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Week : Cardinality and combinatorics
In
ru�or: Igor Kortchemski (igor.kortchemski@polytechnique.edu)
Tutorial Assi
ants:

– Apolline Louvet (groups A&B, apolline.louvet@polytechnique.edu)
– Milica Tomasevic (groups C&E, milica.tomasevic@polytechnique.edu)
– Benoı̂t Tran (groups D&F, benoit.tran@polytechnique.edu).

 Important exercises

The solutions of the exercises which have not been solved in some group will be available on the course webpage.

Exercise 1. How many integers 1 ≤ a,b,c ≤ 100 such that a < b and a < c are there?

Solution of exercise 1. For a given choice of a, there are (100− a)2 choices of (b,c). The total number

of choices is therefore

100∑
a=1

(100− a)2 =
99∑
a=0

a2 =
99∑
a=1

a2 =
99 · 100 · 199

6

(
= 328350

)

by using the formula
∑n
k=1 k

2 = n(n+1)(2n+1)
6 which can be shown by indu�ion.

More formal solution. Set E = {(a,b,c) : 1 ≤ a,b,c,≤ 100, a < b and a < c}, and for 1 ≤ i ≤ 100, write

Ei = {(i,b, c) : 1 ≤ b,c ≤ 100, i < b and i < c}. Then E = ∪100
i=1Ei and the union is disjoint. Therefore

#E =
100∑
i=1

#Ei

and #Ei = (100− i)2.

Exercise 2. In how many ways is it possible to arrange in a line 7 girls and 3 boys in the following cases:

) When the 3 boys follow each other.

) When the fir
 and la
 person are girls, and when all the 3 boys do not follow each other.

Solution of exercise 2.
) Fir
 consider the boys as one person. Then there are 8! possibilities (8 possibilites for the fir


person, then 7 for the second one, etc.). Then one has to choose the order of the boys: 3! possibilities.

Thefore the result is 3! · 8!.

) The idea is to use the “complement rule”. Let A be the set of configurations where the fir

and the la
 person are girls. Let B be the set of configurations where the fir
 and the la
 person

are girls and when boys do not follow each other. Then #(A \B) = #A− #B, and A \B represents the

set of configurations where the fir
 and the la
 person are girls and the boys follow each other. We

have,

#A = 7 · 6 · 8!

(7 possibilities of choosing a girl for the fir
 position, 6 for the la
 position, 10− 2 = 8 possibilities


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for the second position, 7 for the third one and so on) and a similar argument as for the fir
 que
ion

gives

#(A \B) = 7 · 6 · 6! · 3!

The result is therefore

#B = #A−#(A \B) = 7 · 6 · 8!− 7 · 6 · 6! · 3! = 7!(6 · 7 · 8− 6 · 3!) = 300 · 7!

Exercise 3. Let n ≥ 2 be an integer, and set E = {1,2, . . . ,n}. Find the cardinalities of the following sets:

F = {(i, j) ∈ E2}, G = {(i, j) ∈ E2, i , j}, H = {(i, j) ∈ E2, i < j}, I = {A ⊆ E,Card(A) = 2}.

Solution of exercise 3. faire comprendre aux élèves la différence entre l’ensemble G et l’ensemble I .

• Intuitive version: fir
 n choices for i, then n choices for j.

Formal version: by the course we have #F = #E ×#E = n2.

• Fir
 solution. n choices for i, then n− 1 choices for j, which gives n(n− 1).

Second solution. We use the “complement rule” by noticing that

G = {(i, j) ∈ E2} \ {(i, i), i ∈ E}.

Therefore

#G = #{(i, j) ∈ E2} −#{(i, i), i ∈ E} = n2 −n = n(n− 1).

• Fir
 solution. For a fixed 1 ≤ i ≤ n, there are n− i choices for j. Therefore

#H =
n∑
i=1

(n− i) =
n−1∑
i=0

i =
n−1∑
i=1

i =
n(n− 1)

2
.

Second solution. Let us define a map

φ : G −→ H

(i, j) 7−→

(i, j) if i < j

(j, i) if i > j
.

