equals the area of R,
call R and S are amicable pair of rectangles. Find all amicable pairs of
rectangles.
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10. Functions in Number Theory

Gauss once said ”Mathematics is the queen of the sciences and number
theory is the queen of mathematics.” If this be true we may add that the
Disauistiones is the Magna Charta of number theory. M. Cantor

10.1. Floor Function and Fractional Part Function.

H 1. Let α be the positive root of the equation x2 = 1991x+ 1. For natural
numbers m and n define

m ∗ n = mn+ [αm][αn],

where [x] is the greatest integer not exceeding x. Prove that for all natural
numbers p, q, and r,

(p ∗ q) ∗ r = p ∗ (q ∗ r).
H 2. Prove that for any positive integer n,

[n
3

]
+
[
n+ 2

6

]
+
[
n+ 4

6

]
=
[n

2

]
+
[
n+ 3

6

]

H 3. Prove that for any positive integer n,[
n+ 1

2

]
+
[
n+ 2

4

]
+
[
n+ 4

8

]
+
[
n+ 8

16

]
+ · · · = n

H 4. Show that for all positive integers n,

[
√
n+
√
n+ 1] = [

√
4n+ 1] = [

√
4n+ 2] = [

√
4n+ 3].

H 5. Find all real numbers α for which the equality

[
√
n+
√
n+ α] = [

√
4n+ 1]

holds for all positive integers n.

H 6. Prove that for all positive integers n,

[
√
n+
√
n+ 1 +

√
n+ 2] = [

√
9n+ 8].

H 7. Prove that for all positive integers n,

[n
1
3 + (n+ 1)

1
3 ] = [(8n+ 3)

1
3 ]

H 8. Prove that [n
1
3 + (n+ 1)

1
3 + (n+ 2)

1
3 ] = [(27n+ 26)

1
3 ] for all positive

integer n.

H 9. Show that for all positive integers m and n,

gcd(m,n) = m+ n−mn+ 2
m−1∑

k=0

[
kn

m

]
.
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H 10. Show that for all primes p,
p−1∑

k=1

[
k3

p

]
=

(p+ 1)(p− 1)(p− 2)
4

.

H 11. Let p be a prime number of the form 4k + 1. Show that
p−1∑

i=1

([
2i2

p

]
− 2

[
i2

p

])
=
p− 1

2
.

H 12. Let p = 4k + 1 be a prime. Show that
k∑

i=1

[√
ip
]

=
p2 − 1

12
.

H 13. Suppose that n ≥ 2. Prove that

n∑

k=2

[
n2

k

]
=

n2∑

k=n+1

[
n2

k

]

H 14. Let a, b, n be positive integers with gcd(a, b) = 1. Prove that
∑

k

{
ak + b

n

}
=
n− 1

2
,

where k runs through a complete system of residues modulo m.

H 15. Find the total number of different integer values the function

f(x) = [x] + [2x] +
[

5x
3

]
+ [3x] + [4x]

takes for real numbers x with 0 ≤ x ≤ 100.

H 16. Prove or disprove that there exists a positive real number u such that
[un]− n is an even integer for all positive integer n.

H 17. Determine all real numbers a such that

4[an] = n+ [a[an]] for all n ∈ N

H 18. Do there exist irrational numbers a, b > 1 and [am] differs [bn] for
any two positive integers m and n?

H 19. Let a, b, c, and d be real numbers. Suppose that [na]+[nb] = [nc]+[nd]
for all positive integers n. Show that at least one of a+ b, a− c, a− d is an
integer.

H 20. (S. Reznichenko) Find all integer solutions of the equation
[ x

1!

]
+
[ x

2!

]
+ · · ·+

[ x
10!

]
= 1001.
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10.2. Euler phi Function.

H 21. Let n be an integer with n ≥ 2. Show that φ(2n− 1) is divisible by n.

H 22. (Gauss) Show that for all n ∈ N,

n =
∑

d|n
φ(d).

H 23. If p is a prime and n an integer such that 1 < n ≤ p, then

φ

(
p−1∑

k=0

nk

)
≡ 0 (mod p).

H 24. Let m, n be positive integers. Prove that, for some positive integer
a, each of φ(a), φ(a+ 1), · · · , φ(a+ n) is a multiple of m.

H 25. If n is composite, prove that φ(n) ≤ n−√n.

H 26. Show that if m and n are relatively prime positive integers, then
φ(5m − 1) 6= 5n − 1.

H 27. Show that if the equation φ(x) = n has one solution it always has a
second solution, n being given and x being the unknown.

H 28. Prove that for any δ greater than 1 and any positive number ε, there
is an n such that

∣∣∣φ(n)
n − δ

∣∣∣ < ε.

H 29. (Schinzel, Sierṕınski) Show that the set of all numbers φ(n+1)
φ(n) is dense

in the set of all positive reals.

H 30. (a) Show that if n > 49, then there are a > 1 and b > 1 such that
a+ b = n and φ(a)

a + φ(b)
b < 1. (b) Show that if n > 4, then there are a > 1

and b > 1 such that a+ b = n and φ(a)
a + φ(b)

b > 1.

10.3. Divisor Functions.

H 31. Prove that d(n2 + 1)2 does not become monotonic from any given
point onwards.

H 32. Determine all positive integers n such that n = d(n)2.

H 33. Determine all positive integers k such that

d(n2)
d(n)

= k

for some n ∈ N.

H 34. Find all positive integers n such that d(n)3 = 4n.

H 35. Determine all positive integers for which d(n) = n
3 holds.
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H 36. We say that an integer m ≥ 1 is super-abundant if
σ(m)
m

>
σ(k)
k

,

for all k ∈ {1, 2, · · · ,m − 1}. Prove that there exists an infinite number of
super-abundant numbers.

H 37. Let σ(n) denote the sum of the positive divisors of the positive integer
n. and φ(n) the Euler phi-function. Show that φ(n) + σ(n) ≥ 2n for all
positive integers n.

H 38. Prove that for any δ greater than 1 and any positive number ε, there
is an n such that

∣∣∣σ(n)
n − δ

∣∣∣ < ε.

H 39. Prove that σ(n)φ(n) < n2, but that there is a positive constant c such
that σ(n)φ(n) ≥ cn2 holds for all positive integers n.

H 40. Show that σ(n)−d(m) is even for all positive integers m and n where
m is the largest odd divisor of n.

H 41. Verify the Ramanujan sum

∑

d|gcd(m,n)

dµ
(n
d

)
=

(
n

gcd(m,n)

)
φ(n)

φ
(

n
gcd(m,n)

) .

H 42. Show that for any positive integer n,

σ(n!)
n!
≥

n∑

k=1

1
k
.

10.4. More Functions.

H 43. Ramanujan’s tau Function 12 τ : N→ Z has the generating function
∞∑

n=1

τ(n)xn = x
∞∏

n=1

(1− xn)24,

i.e. the coefficients of xn on the right hand side define τ(n).13

(1) Show that τ(mn) = τ(m)τ(n) for all m,n ∈ N with gcd(m,n) = 1. 14

(2) Show that τ(n) ≡∑d|n d
11 (mod 691) for all n ∈ N. 15

H 44. For every natural number n, Q(n) denote the sum of the digits in
the decimal representation of n. Prove that there are infinitely many natural
numbers k with Q(3k) > Q(3k+1).

H 45. Let S(n) be the sum of all different natural divisors of an odd natural
number n > 1 (including 1 and n). Prove that S(n)3 < n4.

12In 1947, Lehmer conjectured that τ(n) 6= 0 for all n ∈ N.
13{τ(n)|n ≥ 1} = {1,−24, 252,−1472, · · · }. For more terms, see the first page !
14This Ramanujan’s conjecture was proved by Mordell.
15This Ramanujan’s conjecture was proved by Watson.
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H 46. Let ((x)) = x − [x] − 1
2 if x is not an integer, and let ((x)) = 0

otherwise. If n and k are integers, with n > 0, prove that
((

k

n

))
= − 1

2n

n−1∑

m=1

cot
πm

n
sin

2πkm
n

.

H 47. The function µ : N −→ C is defined by

µ(n) =
∑

k∈Rn

(
cos

2kπ
n

+ i sin
2kπ
n

)
,

where Rn = {k ∈ N|1 ≤ k ≤ n, gcd(k, n) = 1}. Show that µ(n) is an integer
for all positive integer n.

10.5. Functional Equations.

H 48. Prove that there is a function f from the set of all natural numbers
into itself such that f(f(n)) = n2 for all n ∈ N.

H 49. Find all surjective function f : N −→ N satisfying the condition

m|n⇐⇒ f(m)|f(n), m, n ∈ N.

H 50. Find all functions f : N −→ N such that

f(n+ 1) > f(f(n)), n ∈ N.

