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Week : Combinatorics and probability

In
ru�or: Igor Kortchemski (igor.kortchemski@polytechnique.edu)
Tutorial Assi
ants:

– Apolline Louvet (groups A&B, apolline.louvet@polytechnique.edu)
– Milica Tomasevic (groups C&E, milica.tomasevic@polytechnique.edu)
– Benoı̂t Tran (groups D&F, benoit.tran@polytechnique.edu).

 Exercises

The solutions of the que
ions which have not been solved in some group will be available on the course webpage.

Exercise 1. Let n ≥ 0 be an integer. Show that
n∑
k=0

(
n
k

)
= 2n.

Solution of exercise 1. Fir
 solution (algebraic). Simply apply the binomial theorem:

2n = (1 + 1)n =
n∑
k=0

(
n
k

)
1k1n−k =

n∑
k=0

(
n
k

)
.

Second solution (combinatorial). We count in two ways the number of subsets of a set of size n.

We already know that it is equal to 2n. A subset can also be con
ru�ed as follows: fir
 fix its size

0 ≤ k ≤ n and then choose the k elements among n which con
itute the set (
(n
k

)
possibilities). This

shows the desired formula.

Exercise 2. Let n ≥ 1 be an integer.

) We want to choose a subset of {1,2, . . . ,n} uniformly at random. Give a probability space to model

this experiment and compute the probability of the following two events:

a) “the subset has cardinality 1”.

b) “the subset contains 1”

) We throw a dice with six faces which is not a fair dice, such that the following condition (H) is

satisfied:

(H) : “the probability of falling on a face is proportional to its value.”

Give a probability space (Ω,P) to model this experiment, write what condition (H) means using P

and compute the probability that the dice falls on 6.

Solution of exercise 2.
) We take Ω = P ({1,2, . . . ,n}) (in particular, events are sets of subsets!) and P to be the uniform

probability on Ω.

a) We compute the probability of the event E “the subset has cardinality ”, which is E =

{{1}, {2}, . . . , {n}}. Since #E = n,

P(E) =
n
2n
.

b) We compute the probability of the event F “the subset contains 1”. There are 2n−1 subsets


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of {1,2, . . . ,n} containing 1 (since such subsets are in bije�ion with subsets of {2,3, . . . ,n}). Hence

#F = 2n−1, so

P(F) =
2n−1

2n
=

1
2
.

) We take Ω = {1,2,3,4,5,6} and P is a probability on Ω such that there exi
s a con
ant c > 0

such that P({i}) = c × i for every 1 ≤ i ≤ 6.

Side remark. By abuse of notation, if (Ω,P) is a finite probability space and ω ∈Ω, we sometimes

write P(ω) in
ead of P({ω}) to simplify notation. For example here, we could write P(i) in
ead of

P({i}) (which is an abuse of notation, because by definition P is defined on P (Ω)). However, when

elements of Ω are sets, this can cause some confusion...

To find c, we use the fa� that P(Ω) = 1 and the fa� that the probability of a disjoint union of

events is the sum of their probabilities

1 = P(Ω) = P

(
∪6
i=1{i}

)
=

6∑
i=1

P({i}) =
6∑
i=1

ci = 21c.

Hence c = 1
21 and the probability of getting a 6 is 6

21 = 2
7 .

Exercise 3. Let n ≥ 1 be an integer. The goal of this exercise is to 
udy partitions of the set {1,2, . . . ,n}. By

definition, a partition of {1,2, . . . ,n} is a set of nonempty subsets of {1,2, . . . ,n}which are pairwise disjoint

and whose union is {1,2, . . . ,n}. We say that a partition is a k-partition if it has cardinality k.

For example, {{1,8}, {2,3,4,5,6,9}, {7}} is a 3-partition of {1,2, . . . ,n}.
Denote by Bn,k the total number of k-partitions of {1,2, . . . ,n} and denote by Bn the total number of

partitions of {1,2, . . . ,n}.
) Write the set of all partitions of {1,2,3}.
) Give the values of B1,B2,B3.