Every pair (a,b) in H has exa�ly two preimages by f : (a,b) and (b,a). Hence #G = 2×#H and

#H = n(n− 1)/2.


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• The map
ψ : I −→ H

A 7−→ (min(A),max(A))

is a bije�ion, since it is one-to-one and onto.

Therefore #I = #H = n(n− 1)/2.

Exercise 4. How many onto fun�ions from {1,2, . . . ,n} to {1,2,3} are there?

Solution of exercise 4. We use the complement rule and find the number of fun�ions which are not

onto. Fir
, there are 3n fun�ions from {1,2, . . . ,n} to {1,2,3}. Let f : {1,2, . . . ,n} → {1,2,3} be a

fun�ion which is not onto.

. in the case where the range of f has cardinality 1: we have 3 choices.

. in the case where the range of f has cardinality 2: we have 3 choices to choose the element

which is not in the range of f . Then choosing the elements of {1,2, . . . ,n} which are mapped to the

smalle
 element of the range of f amounts to choosing a nonempty subset of {1,2, . . . ,n} which is

not {1,2, . . . ,n} itself, which gives 2n − 2 choices. In total, this gives 3(2n − 2) choices.

Therefore the number of onto fun�ions from {1,2, . . . ,n} to {1,2,3} is

3n − (3 + 3(2n − 2)) = 3n − 3 · 2n + 3.

Exercise 5. Let E and F be finite sets having the same cardinality, and let f : E → F be a fun�ion. Show

that the following three assertions are equivalent:

() f is onto;

() f is one-to-one;

() f is a bije�ion.

Solution of exercise 5. Assume that n = #E = #F.

It is clear that (3) =⇒ (1) and (3) =⇒ (2). Let us fir
 show that (1) =⇒ (3). Assume that

f is onto, and let us show that f is one-to-one. Argue by contradi�ion and assume that f is not

one-to-one. Then #f (E) < n. Since f is onto, we have f (E) = F, so that #f (E) = #F = n. This is a

contradi�ion. Hence (1) =⇒ (3).

Let us now show that (2) =⇒ (3). We shall use the following simple fa�: if A and B are finite

sets such that A ⊆ B and #A = #B, then A = B (to show this fa�, we argue by contradi�ion: if A , B,

since A ⊆ B, we can then find an element x such that x ∈ B and x < A, so that #B > #A, which is a

contradi�ion).

Assume that f is one-to-one. As a consequence, #f (E) = #E = n. Therefore #f (E) = #F and we

always have f (E) ⊆ F. By the simple fa� above, it follows that f (E) = F, so that f is onto. Hence

(2) =⇒ (3).


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 Homework exercise

You have to individually hand in the written solution of the next exercise to your TA on Monday, November th.

Exercise 6.
) How many three-digit numbers abc have exa�ly one digit equal to 9? Ju
ify your answer.

) How many three-digit numbers abc have the property that a , b or b , c? Ju
ify your answer.

) How many three-digit numbers abc have the property that b > c? Ju
ify your answer.

Note. A three-digit numbers cannot 
art with a “0”, for in
ance 011 is not a three-digit number.

Solution of exercise 6.
) We use the sum rule (disjun�ion of cases).

Case . The fir
 digit is 9. Then we have 9 choices for b and 9 choices for c, which gives 81

choices.

Case . The second digit is 9. Then we have 8 choices for a and 9 choices for c, which gives 72

choices.

Case . The third digit is 9. Then we have 8 choices for a and 9 choices for b, which gives 72

choices.

In total, we have 225 such numbers.

) We use the complement rule: we count the number of three-digit numbers such that a = b and

b = c. This means a = b = c, so there are 9 such numbers. Since there are 9 × 102 = 900 three-digit

numbers, it follows that there are 900 − 9 = 891 three-digit numbers abc having the property that

a , b or b , c.

) For a fixed 1 ≤ a ≤ 9, and a fixed 0 ≤ b ≤ 9, there are b choices for c. By the sum rule, the

answer is
9∑
a=1

9∑
b=0

b = 9
9∑
b=0

b = 9× 9× 10
2

= 405.

 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week .