H 51. Find all functions f : N −→ N such that

f(f(f(n))) + f(f(n)) + f(n) = 3n, n ∈ N.

H 52. Find all functions f : N −→ N such that

f(f(m) + f(n)) = m+ n, m, n ∈ N.

H 53. Find all functions f : N −→ N such that

f (19)(n) + 97f(n) = 98n+ 232, n ∈ N.

H 54. Find all functions f : N −→ N such that

f(f(n)) + f(n) = 2n+ 2001 or 2n+ 2002, n ∈ N.

H 55. Find all functions f : N −→ N such that

f(f(f(n))) + 6f(n) = 3f(f(n)) + 4n+ 2001, n ∈ N.

H 56. Find all functions f : N0 → N0 such that

f(f(n)) + f(n) = 2n+ 6, n ∈ N0.

H 57. Find all functions f : N0 −→ N0 such that

f(m+ f(n)) = f(f(m)) + f(n), m, n ∈ N0.

H 58. Find all functions f : N0 −→ N0 such that

mf(n) + nf(m) = (m+ n)f(m2 + n2), m, n ∈ N0.

H 59. Find all functions f : N −→ N such that
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(1) f(2) = 2
(2) f(mn) = f(m)f(n), m,n ∈ N,
(3) f(n+ 1) > f(n), n ∈ N

H 60. Find all functions f : Z −→ Z such that

f(f(m)) = m+ 1, m ∈ Z

H 61. Find all functions f : Z −→ Z such that
(1) f(m+ 8) ≤ f(m) + 8, m ∈ Z,
(2) f(m+ 11) ≥ f(m) + 11, m ∈ Z

H 62. Find all functions f : Z −→ Z such that

f(m+ f(n)) = f(m)− n, m, n ∈ Z.

H 63. Find all functions f : Z −→ Z such that

f(m+ f(n)) = f(m) + n, m, n ∈ Z.

H 64. Find all functions h : Z −→ Z such that

h(x+ y) + h(xy) = h(x)h(y) + 1, x, y ∈ Z.

H 65. Find all functions f : Q −→ R such that

f(xy) = f(x)f(y)− f(x+ y) + 1, x, y ∈ Q.
H 66. Find all functions f : Q+ −→ Q+ such that

f
(
x+

y

x

)
= f(x) +

f(y)
f(x)

+ 2y, x, y ∈ Q+.

H 67. Find all functions f : Q −→ Q such that

f(x+ y) + f(x− y) = 2(f(x) + f(y)), x, y ∈ Q.
H 68. Find all functions f, g, h : Q −→ Q such that

f(x+ g(y)) = g(h(f(x))) + y, x, y ∈ Q.
H 69. Find all functions f : Q+ −→ Q+ such that

(1) f(x+ 1) = f(x) + 1, x ∈ Q+,
(2) f(x2) = f(x)2, x ∈ Q+.

H 70. Let Q+ be the set of positive rational numbers. Construct a function
f : Q+ → Q+ such that

f(xf(y)) =
f(x)
y

for all x, y ∈ Q+.

H 71. A function f is defined on the positive integers by

f(1) = 1, f(3) = 3,
f(2n) = f(n),

f(4n+ 1) = 2f(2n+ 1)− f(n),
f(4n+ 3) = 3f(2n+ 1)− 2f(n),
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for all positive integers n.
Determine the number of positive integers n, less than or equal to 1988,

for which f(n) = n.

H 72. Consider all functions f from the set N of all positive integers into
itself satisfying f(t2f(s)) = s(f(t))2 for all s and t in N . Determine the
least possible value of f(1998).

H 73. The function f(n) is defined for all positive integers n and takes on
non-negative integer values. Also, for all m,n

f(m+n)−f(m)−f(n) = 0 or 1, f(2) = 0, f(3) > 0, and f(9999) = 3333.

Determine f(1982).

H 74. Find all functions f : N −→ N such that

f(f(m) + f(n)) = m+ n, m, n ∈ N

H 75. Find all surjective functions f : N −→ N such that

f(n) ≥ n+ (−1)n, m, n ∈ N

H 76. Find all functions f : Z− {0} −→ Q such that

f

(
x+ y

3

)
=
f(x) + f(y)

2
, x, y ∈ Z− {0}

H 77. Find all functions f : N −→ N such that

f(f(f(n))) + f(f(n)) + f(n) = 3n, n ∈ N.

H 78. Find all strictly increasing functions f : −→ such that

f(f(n)) = 3n, n ∈ N.

H 79. Find all functions f : Z2 −→ R+ such that

f(i, j) =
f(i+ 1, j) + f(i, j + 1) + f(i− 1, j) + f(i, j − 1)

4
, i, j ∈ Z.

H 80. Find all functions f : Q −→ Q such that

f(x+y+z)+f(x−y)+f(y−z)+f(z−x) = 3f(x)+3f(y)+3f(z), x, y, z ∈ Q.
H 81. Show that there exists a bijective function f : N0 −→ N0 such that

f(3mn+m+ n) = 4f(m)f(n) + f(m) + f(n), m, n ∈ N0.

H 82. Show that there exists a function f : N −→ N such that

f (1996)(n) = 2n, n ∈ N.
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11. Polynomials

The only way to learn Mathematics is to do Mathematics. Paul Halmos

I 1. Suppose p(x) ∈ Z[x] and P (a)P (b) = −(a − b)2 for some distinct
a, b ∈ Z. Prove that P (a) + P (b) = 0.

I 2. Prove that there is no nonconstant polynomial f(x) with integral coef-
ficients such that f(n) is prime for all n ∈ N.

I 3. Let n ≥ 2 be an integer. Prove that if k2 +k+n is prime for all integers
k such that 0 ≤ k ≤ √n

3 , then k2 + k + n is prime for all integers k such
that 0 ≤ k ≤ n− 2.

I 4. A prime p has decimal digits pnpn−1 · · · p0 with pn > 1. Show that
the polynomial pnxn + pn−1x

n−1 + · · ·+ p1x+ p0 cannot be represented as a
product of two nonconstant polynomials with integer coefficients

I 5. (Eisentein’s Criterion) Let f(x) = anx
n+· · ·+a1x+a0 be a nonconstant

polynomial with integer coefficients. If there is a prime p such that p divides
each of a0, a1, · · · ,an−1 but p does not divide an and p2 does not divide a0,
then f(x) is irreducible in Q[x].

I 6. Prove that for a prime p, xp−1 + xp−2 + · · · + x + 1 is irreducible in
Q[x].

I 7. Let f(x) = xn + 5xn−1 + 3, where n > 1 is an integer. Prove that
f(x) cannot be expressed as the product of two nonconstant polynomials with
integer coefficients.

I 8. (Eugen Netto) Show that a polynomial of odd degree 2m+ 1 over Z,

f(x) = c2m+1x
2m+1 + · · ·+ c1x+ c0,

is irreducible if there exists a prime p such that

p 6 |c2m+1, p|cm+1, cm+2, · · · , c2m, p
2|c0, c1, · · · , cm, and p3 6 |c0.

I 9. For non-negative integers n and k, let Pn,k(x) denote the rational func-
tion

(xn − 1)(xn − x) · · · (xn − xk−1)
(xk − 1)(xk − x) · · · (xk − xk−1)

.

Show that Pn,k(x) is actually a polynomial for all n, k ∈ N.

I 10. Suppose that the integers a1, a2, · · · , an are distinct. Show that

(x− a1)(x− a2) · · · (x− an)− 1

cannot be expressed as the product of two nonconstant polynomials with in-
teger coefficients.

I 11. Show that the polynomial x8 +98x4 +1 can be expressed as the product
of two nonconstant polynomials with integer coefficients.
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I 12. Prove that if the integers a1, a2, · · · , an are all distinct, then the
polynomial

(x− a1)2(x− a2)2 · · · (x− an)2 + 1
cannot be expressed as the product of two nonconstant polynomials with in-
teger coefficients.

I 13. On Christmas Eve, 1983, Dean Jixon, the famous seer who had made
startling predictions of the events of the preceding year that the volcanic
and seismic activities of 1980 and 1981 were connected with mathematics.
The diminishing of this geological activity depended upon the existance of an
elementary proof of the irreducibility of the polynomial

P (x) = x1981 + x1980 + 12x2 + 24x+ 1983.

Is there such a proof ?
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12. Sequences of Integers

A peculiarity of the higher arithmetic is the great difficulty which has
often been experienced in proving simple general theorems which had been
suggested quite naturally by numerical evidence. Harold Davenport

12.1. Linear Recurrnces.

J 1. An integer sequence {an}n≥1 is defined by

a0 = 0, a1 = 1, an+2 = 2an+1 + an

Show that 2k divides an if and only if 2k divides n.

