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Today: motivation and an overview of some of the main results in the field.
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Context

Understand the geometry and the structure of large random trees by studying
their limits.
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Motivation for studying limits

Let (Xn)n!1 be “discrete” objects converging towards a “limiting” object X:

Xn −→
n→∞

X .

Several consequences:

- From the discrete world to the continuous world: if a property P is satisfied
by all the Xn and passes to the limit, then X satisfies P.

- From the continuous world to the discrete world: if a property P is satisfied
by X and passes to the limit, Xn satisfies “approximately” P for n large.

- Universality: if (Yn)n!1 is another sequence of objects converging towards
X , then Xn and Yn share approximately the same properties for n large.
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Motivation for studying limits

Let (Xn)n!1 be “discrete” objects converging towards a “continuous” object X:

Xn −→
n→∞

X .

! In what space do the objects live?

Here, a metric space (Z , d)! What is the sense of the convergence when the objects are random? Here,
convergence in distribution:

E [F(Xn)] −→
n→∞

E [F(X)]

for every continous bounded function F : Z → R.

Xn
(d)−→

n→∞
X implies G(Xn)

(d)−→
n→∞

G(X)

for every continuous function G : Z → R.
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Outline

I. Models coded by trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

IV. Scaling limits of Bienaymé trees
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Stack triangulations (Albenque, Marckert)
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Maps (Schaeffer)
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Maps (Addario-Berry)
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Parking functions (Chassaing, Louchard)
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Plane trees

Figure: Two di!erent plane trees

We consider plane (i.e. rooted ordered) trees.
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Bienaymé trees
In a Bienaymé tree, every individual has a random number of children
(independently of one other) distributed according to µ, a probability measure
on {0, 1, 2, . . .} called the o!spring distribution.

! When µ(1) ̸= 1 (always implicitly the case in the sequel), the tree is almost
surely finite if and only if ∑∞

k=1 kµ(k) ! 1.
[Bienaymé 1845, Galton & Watson 1875, Ste!ensen 1930]

When ∑∞
k=1 kµ(k) = 1, µ is said to be critical.

! When ∑∞
k=1 kµ(k) ! 1, for a finite plane tree T ,

Pµ(T ) =
∏

u→T
µ(ku(T )),

where ku(T ) is the number of children of u, defines a probability measure on
the set of all finite plane trees.

A random tree with law Pµ is called a µ-Bienaymé tree (or Bµ tree).
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Size-conditioned Bienaymé trees
It is natural to consider Tn, a Bµ tree conditioned to have n vertices (we
implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned
Bienaymé trees:

– when µ(k) = 1/21+k for k ! 0, Tn is a uniform plane tree with n vertices;

– when µ(0) = µ(2) = 1/2, T2n+1 is a uniform binary tree with n vertices;

– when µ(k) = e−1/k! for k ! 0, by labelling the vertices of Tn uniformly at
random and forgetting the order among children, one gets a uniform labelled
tree (a.k.a. Cayley tree) with n vertices.
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Exponential tilting

It is possible to change the mean of µ without changing the law of the
size-conditioned Bienaymé tree!

Let ρµ be the radius of convergence of Gµ(z) =
∑

µ(i)z i .

! If c < ρµ, two Bienaymé trees with o!spring distributions µ and µc, defined
by

µc(k) =
1

Gµ(c)
ckµ(k), k ! 0,

when conditioned on having n vertices, have the same distribution (Kennedy
’75).
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What are the limits of large size-conditioned Bienaymé trees?
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I. Models coded by trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

IV. Scaling limits of Bienaymé trees
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What does a large size-conditioned Bienaymé tree look like, near the root?
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Local limits
We will consider two regimes:

! µ critical (∑i iµ(i) = 1).

! µ subcritical (∑i iµ(i) < 1)

and ρµ = 1, with ρµ equal to the radius of
convergence of Gµ(z) =

∑
µ(i)z i .

These regimes actually cover all the cases. Indeed recall that if c < ρµ,
two Bienaymé trees with o!spring distributions µ and µc, defined by

µc(k) =
1

Gµ(c)
ckµ(k), k ! 0,

when conditioned on having n vertices, have the same distribution.
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Local limits: critical case
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Local limits: critical case
Let µ be a critical o!spring distribution. Let Tn be a Bienaymé tree
conditioned on having n vertices.

Theorem (Kesten ’87, Janson ’12, Abraham & Delmas ’14)
The convergence

Tn
(d)−→

n→∞
T∞

holds in distribution for the local topology, where T∞ is the infinite Bienaymé
tree conditioned to survive (or Kesten tree).

! We will prove this theorem in the mini-course.
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The convergence

Tn
(d)−→

n→∞
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tree conditioned to survive (or Kesten tree).

! Are the following functionals continuous with respect to the local topology:

– degree of the root?

Yes!

