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POLYTECHNIGUE

Week 8: Cardinality and combinatorics

In§tructor: Igor Kortchemski (igor.kortchemski@polytechnique.edu)

Tutorial Assistants:
— Apolline Louvet (groups A&B, apolline.louvet@polytechnique.edu)
— Milica Tomasevic (groups C&E, milica. tomasevic@polytechnique.edu)
— Benofit Tran (groups D&F, benoit.tran@polytechnique.edu).

1 Important exercises

The solutions of the exercises which have not been solved in some group will be available on the course webpage.

‘Exercise 1. How many integers 1 < a,b,c < 100 such that a < b and a < c are there?

Solution of exercise 1. For a given choice of a, there are (100 — a)? choices of (b,c). The total number

of choices is therefore

100 99 99
99-100-199
N2 2 _ 2 _ _
51(100 a)? = an - Ela - - ( 328350)
a= a= a=

by using the formula ) }_, k* = w which can be shown by induction.

More formal solution. Set E = {(a,b,c):1<a,b,c,<100,a<band a<c}, and for 1 <i <100, write
E; ={(i,b,c):1<b,c<100,i<bandi<c}. ThenE = U}B?Ei and the union is disjoint. Therefore

and #E; = (100 — ). O

Exercise 2. ITn how many ways is it possible to arrange in a line 7 girls and 3 boys in the following cases:
1) When the 3 boys follow each other.
2) When the first and last person are girls, and when all the 3 boys do not follow each other.

Solution of exercise 2.

1) Fir§t consider the boys as one person. Then there are 8! possibilities (8 possibilites for the first
person, then 7 for the second one, etc.). Then one has to choose the order of the boys: 3! possibilities.
Thefore the result is 3! - 8!.

2) The idea is to use the “complement rule”. Let A be the set of configurations where the first
and the last person are girls. Let B be the set of configurations where the first and the last person
are girls and when boys do not follow each other. Then #(A \ B) = #A —#B, and A \ B represents the
set of configurations where the fir§t and the last person are girls and the boys follow each other. We

have,

#A=7-6-8!

(7 possibilities of choosing a girl for the fir§t position, 6 for the la§t position, 10 — 2 = 8 possibilities
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for the second position, 7 for the third one and so on) and a similar argument as for the fir§t question
gives
#(A\B)=7-6-6!-3!

The result is therefore

#B=#A-#(A\B)=7-6-8!-7-6-6!-3!=71(6-7-8—-6-3!)=300-7!

O]

f?(ercise 3. Let n > 2 be an integer, and set E = {1,2,...,n}. Find the cardinalities of the following sets:

={(i,j)€eE*), G=|(i,j)eE?i=j}, H={(i,j)€eE%i<j), I={ACE,Card(A)=2)}.

Solution of exercise 3. faire comprendre aux éléves la différence entre 'ensemble G et ’ensemble I.

* Intuitive version: fir§t n choices for i, then n choices for j.

Formal version: by the course we have #F = #E x #E = n’.

* Firét solution. n choices for i, then n—1 choices for j, which gives n(n—1).

Second solution. We use the “complement rule” by noticing that
G={(i.,j) € EX}\{(i,i) i € E}

Therefore
#G = #{(i,j) € E*>) - #{(i,i),i e E} =n* —n=n(n-1).

* First solution. For a fixed 1 <i < n, there are n —i choices for j. Therefore

n-1 n-1 n(n _ 1)
#H Z —l = Z = 1= 5
=0 i=1
Second solution. Let us define a map
¢ : G — H

(i,j) ifi<j

Lj) =— g 7
(j,i) ifi>j

Every pair (a,b) in H has exactly two preimages by f: (a,b) and (b,a). Hence #G = 2 x #H and

#H =n(n-1)/2.
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* The map
Y I — H
A +— (min(A), max(A))
is a bijection, since it is one-to-one and onto.

Therefore #I = #H =n(n—1)/2.

Solution of exercise 4. We use the complement rule and find the number of functions which are not
onto. Fir§t, there are 3" fun&ions from {1,2,...,n} to {1,2,3}. Let f : {1,2,...,n} — {1,2,3} be a
funétion which is not onto.

> in the case where the range of f has cardinality 1: we have 3 choices.

> in the case where the range of f has cardinality 2: we have 3 choices to choose the element
which is not in the range of f. Then choosing the elements of {1,2,...,n} which are mapped to the
smalle$t element of the range of f amounts to choosing a nonempty subset of {1, 2,...,1n} which is
not {1,2,...,n} itself, which gives 2" — 2 choices. In total, this gives 3(2" — 2) choices.

Therefore the number of onto funétions from {1, 2,...,n} to {1, 2,3} is

3" (3+3(2"-2))=3"-3-2"+3.

O]

‘Exercise 5. Let E and F be finite sets having the same cardinality, and let f : E — F be a fun&ion. Show
that the following three assertions are equivalent:

(1) f is onto;

(2) f is one-to-one;

(3) f is a bijetion.

Solution of exercise 5. Assume that n = #E = #F.