) What is the value of Bn,n−1?

) What is the value of Bn,2?

) Fix an integer 1 ≤ k ≤ n.

a) Let f : {1,2, . . . ,n} → {1,2, . . . , k} be an onto map. For 1 ≤ i ≤ k, set Ai = f −1({i}). Show that

{A1,A2, . . . ,Ak} is a k-partition of {1,2, . . . ,n}.
b) Let Sn,k be the number of onto maps from {1,2, . . . ,n} to {1, . . . , k}. Show that Sn,k = k!×Bn,k .

) Set B0 = 1. Show that for n ≥ 2, Bn =
n−1∑
k=0

(
n− 1
k

)
Bn−k−1.

Remark. This formula gives a recursive way to compute the value of Bn. There is no simple expression

for Bn.

Solution of exercise 3. ) The partitions of {1,2,3} are {{1,2,3}}, {{1}, {2,3}}, {{2}, {1,3}}, {{3}, {1,2}}, { {},


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{}, {} } . Therefore the set of all partitions of {1,2,3} is{{
{1,2,3}

}
,
{
{1}, {2,3}

}
,
{
{2}, {1,3}

}
,
{
{3}, {1,2}

}
,
{
{1}, {2}, {3}

}}
.

) There is only one partition of {1} which is {{1}}, so B1 = 1. There are two partitions of {1,2}
which are {{1,2}} and {{1}, {2}}, so B2 = 2. By the previous que
ion, B3 = 5.

) One sees that a n − 1 partition of {1,2, . . . ,n} is made of n − 2 sets having one element and on

set having two elements. Therefore a n− 1 partition of {1,2, . . . ,n} is chara�erized by the choice of 2

elements among n. Hence Bn,n−1 =
(n

2
)
.

) A 2-partition of {1,2, . . . ,n} is chara�erized by the elements which are in the same set as 1.

For every element 2,3, . . . ,n we can either put it in the same set as 1 or not, which gives in total 2n−1

possibilities. However, we have to rule out the possibility that everyone is in the same set as 1 (recall

that the subsets of the partition have to be nonempty). Therefore Bn,2 = 2n−1 − 1.

)
a) Fir
, as f is onto, for every 1 ≤ i ≤ n we have that Ai , ∅.

Now we show that the sets are pairwise disjoint. Fix 1 ≤ i, j ≤ n with i , j. We argue by contra-

di�ion and assume that Ai , Aj , ∅. Take x ∈ Ai ∩Aj . Then, since x ∈ Ai , f (x) = i. Since x ∈ Aj ,
f (x) = j. But i , j, so this is a contradi�ion.

Finally we show that A1 ∪ A2 ∪ · · · ∪ An = {1,2, . . . ,n} by double inclusion. We clearly have the

inclusion ⊂. For the other inclusion, take i ∈ {1,2, . . . ,n}. By definition, i ∈ f −1({f (i)}), so i ∈ Af (i).

Hence i ∈ A1 ∪A2 ∪ · · · ∪An. This completes the proof.

b) An onto map from {1,2, . . . ,n} may be con
ru�ed uniquely as follows: fir
 form a k-

partition of n, then say which one of the k sets is f −1({1}), then which one is f −1({2}), and so one. By

the produ� rule, this con
ru�ion can be performed in Bn,k × k! ways by the produ� rule, and the

result follows.

) The idea is to generalize the argument of que
ion ) and to decompose the set of all partitions

of {1,2, . . . ,n} according to the size of the subset containing 1. More precisely, a partition of {1,2, . . . ,n}
may be uniquely con
ru�ed as follows: fir
 fix the number k of elements added to the subset

containing 1 (in addition to 1, so that 0 ≤ k ≤ n−1). Then choose the k elements added to the subset

containing 1 (
(n−1
k

)
ways). Then choose a partition of the remaining n−k−1 elements (Bn−k−1 ways).