J 2. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that gcd(Fm, Fn) = Fgcd(m,n) for all m,n ∈ N.

J 3. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that Fmn−1 − Fn−1
m is divisible by Fn2 for all m ≥ 1 and n > 1.

J 4. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that Fmn−Fn+1
m+Fn−1

m is divisible by Fn3 for all m ≥ 1 and n > 1.

J 5. The Fibonacci sequence {Fn} is defined by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

Show that F2n−1
2 + F2n+1

2 + 1 = 3F2n−1F2n+1 for all n ≥ 1.

J 6. Prove that no Fibonacci number can be factored into a product of two
smaller Fibonacci numbers, each greater than 1.

J 7. Let m be a positive integer. Define the sequence {an}n≥0 by

a0 = 0, a1 = m, an+1 = m2an − an−1.

Prove that an ordered pair (a, b) of non-negative integers, with a ≤ b, gives
a solution to the equation

a2 + b2

ab+ 1
= m2

if and only if (a, b) is of the form (an, an+1) for some n ≥ 0.
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J 8. Let xn and yn be two sequences defined recursively as follows

x0 = 1, x1 = 4, xn+2 = 3xn+1 − xn
y0 = 1, y1 = 2, yn+2 = 3yn+1 − yn

for all n = 0, 1, 2, · · · .
a) Prove that xn2 − 5yn2 + 4 = 0 for all non-negative integers.
b) Suppose that a, b are two positive integers such that a2 − 5b2 + 4 = 0.
Prove that there exists a non-negative integer k such that a = xk and b = yk.

J 9. Let {un}n≥0 be a sequence of positive integers defined by

u0 = 1, un+1 = aun + b,

where a, b ∈ N. Prove that for any choice of a and b, the sequence {un}n≥0

contains infinitely many composite numbers.

J 10. The sequence {yn}n≥1 is defined by

y1 = y2 = 1, yn+2 = (4k − 5)yn+1 − yn + 4− 2k (n ∈ N).

Determine all integers k such that each term of this sequence is a perfect
square.

J 11. Let the sequence {Kn}n≥1 be defined by

K1 = 2,K2 = 8,Kn+2 = 3Kn+1 −Kn + 5(−1)n.

Prove that if Kn is prime, then n must be a power of 3.

J 12. The sequence {an}n≥1 is defined by

a1 = 1, a2 = 12, a3 = 20, an+3 = 2an+2 + 2an+1 − an (n ∈ N).

Prove that 1 + 4anan+1 is a square for all n ∈ N.

J 13. The sequence {xn}n≥1 is defined by

x1 = x2 = 1, xn+2 = 14xn+1 − xn − 4 (n = 1, 2, · · · )
Prove that xn is always a perfect square.

12.2. Recursive Sequences.

J 14. Let P (x) be a nonzero polynomial with integral coefficients. Let a0 = 0
and for i ≥ 0 define ai+1 = P (ai). Show that gcd(am, an) = agcd(m,n) for all
m,n ∈ N

J 15. An integer sequence {an}n≥1 is defined by

a1 = 1, an+1 = an + [
√
an]

Show that an is a square if and only if n = 2k + k − 2 for some k ∈ N.

J 16. Let f(n) = n + [
√
n]. Prove that, for every positive integer m, the

sequence
m, f(m), f(f(m)), f(f(f(m))), · · ·

contains at least one square of an integer.
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J 17. The sequence {an}n≥1 is defined by

a1 = 1, a2 = 2, a3 = 24, an+2 =
6an−1

2an−3 − 8an−1an−2
2

an−2an−3
(n ≥ 4)

Show that an is an integer for all n.

J 18. Show that there is a unique sequence of integers {an}n≥1 with

a1 = 1, a2 = 2, a4 = 12, an+1an−1 = an
2 + 1 (n ≥ 2).

J 19. The sequence {an}n≥1 is defined by

a1 = 1, an+1 = 2an +
√

3an2 + 1 (n ≥ 1)

Show that an is an integer for every n.

J 20. Prove that the sequence {yn}n≥1 defined by

y0 = 1, yn+1 =
1
2

(
3yn +

√
5an2 − 4

)
(n ≥ 0)

consists only of integers.

J 21. (C. von Staudt) The Bernoulli sequence16 {Bn}n≥0 is defined by

B0 = 1, Bn = − 1
n+ 1

n∑

k=0

(
n+ 1
k

)
Bk (n ≥ 1)

Show that for all n ∈ N,

(−1)nBn −
∑ 1

p
,

is an integer where the summation being extended over the primes p such
that p|2k − 1.

J 22. An integer sequence {an}n≥1 is defined by

a1 = 2, an+1 =
[

3
2
an

]

Show that it has infinitely many even and infinitely many odd integers.

J 23. An integer sequence satisfies an+1 = an
3 +1999. Show that it contains

at most one square.

J 24. Let a1 = 1111, a2 = 1212, a3 = 1313, and

an = |an−1 − an−2|+ |an−2 − an−3|, n ≥ 4.

Determine a1414.

J 25. Let k be a fixed positive integer. The infinite sequence an is defined
by the formulae

a1 = k + 1, an+1 = an
2 − kan + k (n ≥ 1).

Show that if m 6= n, then the numbers am and an are relatively prime.

16B0 = 1, B1 = − 1
2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 = 1

42
, · · ·
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J 26. The sequence {xn} is defined by

x0 ∈ [0, 1], xn+1 = 1− |1− 2xn|.
Prove that the sequence is periodic if and only if x0 is irrational.

J 27. Let x1 and x2 be relatively prime positive integers. For n ≥ 2, define
xn+1 = xnxn−1 + 1.

(a) Prove that for every i > 1, there exists j > i such that xii divides xjj.

(b) Is it true that x1 must divide xjj for some j > 1 ?

J 28. For a given positive integer k denote the square of the sum of its digits
by f1(k) and let fn+1(k) = f1(fn(k)). Determine the value of f1991(21990).

J 29. Define a sequence {ai} by a1 = 3 and ai+1 = 3ai for i ≥ 1. Which
integers between 00 and 99 inclusive occur as the last two digits in the decimal
expansion of infinitely many ai?

J 30. A sequence of integers, {an}n≥1 with a1 > 0, is defined by

an+1 =
an
2

if n ≡ 0 (mod 4),

an+1 = 3an + 1 if n ≡ 1 (mod 4),

an+1 = 2an − 1 if n ≡ 2 (mod 4),

an+1 =
an + 1

4
if n ≡ 3 (mod 4).

Prove that there is an integer m such that am = 1.

J 31. Given is an integer sequence {an}n≥0 such that a0 = 2, a1 = 3 and,
for all positive integers n ≥ 1, an+1 = 2an−1 or an+1 = 3an − 2an−1. Does
there exist a positive integer k such that 1600 < ak < 2000?

J 32. A sequence with first two terms equal 1 and 24 respectively is defined
by the following rule: each subsequent term is equal to the smallest positive
integer which has not yet occurred in the sequence and is not coprime with
the previous term. Prove that all positive integers occur in this sequence.

J 33. Each term of a sequence of natural numbers is obtained from the
previous term by adding to it its largest digit. What is the maximal number
of successive odd terms in such a sequence?

J 34. In the sequence 1, 0, 1, 0, 1, 0, 3, 5, · · · , each member after the sixth
one is equal to the last digit of the sum of the six members just preceeding
it. Prove that in this sequence one cannot find the following group of six
consecutive members :

0, 1, 0, 1, 0, 1
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J 35. Let a, and b be odd positive integers. Define the sequence (fn) by
putting f1 = a, f2 = b, and by letting fn for n ≥ 3 be the greatest odd
divisor of fn−1 + fn−2. Show that fn is constant for sufficiently large n
and determine the eventual value as a function of a and b.

J 36. Numbers d(n,m) with m,n integers, 0 ≤ m ≤ n, are defined by
d(n, 0) = d(n, n) = 1 (n ≥ 0), md(n,m) = md(n − 1,m) + (2n −m)d(n −
1,m− 1) (0 < m < n). Prove that d(n,m) are integers for all m,n ∈ N.

J 37. Let k be a given positive integer. The sequence xn is defined as
follows : x1 = 1 and xn+1 is the least positive integer which is not in
{x1, x2, ..., xn, x1 +k, x2 +2k, ..., xn+nk}. Show that there exist real number
a such that xn = [an] for all positive integer n.

J 38. Let {an}n≥1 be a sequence of positive integers such that

0 < an+1 − an ≤ 2001 for all n ∈ N.