Exercise 7. Fix an integer n ≥ 1 and set E = {1,2, . . . ,n}. A fun�ion f : E→ E is an involution if f (f (x)) = x

for every x ∈ E. Let un be the number of involutions of E.

) Compute u1 and u2.

) Show that for every n ≥ 1, un+2 = un+1 + (n+ 1)un.

Solution of exercise 7.
) We have u1 = 1 (there is only one fun�ion from a set with one element to itself) and u2 = 2.

Indeed, we already saw in the course that an involution is a bije�ion. There are two bije�ions from

{1,2} to itself (which are given by f (1) = 1, f (2) = 2 and g(2) = 1, g(1) = 2 and both are involutions.

) Fix n ≥ 1 and consider an involution f : {1,2, . . . ,n+ 2} → {1,2, . . . ,n+ 2}. The idea is to look at


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what happens to f (1).

. If f (1) = 1, then f , re
ri�ed to {2, . . . ,n} is an involution on a set with n + 1 elements, which

gives un+1 possibilities.

. If f (1) , 1, then there are n + 1 possibilities for f (1). Once f (1) has been chosen, we are left

with an involution on a set with n elements (that is {1,2, . . . ,n+ 2}\{1, f (1)}). This gives

un+2 = un+1 + (n+ 1)un.

More formal solution. The set of all involutions on {1,2, . . . ,n+ 2} can be we written as a disjoint

union

E ∪E2 ∪E3 ∪ · · · ∪En+2,

where E is the set of all involutions f on {1,2, . . . ,n+ 2} such that f (1) = 1, and for 2 ≤ i ≤ n+ 2, Ei is

set of all involutions f on {1,2, . . . ,n+ 2} such that f (1) = i and f (i) = 1.

An element of E (which is a fun�ion) is uniquely defined by its a�ion on {2, . . . ,n+ 2}, which is

an involution on this set of n+ 1 elements, so that #E = un+1.

An element of Ei , for 1 ≤ i ≤ n+ 2, is uniquely defined by its a�ion on {1,2, . . . ,n+ 2}\{1, i}, which

is an involution on this set of n+ 1 elements, so that #Ei = un.

We conclude that

un+2 = un+1 + (n+ 1)un.

Exercise 8. (Shephard lemma or black sheep lemma) Let E and F be two finite sets and f : E → F a

fun�ion. Assume that there exi
s an integer p ≥ 1 such that for every y ∈ F, #f −1({y}) = p. Show that

#E = p ·#F.

Solution of exercise 8. To simplify notation, set m = #E, n = #F and write F = {y1, y2, . . . , yn}. For

1 ≤ i ≤ n, set Ai = f −1({yi}). We claim that

E =
n⋃
i=1

Ai

and that this union is disjoint. Fir
, it is clear that ∪ni=1Ai ⊆ E (since Ai ⊆ E for every 1 ≤ i ≤ n). On

the other hand, if x ∈ E, and if f (x) = yj with a certain 1 ≤ j ≤ n, then x ∈ Aj . The fa� that the union

is disjoint was e
ablished in Exercise  of the Tutorial Sheet .
Therefore

#E =
n∑
i=1

#Ai =
n∑
i=1

p = pn.

Remark. Can you guess why I call this lemma “shephard lemma” or “black sheep lemma”?


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Exercise 9. (Inclusion-exclusion formula) Fix an integer n ≥ 2 and let A1, . . . ,An be sets. Show that

#
( n⋃
i=1

Ai

)
=

∑
I⊆{1,2,...,n}

I,∅

(−1)−1+|I | #
(⋂
i∈I
Ai

)
.

Solution of exercise 9. We show the result by indu�ion. For n = 1, there is nothing to do.

Assume that the result is true for a fixed integer n ≥ 1 and let us show that it is true for n + 1.