By the produ� rule, this implies that the number of partitions of {1,2, . . . ,n} such that the number

of elements of the set containing 1 is k + 1 is equal to
(n−1
k

)
Bn−k−1. The desired formula follows by

the sum rule.

 Homework exercise

Exercise 4. Let n ≥ 1 be an integer. We want to choose a subset of {1,2, . . . ,n} at random in such a way

that the following condition (C) is satisfied:

(C) “there exi
s a value a > 0 such that the probability of choosing a subset containing 1 is a and the

probability of choosing a subset not containing 1 is 2a”.

) Give a probability space (Ω,P) to model this experiment, and write what condition (C) means

using P.


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) Give a simple expression of a involving only n, and ju
ify your answer.

Solution of exercise 4.
) We take Ω = P ({1,2, . . . ,n}) and P to be a probability on Ω satisfying P({A}) = a if 1 ∈ A and

P({A}) = 2a if 1 < A.

) Since P(Ω = 1), write

1 =
∑

A⊆{1,2,...,n}
P({A}) =

∑
A⊆{1,2,...,n},1∈A

P({A}) +
∑

A⊆{1,2,...,n},1<A
P({A}) =

∑
A⊆{1,2,...,n},1∈A

a+
∑

A⊆{1,2,...,n},1<A
2a.

Hence, since there are 2n−1 subsets containing 1 and 2n−1 subsets not containing 1, we get

1 = 2n−1 · a+ 2n−1 · 2a,

so

a =
1

3 · 2n−1 .

 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week .

Exercise 5. For n ≥ 1, we call a path of length 2n any sequence y0, y1, y2, . . . , y2n of integers such that y0 = 0

and for every 1 ≤ i ≤ 2n, yi − yi−1 ∈ {−1,+1}.
) How many paths of length 2n are there ?

) A path is called a bridge if y2n = 0. How many bridges of length 2n are there?

Solution of exercise 5. ) For every yk , with 1 ≤ k ≤ 2n, there’s two choices, either yk = yk−1 + 1 or yk =

yk−1 +−1. Thus by the produ� rule, the number of paths of length 2n is equal to 2× 2× . . .× 2︸         ︷︷         ︸
2n times

= 22n.

) Observe that a path can be encoded by the set of its ”+1” 
eps. For a bridge, there are

necessarily n such 
eps, and a bridge is uniquely defined by the positions of its +1 
eps. In other

words, there is a bije�ion

{Bridges of length 2n} ↔ {Subsets of size n included in {1,2, . . . ,2n}} .

As a consequence, # {Bridges of length 2n} =
(2n
n

)
.

Exercise 6. Let 1 ≤ p ≤ n be integers. Let E be a set with n elements and A a subset of E with p elements.

) How many subsets X of E such that A ⊂ X are there?

) If p ≤m ≤ n, how many subsets X of E such that A ⊂ X are there?

) How many couples (X,Y ) of subsets of E such that X ∩Y = A are there?


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Solution of exercise 6.
) As many as the number of subsets of E\A (which correspond to the elements we add to A to

obtain X), that is 2n−p.

) As many as the number of subsets of E\A having m− p elements, that is
(n−p
m−p

)
.

) Once we have chosen a subset X of E such that A ⊂ X and Card(X) = m (
(n−p
m−p

)
choices), we

have to choose for Y a subset of E\A (2n−m choices). The answer is therefore

n∑
m=p

(
n− p
m− p

)
2n−m =

n−p∑
k=0

(
n− p
k

)
2n−p−k = (1 + 2)n−p = 3n−p,

where we have used the Binomial theorem for the second equality.

Exercise 7. Let n ≥ 2 be an integer and let us consider a deck of n cards numbered from 1 to n.

) In how many ways is it possible to shuffle the deck so that the card with number 1 is further in the

deck than the card 2?