! We will prove this theorem in the mini-course.
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Local limits: critical case
Let µ be a critical o!spring distribution. Let Tn be a Bienaymé tree
conditioned on having n vertices.
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holds in distribution for the local topology, where T∞ is the infinite Bienaymé
tree conditioned to survive (or Kesten tree).
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Local limits: subcritical case
Let µ be a subcritical o!spring distribution and assume that the radius of
convergence of ∑i!0 µ(i)z i is 1.

Theorem (Jonsson & Stefánsson ’11, Janson ’12, Abraham &
Delmas ’14)
The convergence

Tn
(d)−→

n→∞
T∗
∞

holds in distribution for the local topology, where T∗
∞ is a “condensation” tree.

! This means that [Tn]k → [T∞]k in distribution, where [T ]k denotes the
subtree of T obtained by keeping the first k children on the first k generations:

Igor Kortchemski Limits of large random trees 24 / 672



Models coded by trees Bienaymé trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees Recap

Local limits: subcritical case
Let µ be a subcritical o!spring distribution and assume that the radius of
convergence of ∑i!0 µ(i)z i is 1.
Theorem (Jonsson & Stefánsson ’11, Janson ’12, Abraham &
Delmas ’14)
The convergence

Tn
(d)−→

n→∞
T∗
∞

holds in distribution for the local topology, where T∗
∞ is a “condensation” tree.

! This means that [Tn]k → [T∞]k in distribution, where [T ]k denotes the
subtree of T obtained by keeping the first k children on the first k generations:

Igor Kortchemski Limits of large random trees 24 / 672



Models coded by trees Bienaymé trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees Recap

Local limits: subcritical case
Let µ be a subcritical o!spring distribution and assume that the radius of
convergence of ∑i!0 µ(i)z i is 1.
Theorem (Jonsson & Stefánsson ’11, Janson ’12, Abraham &
Delmas ’14)
The convergence

Tn
(d)−→

n→∞
T∗
∞

holds in distribution for the local topology, where T∗
∞ is a “condensation” tree.

! This means that [Tn]k → [T∞]k in distribution, where [T ]k denotes the
subtree of T obtained by keeping the first k children on the first k generations:

Igor Kortchemski Limits of large random trees 24 / 672



Models coded by trees Bienaymé trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees Recap

Local limits: subcritical case
Let µ be a subcritical o!spring distribution and assume that the radius of
convergence of ∑i!0 µ(i)z i is 1.
Theorem (Jonsson & Stefánsson ’11, Janson ’12, Abraham &
Delmas ’14)
The convergence

Tn
(d)−→

n→∞
T∗
∞

holds in distribution for the local topology, where T∗
∞ is a “condensation” tree.

! This means that [Tn]k → [T∞]k in distribution, where [T ]k denotes the
subtree of T obtained by keeping the first k children on the first k generations:

Igor Kortchemski Limits of large random trees 24 / 672



Models coded by trees Bienaymé trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees Recap

I. Models coded by trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

IV. Scaling limits of Bienaymé trees
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What does a large Bienaymé tree look like, globally?

Igor Kortchemski Limits of large random trees 26 / 672



Models coded by trees Bienaymé trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees Recap

I have simulated and drawn a uniform plane tree with 10000 vertices. What did I get?

Figure: Result 1.

Figure: Result 2.

Figure: Result 3. Figure: Result 4.

! wooclap.com ; code randomtree.
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We will also consider the two regimes:

! µ critical.

! µ subcritical and ρµ = 1.

" To have scaling limits, we will need additional regularity assumptions.

We shall code plane trees by functions.
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Coding trees by functions
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Contour function of a tree
Define the contour function of a tree:
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Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.
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Scaling limits
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Scaling limits: finite variance
Let µ be an o!spring distribution with finite positive variance such that∑

i!0 iµ(i) = 1. Let Tn be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous ’93)
Let σ2 be the variance of µ. Let t !→ Ct(Tn) be the contour function of Tn.
Then: (

1√n C2nt(Tn)

)

0"t"1

(d)−→
n→∞

(
2
σ
· (t)

)

0"t"1
,

where the convergence holds in distribution in C([0, 1],R), where is the
normalized Brownian excursion.

Idea of the proof:

! conditioned Donsker’s invariance principle.
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! Consequence: for every a > 0,

P
(σ

2 · Height(Tn) > a ·
√

n
)

−→
n→∞

P (sup > a)

Idea of the proof:

! conditioned Donsker’s invariance principle.

Igor Kortchemski Limits of large random trees 33 / 672



Models coded by trees Bienaymé trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees Recap

Scaling limits: finite variance
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Theorem (Aldous ’93)
Let σ2 be the variance of µ. Let t !→ Ct(Tn) be the contour function of Tn.
Then: (
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)
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(d)−→
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(
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σ
· (t)

)

0"t"1
,

where the convergence holds in distribution in C([0, 1],R), where is the
normalized Brownian excursion.

! Consequence: for every a > 0,

P
(σ

2 · Height(Tn) > a ·
√

n
)

−→
n→∞

P (sup > a)

=
∞∑

k=1
(4k2a2 − 1)e−2k2a2

Idea of the proof:

! conditioned Donsker’s invariance principle.
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Do the discrete trees converge to a continuous tree?