Show that there are infinitely many pairs (p, q) of positive integers such that
p > q and aq | ap.
J 39. Let p be an odd prime p such that 2h 6= 1 (mod p) for all h ∈ N
with h < p − 1, and let a be an even integer with a ∈ (p2 , p

)
. The sequence

{an}n≥0 is defined by a0 = a, an+1 = p − bn (n ≥ 0), where bn is the
greatest odd divisor of an. Show that the sequence {an}n≥0 is periodic and
find its minimal (positive) period.

J 40. Let p ≥ 3 be a prime number. The sequence {an}n≥1 is defined by
an = n for all 0 ≤ n ≤ p−1, and an = an−1 +an−p, for all n ≥ p. Compute
ap3 (mod p).

J 41. Let {un}n≥0 be a sequence of integers satisfying the recurrence relation
un+2 = un+1

2 − un (n ∈ N). Suppose that u0 = 39 and u1 = 45. Prove that
1986 divides infinitely many terms of this sequence.

J 42. The sequence {an}n≥1 is defined by a1 = 1 and

an+1 =
an
2

+
1

4an
(n ∈ N).

Prove that
√

2
2an2−1

is a positive integer for n > 1.

J 43. Let k be a positive integer. Prove that there exists an infinite monotone
increasing sequence of integers {an}n≥1 such that

an divides an+1
2 + k and an+1 divides an2 + k

for all n ∈ N.

J 44. Each term of an infinite sequence of natural numbers is obtained from
the previous term by adding to it one of its nonzero digits. Prove that this
sequence contains an even number.
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J 45. In an increasing infinite sequence of positive integers, every term
starting from the 2002-th term divides the sum of all preceding terms. Prove
that every term starting from some term is equal to the sum of all preceding
terms.

J 46. The sequence {xn}n≥1 is defined by

x1 = 2, xn+1 =
2 + xn
1− 2xn

(n ∈ N).

Prove that (a) xn 6= 0 for all n ∈ N and (b) {xn}n≥1 is not periodic.

J 47. (A. Perlin) The sequence of integers {xn} is defined as follows :

x1 = 1, xn+1 = 1 + x1
2 + · · ·+ xn

2 (n = 1, 2, 3 · · · ).
Prove that there are no squares of natural numbers in this sequence except
x1.

J 48. The first four terms of an infinite sequence S of decimal digits are 1,
9, 8, 2, and succeeding terms are given by the final digit in the sum of the
four immediately preceding terms. Thus S begins 1, 9, 8, 2, 0, 9, 9, 0, 8, 6,
3, 7, 4, · · · . Do the digits 3, 0, 4, 4 ever come up consecutively in S ?

12.3. More Sequences.

J 49. Show that the sequence {an}n≥1 defined by an = [n
√

2] contains an
infinite number of integer powers of 2.

J 50. Let an be the last nonzero digit in the decimal representation of the
number n!. Does the sequence a1, a2, a3, · · · become periodic after a finite
number of terms ?

J 51. Let n > 6 be an integer and a1, a2, . . . , ak be all the natural numbers
less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2.

J 52. Show that if an infinite arithmetic progression of positive integers
contains a square and a cube, it must contain a sixth power.

J 53. Prove that there exist two strictly increasing sequences an and bn such
that an(an + 1) divides bn2 + 1 for every natural n.

J 54. Let {an} be a strictly increasing positive integers sequence such that
gcd(ai, aj) = 1 and ai+2 − ai+1 > ai+1 − ai. Show that the infinite series

∞∑

i=1

1
ai

converges.
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J 55. Let {nk}k≥1 be a sequence of natural numbers such that for i < j,
the decimal representation of ni does not occur as the leftmost digits of the
decimal representation of nj. Prove that

∞∑

k=1

1
nk
≤ 1

1
+

1
2

+ · · ·+ 1
9
.

J 56. An integer sequence {an}n≥1 is given such that

2n =
∑

d|n
ad

for all n ∈ N. Show that an is divisible by n for all n ∈ N.

J 57. Let q0, q1, · · · be a sequence of integers such that
(i) for any m > n, m− n is a factor of qm − qn, and
(ii) |qn| ≤ n10 for all integers n ≥ 0.

Show that there exists a polynomial Q(x) satisfying qn = Q(n) for all n.

J 58. Let a, b be integers greater than 2. Prove that there exists a positive
integer k and a finite sequence n1, n2, . . . , nk of positive integers such that
n1 = a, nk = b, and nini+1 is divisible by ni + ni+1 for each i (1 ≤ i < k).

J 59. The infinite sequence of 2’s and 3’s

2, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3,
3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 2, . . .

has the property that, if one forms a second sequence that records the number
of 3’s between successive 2’s, the result is identical to the given sequence.
Show that there exists a real number r such that, for any n, the nth term of
the sequence is 2 if and only if n = 1 + brmc for some nonnegative integer
m. (Note: bxc denotes the largest integer less than or equal to x.)

J 60. The sequence {an}n≥1 is defined by

an = 1 + 22 + 33 + · · ·+ nn.

Prove that there are infinitely many n such that an is composite.

J 61. One member of an infinite arithmetic sequence in the set of natural
numbers is a perfect square. Show that there are infinitely many members
of this sequence having this property.

J 62. In the sequence 00, 01, 02, 03, · · · , 99 the terms are rearranged so
that each term is obtained from the previous one by increasing or decreasing
one of its digits by 1 (for example, 29 can be followed by 19, 39, or 28, but
not by 30 or 20). What is the maximal number of terms that could remain
on their places?

J 63. Does there exist positive integers a1 < a2 < · · · < a100 such that for
2 ≤ k ≤ 100, the least common multiple of ak−1 and ak is greater than the
least common multiple of ak and ak+1 ?
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J 64. Does there exist positive integers a1 < a2 < · · · < a100 such that for
2 ≤ k ≤ 100, the greatest common divisor of ak−1 and ak is greater than the
greatest common divisor of ak and ak+1 ?

J 65. Suppose that a and b are distinct real numbers such that

a− b, a2 − b2, · · · , ak − bk, · · ·
are all integers. Show that a and b are integers.
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13. Combinatorial Number Theory

In great mathematics there is a very high degree of unexpectedness, com-
bined with inevitability and economy. Godfrey Harold Hardy

K 1. (Erdös) Suppose all the pairs of a positive integers from a finite col-
lection

A = {a1, a2, · · · }
are added together to form a new collection

A∗ = {ai + aj | 1 ≤ i < j ≤ n}.
For example, A = {2, 3, 4, 7} would yield A∗ = {5, 6, 7, 9, 10, 11} and B =
{1, 4, 5, 6} would give B∗ = {5, 6, 7, 9, 10, 11}. These examples show that it’s
possible for different collections A and B to generate the same collections
A∗ and B∗. Show that if A∗ = B∗ for different sets A and B, then |A| = |B
and |A| = |B must be a power of 2.

K 2. Let p be a prime. Find all positive integers k such that the set
{1, 2, · · · , k} can be partitioned into p subsets with equal sum of elements.

K 3. Prove that the set of integers of the form 2k−3 (k = 2, 3, · · · ) contains
an infinite subset in which every two members are relatively prime.

K 4. The set of positive integers is partitioned into finitely many subsets.
Show that some subset S has the following property : for every positive
integer n, S contains infinitely many multiples of n.

K 5. Let M be a positive integer and consider the set

S = {n ∈ N |M2 ≤ n < (M + 1)2}.
Prove that the products of the form ab with a, b ∈ S are distinct.

K 6. Let S be a set of integers such that
◦ there exist a, b ∈ S with gcd(a, b) = gcd(a− 2, b− 2) = 1.
◦ if x and y are elements of S, then x2−y also belongs to S.

Prove that S is the set of all integers.

K 7. Show that for each n ≥ 2, there is a set S of n integers such that
(a− b)2 divides ab for every distinct a, b ∈ S
K 8. Let a and b be positive integers greater than 2. Prove that there exists
a positive integer k and a finite sequence n1, · · · , nk of positive integers
such that n1 = a, nk = b, and nini+1 is divisible by ni + ni+1 for each i
(1 ≤ i ≤ k).

K 9. Let n be an integer, and let X be a set of n+2 integers each of absolute
value at most n. Show that there exist three distinct numbers a, b, c ∈ X such
that c = a+ b.
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K 10. Let m ≥ 2 be an integer. Find the smallest integer n > m such that
for any partition of the set {m,m+ 1, · · · , n} into two subsets, at least one
subset contains three numbers a, b, c such that c = ab.

K 11. Let S = {1, 2, 3, . . . , 280}. Find the smallest integer n such that each
n-element subset of S contains five numbers which are pairwise relatively
prime.

K 12. Let m and n be positive integers. If x1, x2, · · · , xm are positive
integers whose average is less than n+ 1 and if y1, y2, · · · , yn are positive
integers whose average is less than m + 1, prove that some sum of one or
more x’s equals some sum of one or more y’s.