It is clear that (3) = (1) and (3) = (2). Let us fir§t show that (1) = (3). Assume that
f is onto, and let us show that f is one-to-one. Argue by contradiction and assume that f is not
one-to-one. Then #f(E) < n. Since f is onto, we have f(E) = F, so that #f(E) = #F = n. This is a
contradiétion. Hence (1) = (3).

Let us now show that (2) = (3). We shall use the following simple fact: if A and B are finite
sets such that A C B and #A = #B, then A = B (to show this fat, we argue by contradiction: if A # B,
since A C B, we can then find an element x such that x € B and x € A, so that #B > #A, which is a
contradiction).

Assume that f is one-to-one. As a consequence, #f(E) = #E = n. Therefore #f(E) = #F and we
always have f(E) C F. By the simple fact above, it follows that f(E) = F, so that f is onto. Hence
(2) = (3). O
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2 Homework exercise

You have to individually hand in the written solution of the next exercise to your TA on Monday, November 25th.

f;(ercise 6.
1) How many three-digit numbers abc have exatly one digit equal to 9? Ju$tify your answer.
2) How many three-digit numbers abc have the property that a # b or b = ¢? Ju$tify your answer.
3) How many three-digit numbers abc have the property that b > ¢? Ju§tify your answer.
Note. A three-digit numbers cannot §tart with a “0”, for in§tance 011 is not a three-digit number.

Solution of exercise 6.

1) We use the sum rule (disjunction of cases).

Case 1. The first digit is 9. Then we have 9 choices for b and 9 choices for ¢, which gives 81
choices.

Case 2. The second digit is 9. Then we have 8 choices for a and 9 choices for ¢, which gives 72
choices.

Case 3. The third digit is 9. Then we have 8 choices for a and 9 choices for b, which gives 72
choices.

In total, we have 225 such numbers.

2) We use the complement rule: we count the number of three-digit numbers such that a = b and
b = c. This means a = b = ¢, so there are 9 such numbers. Since there are 9 x 102 = 900 three-digit
numbers, it follows that there are 900 — 9 = 891 three-digit numbers abc having the property that
azborb=c.

3) For a fixed 1 <a <9, and a fixed 0 < b <9, there are b choices for c. By the sum rule, the

answer is
2 2 9%10
E > b:9§ b:9xT:405.

3 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week 8.

‘Exercise 7. Fix an integer n > 1 and set E ={1,2,...,n}. A fun&ion f : E — E is an involution if f(f(x)) =x
for every x € E. Let u,, be the number of involutions of E.

1) Compute u; and u;.

2) Show that for every n > 1, u, .o = u,.1 +(n+1)u,.

Solution of exercise 7.

1) We have u; = 1 (there is only one function from a set with one element to itself) and u, = 2.
Indeed, we already saw in the course that an involution is a bijection. There are two bijetions from
{1,2} to itself (which are given by f(1) =1, f(2) =2 and g(2) =1, g(1) = 2 and both are involutions.

2) Fix n > 1 and consider an involution f : {1,2,...,n+2} — {1,2,...,n+ 2}. The idea is to look at
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what happens to f(1).

> If f(1) =1, then f, restri¢ted to {2,...,n} is an involution on a set with n + 1 elements, which
gives u, 1 possibilities.

> If f(1) # 1, then there are n+ 1 possibilities for f(1). Once f(1) has been chosen, we are left
with an involution on a set with n elements (that is {1,2,...,n+ 2}\{1, f(1)}). This gives

Upip = Upy1 + (n+ 1)uy,.

More formal solution. The set of all involutions on {1,2,...,n + 2} can be we written as a disjoint
union
EUE,UE3U---UE,,,

where E is the set of all involutions f on {1,2,...,n+ 2} such that f(1)=1,and for2<i<n+2,E; is
set of all involutions f on {1,2,...,n+ 2} such that f(1) =7 and f(i) = 1.

An element of E (which is a fun&tion) is uniquely defined by its a&tion on {2,...,# + 2}, which is
an involution on this set of n+ 1 elements, so that #E = u,,,.

An element of E;, for 1 <i <n+2,is uniquely defined by its action on {1, 2,...,n+ 2}\{1, i}, which
is an involution on this set of n+ 1 elements, so that #E; = u,,.

We conclude that

Upyp = Uy + (14 D)y,

O

‘Exercise 8. (Shephard lemma or black sheep lemma) Let E and F be two finite sets and f : E — F a
fun&tion. Assume that there exists an integer p > 1 such that for every y € F, #f "!({y}) = p. Show that
#E =p-#F.

Solution of exercise 8. To simplify notation, set m = #E, n = #F and write F = {9;,v5,...,9,}. For
1<i<mn, setA; =f!({y;}). We claim that

and that this union is disjoint. Firs}, it is clear that U?_; A; C E (since A; C E for every 1 <i < n). On
the other hand, if x € E, and if f(x) = y; with a certain 1 <j <7, then x € A;. The fa¢t that the union

is disjoint was established in Exercise 5 of the Tutorial Sheet 6.