Yes, if we view trees as compact metric spaces by equiping the vertices with the
graph distance!
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The Hausdorff distance

Let X , Y be two subsets of the same metric space Z .

Let

Xr = {z ∈ Z ; d(z, X) ! r}, Yr = {z ∈ Z ; d(z, Y ) ! r}

be the r-neighborhoods of X and Y . Set

dH (X , Y ) = inf {r > 0; X ⊂ Yr and Y ⊂ Xr } .
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The Gromov–Hausdorff distance

Let X , Y be two compact metric spaces.

The Gromov–Hausdor! distance between X and Y is the smallest Hausdor!
distance between all possible isometric embeddings of X and Y in a same
metric space Z .
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The Brownian tree
! Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a
compact metric space such that the convergence

σ

2√n · Tn
(d)−→

n→∞
T ,

holds in distribution in the space of compact metric spaces equiped with the
Gromov–Hausdor! distance.

Notation: for a metric space (Z , d) and a > 0, a · Z is the metric space
(Z , a · d).

The metric space T is called the Brownian continuum random tree (CRT), and
is coded by a Brownian excursion.
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An approximation of a realization of a Brownian CRT

Igor Kortchemski Limits of large random trees 38 / 672



Models coded by trees Bienaymé trees Local limits of Bienaymé trees Scaling limits of Bienaymé trees Recap

Scaling limits: infinite variance

When µ is critical and has infinite variance, scaling limits (for the
Gromov–Hausdor! topology) exist under the assumption that µ is in the domain
of attraction of a stable law.

! This essentially means that µ(n) ∼ c/n1+α with α ∈ (1, 2) (heavy tail
behavior).

! Scaling limits are described use α-stable Lévy processes.
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What about non-critical offspring distributions?

! Why did Aldous consider only critical o!spring distributions?
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

! Situation considered only quite recently by Jonsson & Stefánsson ’11!
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson ’11)
Let m be the mean of µ. Denote by ∆(Tn) the maximum degree of Tn. Then

∆(Tn)

n
(P)−→

n→∞
1 − m.
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson ’11)
Let m be the mean of µ. Denote by ∆(Tn) the maximum degree of Tn. Then

∆(Tn)

n
(P)−→

n→∞
1 − m.

! What is the order of magnitude of the second largest degree ∆2(Tn)?
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson ’11)
Let m be the mean of µ. Denote by ∆(Tn) the maximum degree of Tn. Then

∆(Tn)

n
(P)−→

n→∞
1 − m.

! What is the order of magnitude of the second largest degree ∆2(Tn)?

Theorem (K. ’15)
For every u > 0,

P
(
∆2(Tn)

n1/β ! u
)

−→
n→∞

exp
(
−

c
β

· 1
uβ

)
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

Theorem (Jonsson & Stefánsson ’11)
Let m be the mean of µ. Denote by ∆(Tn) the maximum degree of Tn. Then

∆(Tn)

n
(P)−→

n→∞
1 − m.

Theorem (K. ’15)
For every u > 0,

P
(
∆2(Tn)

n1/β ! u
)

−→
n→∞

exp
(
−

c
β

· 1
uβ

)

! This is not true for any subcritical o!spring distribution whose generating
function has radius of convergence equal to 1 (even though there always is a
local limit with a finite spine)!
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

! What is the height of Tn?
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

! What is the height of Tn?

Theorem (K. ’15)
We have

Height(Tn)

ln(n)
(P)−→

n→∞
ln(1/m).
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

! Are there non-trivial scaling limits?
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Condensation (subcritical case)
Let µ be a subcritical o!spring distribution such that µ(n) ∼ c/n1+β with
β > 2. Let Tn be a µ-Bienaymé tree conditioned on having n vertices.

! Are there non-trivial scaling limits?

! No, not for the Gromov–Hausdor! topology: the tree is too “bushy”.
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Recap
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Recap: local limits
Tn is a Bµ tree conditioned to have n vertices, and ρµ is the radius of
convergence of Gµ(z) =

∑
µ(i)z i .

Local limit of Tn

Critical µ

[Kesten ’87, Janson ’12, Abraham & Delmas ’14]

Subcritical µ
with ρµ = 1

[Jonsson & Stefánsson ’11, Janson ’12, Abraham & Delmas ’14]
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Global behavior of Tn

Critical µ

Var(µ) < ∞ µ(n) ∼ c
n1+α , α ∈ (1, 2] µ(n) ∼ c

ln(n)2n2 , α = 1

Scaling limit:
Brownian CRT

cµ→n · Tn → T

[Aldous ’93]

Scaling limit:
α-stable tree
cµ

n1−1/α · Tn → Tα

[Duquesne ’02]

No scaling limits:
condensation

[K. & Richier ’19]

Subcritical
µ with
ρµ = 1

µ(n) ∼ c
n1+β , β ! 1 or µ(n) ∼ c

ln(n)2n2 , β = 1

No scaling limits, condensation
[Jonsson & Stefánsson ’11, K. ’15, K. & Vetter 25’]
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