K 13. Let n and k be given relatively prime natural numbers, k < n. Each
number in the set M = {1, 2, ..., n− 1} is colored either blue or white. It is
given that

◦ for each i ∈M, both i and n− i have the same color;
◦ for each i ∈ M, i 6= k, both i and |i− k| have the same
color.

Prove that all numbers in M have the same color.

K 14. Let p be a prime number, p ≥ 5, and k be a digit in the p-adic rep-
resentation of positive integers. Find the maximal length of a non constant
arithmetic progression whose terms do not contain the digit k in their p-adic
representation.

K 15. Is it possible to choose 1983 distinct positive integers, all less than
or equal to 105, no three of which are consecutive terms of an arithmetic
progression?

K 16. Is it possible to find 100 positive integers not exceeding 25000 such
that all pairwise sums of them are different ?

K 17. Find the maximum number of pairwise disjoint sets of the form

Sa,b = {n2 + an+ b | n ∈ Z},
with a, b ∈ Z.

K 18. Let p be an odd prime number. How many p-element subsets A of
{1, 2, . . . 2p} are there, the sum of whose elements is divisible by p?

K 19. Let m,n ≥ 2 be positive integers, and let a1, a2, · · · , an be inte-
gers, none of which is a multiple of mn−1. Show that there exist integers
e1, e2, · · · , en, not all zero, with |ei| < m for all i, such that e1a1 + e2a2 +
· · ·+ enan is a multiple of mn.

K 20. Determine the smallest integer n ≥ 4 for which one can choose
four different numbers a, b, c, and d from any n distinct integers such that
a+ b− c− d is divisible by 20
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K 21. A sequence of integers a1, a2, a3, · · · is defined as follows : a1 = 1, and
for n ≥ 1, an+1 is the smallest integer greater than an such that ai+aj 6= 3ak
for any i, j, and k in {1, 2, 3, · · · , n+1}, not necessarily distinct. Determine
a1998.

K 22. Prove that for each positive integer n, there exists a positive integer
with the following properties :

◦ It has exactly n digits.
◦ None of the digits is 0.
◦ It is divisible by the sum of its digits.

K 23. Let k,m, n be integers such that 1 < n ≤ m− 1 ≤ k. Determine the
maximum size of a subset S of the set {1, 2, · · · , k} such that no n distinct
elements of S add up to m.

K 24. Find the number of subsets of {1, 2, · · · , 2000}, the sum of whose
elements is divisible by 5.

K 25. Let A be a non-empty set of positive integers. Suppose that there are
positive integers b1, · · · , bn and c1, · · · , cn such that

(i) for each i the set biA+ ci = {bia+ ci|a ∈ A} is a subset of A, and
(ii) the sets biA+ ci and bjA+ cj are disjoint whenever i 6= j.
Prove that

1
b1

+ · · ·+ 1
bn
≤ 1.

K 26. A set of three nonnegative integers {x, y, z} with x < y < z is called
historic if {z−y, y−x} = {1776, 2001}. Show that the set of all nonnegative
integers can be written as the unions of pairwise disjoint historic sets.

K 27. Let p and q be relatively prime positive integers. A subset S of
{0, 1, 2, · · · } is called ideal if 0 ∈ S and, for each element n ∈ S, the integers
n + p and n + q belong to S. Determine the number of ideal subsets of
{0, 1, 2, · · · }.
K 28. Prove that the set of positive integers cannot be partitioned into three
nonempty subsets such that, for any two integers x, y taken from two dif-
ferent subsets, the number x2 − xy + y2 belongs to the third subset.

K 29. Let A be a set of N residues (mod N2). Prove that there exists a set
B of N residues (mod N2) such that the set A+ B = {a+ b|a ∈ A, b ∈ B}
contains at least half of all the residues (mod N2).

K 30. Determine the largest positive integer n for which there exists a set
S with exactly n numbers such that

(i) each member in S is a positive integer not exceeding 2002,
(ii) if a and b are two (not necessarily different) numbers in
S, then their product ab does not belong to S.
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K 31. Prove that, for any integer a1 > 1, there exist an increasing sequence
of positive integers a1, a2, a3, · · · such that

a1 + a2 + · · ·+ an | a1
2 + a2

2 + · · ·+ an
2

for all k ∈ N.

K 32. An odd integer n ≥ 3 is said to be ”nice” if and only if there is at
least one permutation a1, · · · , an of 1, · · · , n such that the n sums a1− a2 +
a3−· · ·−an−1 +an, a2−a3 +a3−· · ·−an +a1, a3−a4 +a5−· · ·−a1 +a2,
· · · , an − a1 + a2 − · · · − an−2 + an−1 are all positive. Determine the set of
all ”nice” integers.

K 33. Assume that the set of all positive integers is decomposed into r
distinct subsets A1, A2, · · · , Ar A1 ∪ A2 ∪ · · · ∪ Ar = N. Prove that one
of them, say Ai, has the following property : There exist a positive integer
m such that for any k one can find numbers a1, · · · , ak in Ai with 0 <
aj+1 − aj ≤ m (1 ≤ j ≤ k − 1).

K 34. Determine for which positive integers k, the set

X = {1990, 1990 + 1, 1990 + 2, · · · , 1990 + k}
can be partitioned into two disjoint subsets A and B such that the sum of
the elements of A is equal to the sum of the elements of B.

K 35. Prove that n ≥ 3 be a prime number and a1 < a2 < · · · < an be
integers. Prove that a1, · · · , an is an arithmetic progression if and only if
there exists a partition of {0, 1, 2, · · · } into classes A1, A2, · · · , An such that

a1 +A1 = a2 +A2 = · · · = an +An,

where x+A denotes the set {x+ a|a ∈ A}.
K 36. Let a and b be non-negative integers such that ab ≥ c2 where c is an
integer. Prove that there is a positive integer n and integers x1, x2, · · · ,
xn, y1, y2, · · · , yn such that

x1
2 + · · ·+ xn

2 = a, y1
2 + · · ·+ yn

2 = b, x1y1 + · · ·+ xnyn = c

K 37. Let n, k be positive integers such that n is not divisible by 3 and k
is greater or equal to n. Prove that there exists a positive integer m which
is divisible by n and the sum of its digits in the decimal representation is k.

K 38. Prove that for every real number M there exists an infinite arith-
metical progression such that

◦ each term is a positive integer and the common difference
is not divisible by 10.
◦ the sum of digits of each term exceeds M .

K 39. Find the smallest positive integer n, for which there exist n different
positive integers a1, a2, · · · , an satisfying the conditions :
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a) the smallest common multiple of a1, a2, · · · , an is 1985;
b) for each i, j ∈ {1, 2, · · · , n}, the numbers ai and aj have
a common divisor;
c) the product a1a2 · · · an is a perfect square and is divisible
by 243.

Find all n-tuples (a1, · · · , an), satisfying a), b), and c).

K 40. Let X be a non-empty set of positive integers which satisfies the
following :

(a) If x ∈ X, then 4x ∈ X.
(b) If x ∈ X, then [

√
x] ∈ X.

Prove that X = N.

K 41. Prove that for every positive integer n there exists an n-digit number
divisible by 5n all of whose digits are odd.

K 42. Let Nn denote the number of ordered n-tuples of positive integers
(a1, a2, . . . , an) such that

1/a1 + 1/a2 + . . .+ 1/an = 1.

Determine whether N10 is even or odd.

K 43. Is it possible to find a set A of eleven positive integers such that no
six elements of A have a sum which is divisible by 6 ?

K 44. A set C of positive integers is called good if for every integer k there
exist distinct a, b ∈ C such that the numbers a+k and b+k are not relatively
prime. Prove that if the sum of the elements of a good set C equals 2003,
then there exists c ∈ C such that the set C − {c} is good.

K 45. Find the set of all positive integers n with the property that the set

{n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5}
can be partitioned into two sets such that the product of the numbers in one
set equals the product of the numbers in the other set.

K 46. Suppose p is a prime with p ≡ 3 (mod 4). Show that for any set of
p− 1 consecutive integers, the set cannot be divided two subsets so that the
product of the members of the one set is equal to the product of the members
of the other set.

K 47. Let S be the set of all composite positive odd integers less than 79.
(a) Show that S may be written as the union of three (not necessarily

disjoint) arithmetic progressions.
(b) Show that S cannot be written as the union of two arithmetic progres-

sions.

K 48. Let a1, · · · , a44 be natural numbers such that

0 < a1 < a2 < · · · < a44 < 125.
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Prove that at least one of the 43 differences dj = aj+1 − aj occurs at least
10 times.