) In how many ways is it possible to shuffle the deck so that the cards with numbers 1 and 2 are

neighbours ?

Solution of exercise 7. We may view a shuffling of the deck as a permutation σ ∈ Sn.

. We want to count the number of elements of the set A = {σ ∈ Sn, σ (1) > σ (2)}. To this end,

we partition A according to the value of k = σ (1). Once this k ≥ 2 has been chose, we have to

chose:

• the value of σ (2), with k − 1 choices (positive integers less that k) ,

• then a bije�ion between {3,4, . . . ,n} and {1,2, . . . ,n} \ {σ (1),σ (2)}, with (n− 2)! choices.

Therefore

Card(A) =
n∑
k=2

(k − 1)(n− 2)! = (n− 2)!
(n− 1)n

2
=
n!
2
.

. We want to count the number of elements of the set B = {σ ∈ Sn, |σ (1) − σ (2)| = 1}. To this

end, we partition B according to the value of k = σ (1) and then according to the value of σ (2)

(only one choice if k = 1 or k = n, two choices otherwise); it then remains to choose a bije�ion

between {3,4, . . . ,n} and {1,2, . . . ,n} \ {σ (1),σ (2)}. Therefore

Card(B) = (n− 2)! +
n−1∑
k=2

2(n− 2)! + (n− 2)! = (n− 2)!(2n− 2) = 2(n− 1)!.

Exercise 8. Show that for every n ≥ 1,
∑n
k=0 k

(n
k

)2 = n
(2n−1
n−1

)
.


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Solution of exercise 8. We e
ablish this identity by a combinatorial argument, by showing equiva-

lently that
n∑
k=0

k

(
n
k

)(
n

n− k

)
= n

(
2n− 1
n− 1

)
.

To this end, imagine a group of n men and n women. We count in two ways the number of possibil-

ities of choosing a group of n people and choosing a female leader among this group.

Fir
 way. We partition the total number of possibilities according to the number 0 ≤ k ≤ n of

women in the group. There are
(n
k

)
ways of choosing k women, then

( n
n−k

)
ways of choosing n−k men,

and then k ways of choosing a female leader, which gives k
(n
k

)( n
n−k

)
possibilities by the produ� rule.

By the sum rule, the total number of possibilities is
∑n
k=0 k

(n
k

)( n
n−k

)
.

Second way. We fir
 choose a female leader (n choices) and then complete the groupe by choosing

n− 1 people among 2n− 1. This gives n
(2n−1
n−1

)
possibilities.

 Fun exercise (optional)

The solution of this exercise will be available on the course webpage at the end of week .

Exercise 9. 71 mathematicians are 
anding in a line, wearing a black or white hat. Each mathematician

can ONLY see the color of the hats of the people in front of them. So the fir
 person sees no hats,

the la
 sees 70. The mathematicians are allowed to talk to each other and decide upon a 
rategy, for

a government rep is coming to cut off funding. Each person can only say “black” or “white.” If you

corre�ly say the color of the hat you’re wearing, your funding is continued and you live. If you’re

wrong, you lose your funding, and you may as well be dead.

How many mathematicians can you guarantee will keep their funding?

(You are not allowed to use “tricks,” say a person delays one second before answering means A, two seconds means B, . . .

You have to answer IMMEDIATELY what color hat you’re wearing.)

Solution of exercise 9. It is possible to guarantee the funding of 70 mathematicians. The 
rategy is

the following: fir
 the mathematician A who sees 70 hats says “white” if she sees an odd number of

white hats, and “black” if she sees an even number of white hats. This allows the mathematician B

who sees 69 hats to deduce the colour of her hat (indeed, if A said “white” and B 
ill sees an odd

number of white hats, then B has a black hat, and if B sees an even number of white hats, then B has

a white hat, and B similarly finds the colour of her hat if A says “black”). The mathematician C who

sees 68 hats can then deduce the colour of her hat, and so one until the la
 one.


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