Denote by Ân lhe union of A1, . . . , An. Then,

#
(
Ân ∪An+1) = #(Ân) + #An+1 −#(Ân ∩An+1)

= #(Ân) + #An+1 −#
( n⋃
i=1

Ai ∩An+1

)
=

∑
I⊆{1,...,n}
I,∅

(−1)−1+|I | #
(⋂
i∈I
Ai

)
+ #An+1 −

∑
I⊆{1,...,n}
I,∅

(−1)−1+|I | #
(⋂
i∈I
Ai ∩An+1

)
=

∑
I⊆{1,...,n+1}
I,∅,n+1<I

(−1)−1+|I | #
(⋂
i∈I
Ai

)
+ #An+1 +

∑
I⊆{1,...,n+1}
I,{n+1},n+1∈I

(−1)−1+|I | #
(⋂
i∈I
Ai

)
=

∑
I⊆{1,...,n+1}

I,∅

(−1)−1+|I | #
(⋂
i∈I
Ai

)
,

Exercise 10. Fix an integer n ≥ 1. A permutation {x1,x2, . . . ,x2n} of the elements 1,2, . . . ,2n is a rearrage-

ment of these 2n numbers in a different order. It is said to have property T if |xi − xi+1| = n for at lea

one i in {1,2, . . . ,2n− 1}. Show that there are more permutations with property T than without.

For example, for n = 2, the permutations which do not have the property T are

{1234,1432,2143,2341,3214,3412,4123,4321}

and the permutations which have the property T are

{1234,1324,1342,1423,2134,2314,2413,2431,3124,3142,3241,4132,4213,4231,4312}.

Hint. If (x1, . . . ,x2n) is a permutation which does not have the property T , you may consider a fun�ion

f defined by f ((x1, . . . ,x2n)) = (x2,x3, . . . ,xk ,x1,xk+1, . . . ,x2n) where k is the unique index such that |x1−xk | =
n. For example, f (4321) = 3241.

Solution of exercise 10. Let A be the set of permutations which do not have the property T and let B

be the set of permutations (x1, . . . ,x2n) such that |xi−xi+1| = n for exa�ly one i in {1,2, . . . ,2n−1}. Then

the fun�ion f defined in the hint is a well-defined fun�ion f : A→ B. Indeed, if (x1, . . . ,x2n) is a

permutation which does not have the property T , applying f creates only one i such that |xi −xi+1| =


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n.

Now, we claim that f is inje�ive. We can either e
ablish this claim by hand, or simply note that

if g : B → A is the fun�ion defined by g((y1, . . . , y2n)) = (yk+1, y1, . . . , yk , yk+2, . . . , y2n) where k is the

unique integer such that |yk −yk+1| = n, then g(f ((x1, . . . ,x2n))) = (x1, . . . ,x2n) for every (x1, . . . ,x2n) ∈ A,

which shows that f is inje�ive.

Therefore #B ≥ #A. But permutations of B are permutations which have the property T , and

there are more permutations which have the property T than pemutations of B (for example (1,n+

1,2,n+ 2,3, . . . ,2n) is such an example, since there are two indices i such that |xi − xi+1| = n ).

We conclude that there are more permutations with property T than without.

 Fun exercise (optional)

The solution of this exercise will be available on the course webpage at the end of week .

Exercise 11. Consider an equilateral triangle with side n, subdivised in small unit triangles as in Fig. .
A capybara 
arts from the top triangle and wants to go down. He can only move to adjacent triangles,

without going back to a visited triangle and cannot go upwards. He 
ops when reaching the bottom

row. See Figure  for an example with n = 5. In how many ways can the capybara reach the bottom row

when n = 2017?

Figure : Example of a path reaching the bottom row .

Solution of exercise 11. More generally, let f (n) be the number of such paths.

Label the horizontal line segments in the triangle `1, `2, . . . as in the diagram below. Since the

path goes from the top triangle to a triangle in the bottom row and never travels up, the path mu

cross each of `1, `2, . . . , `n−1 exa�ly once. The diagonal lines in the triangle divide `k into k unit line

segments and the path mu
 cross exa�ly one of these k segments for each k. (In the diagram below,

these line segments have been highlighted.) The path is completely determined by the set of n − 1

line segments which are crossed. So as the path moves from the kth row to the (k + 1)
 row, there

are k possible line segments where the path could cross lk. Since there are 1 · 2 · · · (n − 1) = (n − 1)!

ways that the path could cross the n−1 horizontal lines, and each one corresponds to a unique path,

we get f (n) = (n− 1)!.


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