K 49. (D. Fomin) Consider the set of all five-digit numbers whose decimal
representation is a permutation of the digits 1, 2, 3, 4, 5. Prove that this set
can be divided into two groups, in such a way that the sum of the squares of
the numbers in each group is the same.

K 50. What’s the largest number of elements that a set of positive integers
between 1 and 100 inclusive can have if it has the property that none of them
is divisible by another ?

K 51. Prove the among 16 consecutive integers it is always possible to find
one which is relatively prime to all the rest.

K 52. Is there a set S of positive integers such that a number is in S if and
only if it is the sum of two distinct members of S or a sum of two distinct
positive integers not in S ?

K 53. Suppose that the set M = {1, 2, · · · , n} is split into t disjoint subsets
M1, · · · , Mt where the cardinality of Mi is mi, and mi ≥ mi+1, for i =
1, · · · , t − 1. Show that if n > t!e then at least one class Mz contains three
elements xi, xj, xk with the property that xi − xj = xk.

K 54. Let S be a subset of {1, 2, 3, · · · , 1989} in which no two members
differ by exactly 4 or by exactly 7. What is the largest number of elements
S can have ?

K 55. The set M consists of integers, the smallest of which is 1 and the
greatest 100. Each member of M , except 1, is the sum of two (possibly
identical) numbers in M . Of all such sets, find one with the smallest possible
number of elements.

K 56. Show that it is possible to color the set of integers

M = {1, 2, 3, · · · , 1987},
using four colors, so that no arithmetic progression with 10 terms has all its
members the same color.

K 57. Prove that every selection of 1325 integers from M = {1, 2, · · · , 1987}
must contain some three numbers {a, b, c} which are relatively prime in pairs,
but that can be avoided if only 1324 integers are selected.

K 58. Prove that every infinite sequence S of distinct positive integers con-
tains either

(a) an infinite subsequence such that, for every pair of terms, neither term
ever divides the other, or

(b) an infinite subsequence such that, in every pair of terms, one always
divides the other.
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K 59. Let a1 < a2 < a3 < · · · be an infinite increasing sequence of positive
integers in the number of prime factors of each term, counting repeated
factors, is never more than 1987. Prove that it is always possible to extract
from A an infinite subsequence b1 < b2 < b3 < · · · such that the greatest
common divisor (bi, bj) is the same number for every pair of its terms.
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14. Additive Number Theory

On Ramanujan, G. H. Hardy Said : I remember once going to see him
when he was lying ill at Putney. I had ridden in taxi cab number 1729 and
remarked that the number seemed to me rather a dull one, and that I hoped
it was not an unfavorable omen. ”No,” he replied,

”it is a very interesting number; it is the smallest number expressible as
the sum of two cubes in two different ways.”

L 1. Show that any integer can be expressed as a sum of two squares and a
cube.

L 2. Show that each integer n can be written as the sum of five perfect cubes
(not necessarily positive).

L 3. Prove that infinitely many positive integers cannot be written in the
form

x1
3 + x2

5 + x3
7 + x4

9 + x5
11,

where x1, x2, x3, x4, x5 ∈ N.

L 4. Determine all positive integers that are expressible in the form

a2 + b2 + c2 + c,

where a, b, c are integers.

L 5. Show that any positive rational number can be represented as the sum
of three positive rational cubes.

L 6. A positive integer n is a square-free integer if there is no prime p such
that p2 | n. Show that every integer greater than 1 can be written as a sum
of two square-free integers.

L 7. Prove that every integer n ≥ 12 is the sum of two composite numbers.

L 8. Prove that any positive integer can be represented as an aggregate of
different powers of 3, the terms in the aggregate being combined by the signs
+ and − appropriately chosen.

L 9. The integer 9 can be written as a sum of two consecutive integers :
9=4+5 ; moreover it can be written as a sum of (more than one) consecutive
positive integers in exactly two ways, namely 9=4+5= 2+3+4. Is there an
integer which can be written as a sum of 1990 consecutive integers and which
can be written as a sum of (more than one) consecutive integers in exactly
1990 ways ?

L 10. For each positive integer n, S(n) is defined to be the greatest integer
such that, for every positive integer k ≤ S(n), n2 can be written as the sum
of k positive squares.



62 PROBLEMS IN ELEMENTARY NUMBER THEORY

(a) Prove that S(n) ≤ n2 − 14 for each n ≥ 4.
(b) Find an integer n such that S(n) = n2 − 14.
(c) Prove that there are infinitely many integers n such that
S(n) = n2 − 14.

L 11. For each positive integer n , let f(n) denote the number of ways of
representing n as a sum of powers of 2 with nonnegative integer exponents.
Representations which differ only in the ordering of their summands are
considered to be the same. For instance, f(4) = 4, because the number 4 can
be represented in the following four ways:

4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that, for any integer n ≥ 3,

2n
2/4 < f(2n) < 2n

2/2.

L 12. The positive function p(n) is defined as the number of ways that the
positive integer n can be written as a sum of positive integers. 17 Show that,
for all positive integers n ≥ 2,

2[
√
n] < p(n) < n3[

√
n].

L 13. Let a1 = 1, a2 = 2, a3, a4, · · · be the sequence of positive integers of
the form 2α3β, where α and β are nonnegative integers. Prove that every
positive integer is expressible in the form

ai1 + ai2 + · · ·+ ain ,

where no summand is a multiple of any other.

L 14. Let n be a non-negative integer. Find non-negative integers a, b, c,
d such that

a2 + b2 + c2 + d2 = 7 · 4n.
L 15. Find all integers m > 1 such that m3 is a sum of m squares of
consecutive integers.

L 16. Prove that there exist infinitely many integers n such that n, n+1, n+2
are each the sum of the squares of two integers.

L 17. (Jacobsthal) Let p be a prime number of the form 4k + 1. Suppose
that r is a quadratic residue of p and that s is a quadratic nonresidue of p.
Show that p = a2 + b2, where

a =
1
2

p−1∑

i=1

(
i(i2 − r)

p

)
, b =

1
2

p−1∑

i=1

(
i(i2 − s)

p

)
.

Here,
(
k
p

)
denotes the Legendre Symbol.

17For example, 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1
gives us p(5) = 7.
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L 18. Let p be a prime with p ≡ 1(mod 4). Let a be the unique integer such
that

p = a2 + b2, a ≡ −1(mod 4), b ≡ 0(mod 2)
Prove that

p−1∑

i=0

(
i3 + 6i2 + i

p

)
= 2

(
2
p

)
a.

L 19. Let n be an integer of the form a2 + b2, where a and b are relatively
prime integers and such that if p is a prime, p ≤ √n, then p divides ab.
Determine all such n.

L 20. If an integer n is such that 7n is the form a2 + 3b2, prove that n is
also of that form.

L 21. Let A be the set of positive integers represented by the form a2 + 2b2,
where a and b are integers and b 6= 0. Show that if p is a prime number and
p2 ∈ A, then p ∈ A.

L 22. Show that an integer can be expressed as the difference of two squares
if and only if it is not of the form 4k + 2 (k ∈ Z).

L 23. Show that there are infinitely many positive integers which cannot be
expressed as the sum of squares.

L 24. Show that any integer can be expressed as the form a2 +b2−c2, where
a, b, c ∈ Z.

L 25. Let a and b be positive integers with gcd(a, b) = 1. Show that every
integer greater than ab− a− b can be expressed in the form ax+ by, where
x, y ∈ N0.

L 26. Let a, b and c be positive integers, no two of which have a common
divisor greater than 1. Show that 2abc − ab − bc − ca is the largest integer
which cannot be expressed in the form xbc+ yca+ zab, where x, y, z ∈ N0

L 27. Determine, with proof, the largest number which is the product of
positive integers whose sum is 1976.

L 28. (Zeckendorf) Any positive integer can be represented as a sum of
Fibonacci numbers, no two of which are consecutive.

L 29. Show that the set of positive integers which cannot be represented as
a sum of distinct perfect squares is finite.

L 30. Let a1, a2, a3, · · · be an increasing sequence of nonnegative integers
such that every nonnegative integer can be expressed uniquely in the form
ai+2aj+4al, where i, j, and k are not necessarily distinct. Determine a1998.

L 31. A finite sequence of integers a0, a1, · · · , an is called quadratic if for
each i ∈ {1, 2, · · · , n} we have the equality |ai − ai−1| = i2.



64 PROBLEMS IN ELEMENTARY NUMBER THEORY

(a) Prove that for any two integers b and c, there exists a
natural number n and a quadratic sequence with a0 = b and
an = c.
(b) Find the smallest natural number n for which there exists
a quadratic sequence with a0 = 0 and an = 1996.

L 32. A composite positive integer is a product ab with a and b not neces-
sarily distinct integers in {2, 3, 4, . . . }. Show that every composite positive
integer is expressible as xy + xz + yz + 1, with x, y, z positive integers.

