CPES 2 – Probabilités approfondies 2015-2016

Feuille d'exercices 7 : Convergence en loi, fonctions génératrices

Igor Kortchemski – igor.kortchemski@cmap.polytechnique.fr

Exercice 1. Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires indépendantes de même loi uniforme sur [0,1], définies sur le même espace de probabilité. On pose

$$m_n = \min(X_1, \dots, X_n), \qquad M_n = \max(X_1, \dots, X_n).$$

- (1) Étudier la convergence en loi de la variable aléatoire nm_n .
- (2) Étudier la convergence en loi de la variable aléatoire $n(1-M_n)$.

Exercice 2. Soit $(X_i)_{i\geq 1}$ une suite de variables aléatoires indépendantes de même loi de Bernoulli de paramètre $p\in]0,1[$, définies sur le même espace de probabilité. On pose $S_n=X_1+\cdots+X_n$. Étudier la convergence en loi de la variable aléatoire

$$\frac{S_n - np}{\sqrt{n}}.$$

Exercice 3. En utilisant le théorème central limite, déterminer la limite suivante :

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}.$$

On pourra utiliser le fait que la somme de n variables aléatoires de Poisson indépendantes de paramètres $\lambda_1, \ldots, \lambda_n$ est une variable aléatoire de Poisson de paramètre $\lambda_1 + \cdots + \lambda_n$.

Exercice 4. Soit X une variable aléatoire à valeurs dans $\{0, 1, 2, \ldots\}$ de fonction génératrice égale à

$$G(z) = a \exp(1 + z^2)$$

pour $z \in \mathbb{R}$, pour un certain $a \in \mathbb{R}$.

- (1) Trouver la valeur de a.
- (2) Déterminer la loi de X.
- (3) Est-ce que X admet une espérance et une variance? Si oui, les calculer.

Exercice 5. Soit X une variable aléatoire à valeurs dans $\{0,1,2,\ldots\}$ de fonction génératrice égale à $G_X(z)=1-\sqrt{1-z}$ pour |z|<1.

- (1) Calculer $\mathbb{P}(X=n)$ pour $n \geq 0$.
- (2) Soit Y une variable aléatoire indépendante de même loi que X, définie sur le même espace de probabilité que X. Calculer $\mathbb{P}(X + Y = n)$.

(3) Que vaut $\mathbb{E}[X]$?

Exercice 6. Soient N et $(X_i)_{i\geq 1}$ des variables aléatoires indépendantes à valeurs dans \mathbb{N} . On suppose que les variables $(X_i)_{i\geq 1}$ suivent toutes une même loi de fonction génératrice G_X . On pose $S_0 = 0$ et, pour tout $n \geq 1$,

$$S_n = X_1 + \dots + X_n.$$

Le but de cet exercice est d'étudier la variable aléatoire S_N .

- (1) Montrer que $G_{S_N}(t) = G_N(G_X(t))$ pour tout $|t| \le 1$.
- (2) On suppose que N et X_1 admettent une espérance. Montrer que S_N admet une espérance et que

$$\mathbb{E}\left[S_{N}\right] = \mathbb{E}\left[N\right] \mathbb{E}\left[X_{1}\right].$$