#E = i#Ai = ip =pn.
i=1 i=1

Remark. Can you guess why I call this lemma “shephard lemma” or “black sheep lemma”? [

Therefore
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Exercise 9. (Inclusion-exclusion formula) Fix an integer n > 2 and let Ay,..., A, be sets. Show that

#( A,-): ) (—1)‘“'”#(ﬂAi).

n
i=1 1C{1,2,...,1) iel
I=@

Solution of exercise 9. We show the result by inducion. For # = 1, there is nothing to do.
Assume that the result is true for a fixed integer n > 1 and let us show that it is true for n+ 1.
Denote by Xn lhe union of Ay, ..., A,. Then,

#(A\n UAu) = #(Xn) +#A - #(A\n NAy1)

n
= #(A\n) +#A 1 — #( UAz' mAn+1)
i=1

YD (VA #Aa = Y DT (AN A

ICf1,...,n} iel IC(1,...,n} iel

122 122
= E (—1)‘1+|I|#(ﬂAi)+#An+1+ Z (—1)‘“'”#(ﬂAi)
Ic{1,...,n+1} iel IC{1,..,n+1} iel
Iz@,n+1el I#{n+1},n+1€l
= ) (4

IC{1,...,n+1} iel

I=2

O

‘Exercise 10. Fix an integer n > 1. A permutation {x,x,,...,x;,} of the elements 1,2,...,2n is a rearrage-
ment of these 2n numbers in a different order. It is said to have property T if |x; — x;,1| = n for at least
oneiin {1,2,...,2n —1}. Show that there are more permutations with property T than without.

For example, for n = 2, the permutations which do not have the property T are
{1234,1432,2143,2341,3214,3412,4123,4321}
and the permutations which have the property T are
{1234,1324,1342,1423,2134,2314,2413,2431,3124,3142,3241,4132,4213,4231,4312}.

Hint. If (xq,...,X;,) is a permutation which does not have the property T, you may consider a funétion
f defined by f((x1,...,%2,)) = (X2, X3,..., Xk, X1, Xk41,- - -» X2,) Where k is the unique index such that |x; —x;| =
n. For example, f(4321) = 3241.

Solution of exercise 10. Let A be the set of permutations which do not have the property T and let B
be the set of permutations (xy,...,x;,) such that |x; —x;,1| = n for exatly one i in {1, 2,...,2n—1}. Then
the fun&tion f defined in the hint is a well-defined funcion f : A — B. Indeed, if (xy,...,%,,) is a
permutation which does not have the property T, applying f creates only one i such that |x; —x;,| =



http://www.cmap.polytechnique.fr/~kortchemski/dmaths/

g
h @ s
‘ ORI
Discrete Mathematics MAA103 — Bachelor — Year 1 Course webpage: http://www.cmap.polytechnique.fr/-kortchemski/dmaths/ "

POLYTECHNIGUE

Now, we claim that f is injetive. We can either establish this claim by hand, or simply note that
if g : B — A is the fun&ion defined by g((v1,...,v24)) = Vk+1,V1s---» V> Vks2s-- - V2,) Where k is the
unique integer such that [y —vx.1| = 1, then g(f ((x1,...,x2,))) = (x1,...,x2,) for every (xy,...,x7,,) €A,
which shows that f is injective.

Therefore #B > #A. But permutations of B are permutations which have the property T, and
there are more permutations which have the property T than pemutations of B (for example (1,1 +
1,2,n+2,3,...,2n) is such an example, since there are two indices i such that |x; —x;, | =n).

We conclude that there are more permutations with property T than without. O

4 Fun exercise (optional)

The solution of this exercise will be available on the course webpage at the end of week 8.

‘Exercise 11. Consider an equilateral triangle with side 7, subdivised in small unit triangles as in Fig. 1.
A capybara $tarts from the top triangle and wants to go down. He can only move to adjacent triangles,
without going back to a visited triangle and cannot go upwards. He §tops when reaching the bottom
row. See Figure 1 for an example with n = 5. In how many ways can the capybara reach the bottom row
when n =2017?

A
JAVAS

ALy VAN
AVAVAVATAS

Figure 1: Example of a path reaching the bottom row .

Solution of exercise 11. More generally, let f(n) be the number of such paths.

Label the horizontal line segments in the triangle ¢;,¢,,... as in the diagram below. Since the
path goes from the top triangle to a triangle in the bottom row and never travels up, the path must
cross each of €1,¢5,...,¢, 1 exaltly once. The diagonal lines in the triangle divide ¢, into k unit line
segments and the path must cross exactly one of these k segments for each k. (In the diagram below,
these line segments have been highlighted.) The path is completely determined by the set of n -1
line segments which are crossed. So as the path moves from the kth row to the (k + 1)st row, there
are k possible line segments where the path could cross lk. Since there are 1-2---(n—1) = (n—1)!
ways that the path could cross the n—1 horizontal lines, and each one corresponds to a unique path,
we get f(n)=(n—1).

O
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