L 33. Let a1, a2, · · · , ak be relatively prime positive integers. Determine the
largest integer which cannot be expressed in the form

x1a2a3 · · · ak + x2a1a3 · · · ak + · · ·+ xka1a2 · · · ak−1

for some nonnegative integers x1, x2, · · · , xk.

L 34. If n is a positive integer which can be expressed in the form n =
a2 + b2 + c2, where a, b, c are positive integers, prove that, for each positive
integer k, n2k can be expressed in the form A2 + B2 + C2 , where A,B,C
are positive integers.

L 35. Prove that every positive integer which is not a member of the infinite
set below is equal to the sum of two or more distinct numbers of the set

{3,−2, 223,−23, · · · , 22k3,−22k+1, · · · } = {3,−2, 12,−8, 48,−32, 192, · · · }.
L 36. Let k and s be odd positive integers such that

√
3k − 2− 1 ≤ s ≤

√
4k.

Show that there are nonnegative integers t, u, v, and w such that

k = t2 + u2 + v2 + w2, and s = t+ u+ v + w.

L 37. Let Sn = {1, n, n2, n3, · · · }, where n is an integer greater than 1.
Find the smallest number k = k(n) such that there is a number which may
be expressed as a sum of k (possibly repeated) elements in Sn in more than
one way. (Rearrangements are considered the same.)

L 38. Find the smallest possible n for which there exist integers x1, x2, · · · ,
xn such that each integer between 1000 and 2000 (inclusive) can be written
as the sum without repetition, of one or more of the integers x1, x2, · · · , xn.

L 39. In how many ways can 2n be expressed as the sum of four squares of
natural numbers ?

L 40. Show that
(a) infinitely many perfect squares are a sum of a perfect square and a

prime number, and
(b) infinitely many perfect squares are not a sum of a perfect square and

a prime number.
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L 41. The infamous conjecture of Goldbach is the assertion that every even
integer greater than 2 is the sum of two primes. Except 2, 4, and 6, every
even integer is a sum of two positive composite integers : n = 4 + (n −
4). What is the largest positive even integer that is not a sum of two odd
composite integers?

L 42. Prove that for each positive integer K there exist infinitely many even
positive integers which can be written in more than K ways as the sum of
two odd primes.

L 43. A positive integer n is abundant if the sum of its proper divisors
exceed n. Show that every integer greater than 89 × 315 is the sum of two
abundant numbers.
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15. The Geometry of Numbers

Srinivasa Aiyangar Ramanujan said ”An equation means nothing to me
unless it expresses a thought of God.”

M 1. Does there exist a convex pentagon, all of whose vertices are lattice
points in the plane, with no lattice point18 in the interior?

M 2. Show there do not exist four points in the Euclidean plane such that
the pairwise distances between the points are all odd integers.

M 3. Prove no three lattice points in the plane form an equilateral triangle.

M 4. The lengths of a polygon with 1994 sides are ai =
√
i2 + 4 (i =

1, 2, · · · , 1994). Prove that its vertices are not all on lattice points.

M 5. A triangle has lattice points as vertices and contains no other lattice
points. Prove that its area is 1

2 .

M 6. Let R be a convex region symmetrical about the origin with area greater
than 4. Show that R must contain a lattice point different form the origin.

M 7. Show that the number r(n) of representations of n as a sum of two
squares has average value π, that is

lim
n→∞

1
n

n∑

m=1

r(m) = π.

M 8. Prove that on a coordinate plane it is impossible to draw a closed
broken line such that

(i) coordinates of each vertex are rational,
(ii) the length of its every edge is equal to 1, and
(iii) the line has an odd number of vertices.

M 9. Prove that if a lattice parallelogram contains an odd number of lattice
points, then its centroid.

M 10. Prove that if a lattice triangle has no lattice points on the its boundary
in addition to its vertices, and one point in its interior, then this interior
point is its center of gravity.

M 11. Prove that if a lattice parallelogram contains at most three lattice
points in addition to its vertices, then those are on one of the diagonals.

M 12. Find coordinates of a set of eight non-collinear planar points so that
each has an integral distance from others.

18A point with integral coordinates
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16. Miscellaneous Problems

Mathematics is not yet ready for such problems. Paul Erdös

N 1. (a) Two positive integers are chosen. The sum is revealed to logician
A, and the sum of squares is revealed to logician B. Both A and B are
given this information and the information contained in this sentence. The
conversation between A and B goes as follows : B starts

B : ” I can’t tell what the two numbers are.”
A : ” I can’t tell what the two numbers are.”
B : ” I can’t tell what the two numbers are.”
A : ” I can’t tell what the two numbers are.”
B : ” I can’t tell what the two numbers are.”
A : ” I can’t tell what the two numbers are.”
B : ” Now I can tell what the two numbers are.”

What are the two numbers ?
(b) When B first says that he cannot tell what the two numbers are, A

receives a large amount of information. But when A first says that he cannot
tell what the two numbers are, B already knows that A cannot tell what the
two numbers are. What good does it do B to listen to A ?

N 2. It is given that 2333 is a 101-digit number whose first digit is 1. How
many of the numbers 2k, 1 ≤ k ≤ 332, have first digit 4?

N 3. Is there a power of 2 such that it is possible to rearrange the digits
giving another power of 2 ?

N 4. If x is a real number such that x2 − x is an integer, and for some
n ≥ 3, xn − x is also an integer, prove that x is an integer.

N 5. (Tran Nam Dung) Suppose that both x3 − x and x4 − x are integers
for some real number x. Show that x is an integer.

N 6. Suppose that x and y are complex numbers such that

xn − yn
x− y

are integers for some four consecutive positive integers n. Prove that it is
an integer for all positive integers n.

N 7. Let n be a positive integer. Show that
n∑

k=1

tan2 kπ

2n+ 1

is an odd integer.
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N 8. The set S = { 1
n | n ∈ N} contains arithmetic progressions of various

lengths. For instance, 1
20 , 1

8 , 1
5 is such a progression of length 3 and common

difference 3
40 . Moreover, this is a maximal progression in S since it cannot

be extended to the left or the right within S (11
40 and −1

40 not being members of
S). Prove that for all n ∈ N, there exists a maximal arithmetic progression
of length n in S.

N 9. Suppose that
1996∏

n=1

(1 + nx3n) = 1 + a1x
k1 + a2x

k2 + · · ·+ amx
km

where a1, a2, ..., am are nonzero and k1 < k2 < · · · < km. Find a1996.

N 10. Let p be an odd prime. Show that there is at most one non-degenerate
integer triangle with perimeter 4p and integer area. Characterize those
primes for which such triangle exist.

N 11. For each positive integer n, prove that there are two consecutive
positive integers each of which is the product of n positive integers > 1.

N 12. Let
a1,1 a1,2 a1,3 . . .
a2,1 a2,2 a2,3 . . .
a3,1 a3,2 a3,3 . . .

...
...

...
. . .

be a doubly infinite array of positive integers, and suppose each positive
integer appears exactly eight times in the array. Prove that am,n > mn for
some pair of positive integers (m,n).

N 13. The digital sum of a natural number n is denoted by S(n). Prove
that S(8n) ≥ 1

8S(n) for each n.

N 14. Let p be an odd prime. Determine positive integers x and y for which
x ≤ y and

√
2p−√x−√y is nonnegative and as small as possible.

N 15. Let α(n) be the number of digits equal to one in the dyadic represen-
tation of a positive integer n. Prove that

(a) the inequality α(n2) ≤ 1
2α(n)(1 + α(n)) holds,

(b) the above inequality is an equality for infinitely many
positive integers n, and
(c) there exists a sequence {ni} such that limi→∞

α(ni
2)

α(ni)
= 0.

N 16. Show that if a and b are positive integers, then
(
a+

1
2

)n
+
(
b+

1
2

)n

is an integer for only finitely many positive integer n.
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N 17. Determine the maximum value of m2+n2, where m and n are integers
satisfying m,n ∈ {1, 2, ..., 1981} and (n2 −mn−m2)2 = 1.

N 18. Denote by S the set of all primes p such that the decimal representa-
tion of 1

p has the fundamental period of divisible by 3. For every p ∈ S such
that 1

p has the fundamental period 3r one may write

1
p

= 0.a1a2 · · · a3ra1a2 · · · a3r · · · ,

where r = r(p) ; for every p ∈ S and every integer k ≥ 1 define f(k, p) by

f(k, p) = ak + ak+r(p) + ak+2r(p).

a) Prove that S is finite.
b) Find the highest value of f(k, p) for k ≥ 1 and p ∈ S.

N 19. Determine all pairs (a, b) of real numbers such that a[bn] = b[an] for
all positive integer n. (Note that [x] denotes the greatest integer less than
or equal to x.)

N 20. Let n be a positive integer that is not a perfect cube. Define real
numbers a, b, c by

a = n
1
3 , b =

1
a− [a]

, c =
1

b− [b]
,

where [x] denotes the integer part of x. Prove that there are infinitely many
such integers n with the property that there exist integers r, s, t, not all zero,
such that ra+ sb+ tc = 0.

N 21. Find, with proof, the number of positive integers whose base-n rep-
resentation consists of distinct digits with the property that, except for the
leftmost digit, every digit differs by ±1 from some digit further to the left.

N 22. The decimal expression of the natural number a consists of n digits,
while that of a3 consists of m digits. Can n+m be equal to 2001?

N 23. Observe that
1
1

+
1
3

=
4
3
, 42 + 32 = 52,

1
3

+
1
5

=
8
15
, 82 + 152 = 172,

1
5

+
1
7

=
12
35
, 122 + 352 = 372.

State and prove a generalization suggested by these examples.

N 24. (C. Cooper, R. E. Kennedy) A number n is called a Niven number,
named for Ivan Niven, if it is divisible by the sum of its digits. For example,
24 is a Niven number. Show that it is not possible to have more than 20
consecutive Niven numbers.
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N 25. Prove that if the number α is given by decimal 0.9999 · · · , where there
are at least 100 nines, then

√
α also has 100 nines at the beginning.

N 26. Prove that there does not exist a natural number which, upon transfer
of its initial digit to the end, is increased five, six, or eight times.

N 27. Which integers have the following property? If the final digit is
deleted, the integer is divisible by the new number.

N 28. Let A be the set of 16 first positive integer. Find the least positive
integer k satisfying the condition : In every k-subset of A, there exist two
distinct a, b ∈ A such that a2 + b2 is prime.

N 29. What is the rightmost nonzero digit of 1000000! ?

N 30. For how many positive integers n is

(1999 +
1
2

)n + (2000 +
1
2

)n

an integer ?

N 31. Is there a 3×3 magis square consisting of distinct Fibonacci numbers
(both f1 and f2 may be used; that is two 1s are allowed)? (A magic square
has the property that the eight sums along rows, columns, and the two main
diagonals are all the same number.)

N 32. Alice and Bob play the following number-guessing game. Alice writes
down a list of positive integers x1, · · · , xn, but does not reveal them to
Bob, who will try to determine the numbers by asking Alice questions. Bob
chooses a list of positive integers a1, · · · , an and asks Alice to tell him the
value of a1x1 + · · ·+anxn. Then Bob chooses another list of positive integers
b1, · · · , bn and asks Alice for b1x1 + · · ·+ bnxn. Play continues in this way
until Bob is able to determine Alice’s numbers. How many rounds will Bob
need in order to determine Alice’s number ?

N 33. Four consecutive even numbers are removed from the set

A = {1, 2, 3, · · · , n}.
If the average of the remaining numbers is 51.5625, which four numbers were
removed ?

N 34. Let Sn be the sum of the digits of 2n. Prove or disprove that Sn+1 =
Sn for some positive integer n.

N 35. Counting from the right end, what is the 2500th digit of 10000! ?
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C 13. Putnam 1991/B5

C 14 (Ab, pp. 34).
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21Contributor, Date
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H 47.

5. Functional Equations

H 48. Singapore 1996

H 49. Turkey 1995

H 50. IMO 1977/6

H 51. Unknown 24

H 52. Unknown
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24I don’t know the origin of the problem.
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I 7. IMO 1993/1
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J 23. APMC 1999

J 24. IMO Short List 2001 N3
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J 26 (Ae pp.228).

J 27. IMO Short List 1994 N6

J 28. IMO Short List 1990 HUN1
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J 35. USA 1993
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J 43 (Rh, pp. 276).
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J 50. IMO Short List 1991 P14 (USS 2)

J 51. IMO 1991/2
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J 64 (Tt). Tournament of the Towns 2001 Fall/A-Level

J 65 (GML, pp. 173).
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K 3. IMO 1971/3
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K 5. India 1998

K 6. USA 2001

K 7. USA 1998

K 8. Romania 1998
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K 11. IMO 1991/3
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K 37. IMO Short List 1999
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K 42. Putnam 1997/A5

K 43. British Mathematical Olympiad 2000 - Arne Smeets : 2003/12/13
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K 47 (KhKw, pp. 12).
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Irving Kaplanky

L 2. Netherlands 1994 - Arne Smeets : 2003/12/12

L 3. Belarus 2002 Proposed by V. Bernik - Arne Smeets : 2003/12/13

L 4. Math. Magazine, Problem Q817, Proposed by Robert B. McNeill

L 5.

L 6 (IHH, pp. 474).

L 7 (Tma, pp. 22).

L 8 (Rdc pp.24).

L 9. IMO Short List 1990 AUS3

L 10. IMO 1992/6

L 11. IMO 1997/6

L 12 (Hua pp.199).

L 13. Math. Magazine, Problem Q814, Proposed by Paul Erdös

L 14. Romania 2001, Proposed by Laurentiu Panaitopol

L 15. Amer. Math. Monthly, Problem E3064, Proposed by Ion Cucurezeanu

L 16. Putnam 2000

L 17.
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L 18. Amer. Math. Monthly, Problem 2760, Proposed by Kenneth S.
Williams

L 19. APMO 1994/3

L 20. India 1998

L 21. Romania 1997, Proposed by Marcel Tena

L 22.

L 23.

L 24.

L 25.

L 26. IMO 1983/3

L 27. IMO 1976/4

L 28.

L 29. IMO Short List 2000 N6

L 30. IMO Short List 1998 P21

L 31. IMO Short List 1996 N3

L 32. Putnam 1988/B1

L 33. Math. Magazine, Problem 1561, Proposed by Emre Alkan

L 34 (KhKw, pp. 21).

L 35 (EbMk, pp. 46).

L 36 (Wsa, pp. 271).

L 37 (GML, pp. 37).

L 38 (GML, pp. 144).

L 39 (DNI, 28).

L 40 (JDS, pp. 25).

L 41 (JDS, pp. 25).

L 42. Math. Magazine, Feb. 1986, Problem 1207, Proposed by Barry Powell

L 44. Math. Magazine, Nov. 1982, Problem 1130, Proposed by J. L. Self-
ridge

The Geometry of Numbers

M 1. Math. Magazine, Problem 1409, Proposed by Gerald A. Heur

M 2. Putnam 1993/B5
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M 3.

M 4. Israel 1994

M 5.

M 6 (Hua pp.535).

M 7 (GjJj pp.215).

M 8. IMO Short List 1990 USS3

M 9 (PeJs, pp. 125).

M 10 (PeJs, pp. 125).

M 11 (PeJs, pp. 125).

M 12 (Jjt, pp. 75).

Miscellaneous Problems

N 1. Math. Magazine, May 1984, Problem 1173, Proposed by Thomas S.
Ferguson

N 2 (Tt). Tournament of the Towns 2001 Fall/A-Level

N 3 (Pt). Tournament of the Towns

N 4. Ireland 1998

N 5. Vietnam 2003 - Tran Nam Dung : 2003/12/13

N 6. Amer. Math. Monthly, Problem E2998, Proposed by Clark Kimberling

N 7.

N 8. British Mathematical Olympiad 1997 - Arne Smeets : 2003/12/13

N 9. Turkey 1996 - Arne Smeets : 2003/12/12

N 10. CRUX, Problem 2331, Proposed by Paul Yiu

N 11 (Rh, pp. 165). Unused problems for 1985 Canadian Mathematical
Olympiad

N 12. Putnam 1985/B3

N 13. Latvia 1995

N 14. IMO Short List 1992 P17

N 15.

N 16 (Ns pp.4).

N 17. IMO 1981/3

N 18. IMO Short List 1999 N4
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N 19. IMO Short List 1998 P15

N 20. IMO Short List 2002 A5

N 21. USA 1990

N 22 (Tt). Tournament of the Towns 2001 Spring/O-Level

N 23 (EbMk, pp. 10).

N 24 (Jjt, pp. 58).

N 25 (DNI, 20).

N 26 (DNI, 12).

N 27 (DNI, 11).

N 28. Vietnam 2004

N 29 (JDS, pp. 28).

N 30 (JDS, pp. 30).

N 31 (JDS, pp. 31).

N 32 (JDS, pp. 57).

N 33 (Rh2, pp. 78).

N 34. Math. Magazine, Nov. 1982, Q679, Proposed by M. S. Klamkin and
M. R. Spiegel

N 35. Math. Magazine, Sep. 1980, Problem 1075, Proposed by Phillip M.
Dunson
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