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Week : Finite probability spaces

In
ru�or: Igor Kortchemski (igor.kortchemski@polytechnique.edu)
Tutorial Assi
ants:

– Apolline Louvet (groups A&B, apolline.louvet@polytechnique.edu)
– Milica Tomasevic (groups C&E, milica.tomasevic@polytechnique.edu)
– Benoı̂t Tran (groups D&F, benoit.tran@polytechnique.edu).

::::::::::::

“The theory of probability, as a mathematical discipline, can and should be developed from axioms in exa�ly the same way as Geometry and
Algebra. This means that after we have defined the elements to be 
udied and their basic relations, and have 
ated the axioms by which

these relations are to be governed, all further exposition mu
 be based exclusively on these axioms, independent of the usual concrete
meaning of these elements and their relations. ”

Andreı̈ Kolmogorov ().

Kolmogorov explains that the mathematical theory of probability is developed independent of all the real world re
ri�ions, only being

subje� to the con
raints of logic. The misconception to think that a mathematical discipline automatically deals with something real has led to

unreali
ic models.

 Important exercises

The solutions of the exercises which have not been solved in some group will be available on the course webpage.

Exercise 1. Fix integers 1 ≤ r ≤ n. We put r balls (numbered from 1 to r) into n urns (numbered from 1

to n), uniformly at random.

) Con
ru� a finite probability space to model this experiment.

) Find the probability that every urn has at mo
 one ball.

) Find the probability that there is an urn having at lea
 two balls.

Solution of exercise 1.
) For every ball, we record in which urn it is put. In other words, we take

Ω = {1,2, . . . ,n}r .

If ω = (ω1, . . . ,ωr ) ∈Ω, the integer ωi represents the number of the urn in which falls the ball i. Note

that Card(Ω) = nr (because for every one of the r balls we have n possible choices).

We equip Ω with the uniform probability measure, which we denote by P.

) Let A be the event “every urn has at mo
 one ball”. By definition of the uniform probability

measure, P(A) = Card(A)
Card(Ω) . To find Card(A), we count the number of configurations such that every

urn has at mo
 one ball. The idea is take the viewpoint of the balls (and not of the urns): for the

fir
 ball, we have n choices for its urn. For the second ball, we have n− 1 choices for its urn, and so

on. Therefore Card(A) = n(n− 1) · · · (n− r + 1), so that

P(A) =
n(n− 1) · · · (n− r + 1)

nr
.
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) Let B be the event “there is an urn having at lea
 two balls”. Since A = B, we have P(B) =

1−P(A).

Exercise 2. Let A,B,C be events of a finite probability space. Using set operations, write the following

events:

(a) A is not realized (b) None of the events A, B nor C are realized.

(c) Only one of the events A, B or C is realized. (d) At lea
 two of the events A,B,C are realized.

(e) No more that two of the events A,B,C are realized

Solution of exercise 2.
Recall that “blabla is realized” is a probabili
ic formulation for the set {ω ∈Ω : ω ∈ blabla}.
(a) A.

(b) A∩B∩C.

(c) (
A∩B∩C

)
∪

(
A∩B∩C

)
∪

(
A∩B∩C

)
.

(d) (
A∩B

)
∪

(
B∩C

)
∪

(
A∩C

)
(e) This means that at lea
 one of the events A,B,C is not realized:

A∪B∪C.

Exercise 3. Consider a parking lot having 8 consecutive slots (meaning that the slots are one after the

other). A blue car and a red car have parked uniformly at random.

) Con
ru� a finite probability space to model this experiment.

) What is the probability that the fir
 slot has been taken by a car?

) What is the probability that the two cars have parked next to each other?

Solution of exercise 3.
) We number the slots 1,2,3,4,5,6,7,8 and take

Ω = {(i, j) ∈ {1,2,3,4,5,6,7,8}2 : i , j}.

The fir
 integer i represents the slot taken by the blue car and the second integer j represents the

slot taken by the red car (the condition i , j means that the two cars cannot park at the same place).

We take the uniform probability on Ω.

We have Card(Ω) = 82−8 = 56 (because Ω = {1,2,3,4,5,6,7,8}2\{(i, j) ∈ {1,2,3,4,5,6,7,8}2 : i = j})
) Let A be the event ”the fir
 slot has been taken by a car”. We have

A = {(1,2), (1,3), . . . , (1,8), (2,1), (3,1), . . . , (8,1)}


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so that Card(A) = 14. Therefore the probability that the fir
 slot has been taken by a car is 14
56 = 1

4 .

) Let B be the event that the two cars have parked next to each other. To count the number of

elements of B, observe that such a configuration can be coded by the position of the fir
 taken slot

(7 possibilities) and then by choosing the car that takes this slot (2 choices). By the multiplicative

rule, we get 14 possibilities. Hence the probability that the two cars have parked next to each other

is 14
56 = 1

4 .

Exercise 4. Let (Ω,P) be a finite probability space.

) If A,B are events show that P(A∪B) = P(A) +P(B)−P(A∩B).

Hint: write A∪B = (A\A∩B)∪ (A∩B)∪ (B\A∩B).

) Let n ≥ 2 be an integer. Let (Ak)1≤k≤n be a sequence of events. Show that P
( n⋃
k=1

Ak

)
≤

n∑
k=1

P(Ak).

) (Application) Let n ≥ 2 be an integer.

a) Let (Ak)1≤k≤n be a sequence of events such that P(Ak) = 0 for every 1 ≤ k ≤ n. Show that

P

(⋃n
k=1Ak

)
= 0.

b) Let (Ak)1≤k≤n be a sequence of events such that P(Ak) = 1 for every 1 ≤ k ≤ n. Show that

P

(⋂n
k=1Ak

)
= 1.

Solution of exercise 4.
) We write A∪ B = (A\A∩ B)∪ (A∩ B)∪ (B\A∩ B) and observe that this is a union of pairwise

disjoint events. Hence, by the result 
ated in the le�ure (namely: if n ≥ 2 and (Ak)1≤k≤n are pairwise

disjoint events; then P(∪nk=1Ak) =
∑n

k=1P(Ak)) and whose proof is available on the course webpage,

P(A∪B) = P(A\A∩B) +P(A∩B) +P(B\A∩B).

As was seen in the le�ure, we have P(A) = P(A\B)−P(A∩B) and P(B) = P(B\A)−P(A∩B). Therefore

P(A∪B) = (P(A)−P(A∩B)) +P(A∩B) + (P(B)−P(A∩B)) ,

and the desired result follows.

) We argue by indu�ion. Let P (n) be the property:

“If (Ak)1≤k≤n are events, then P

( n⋃
k=1

Ak

)
≤

n∑
k=1

P(Ak)”.

Basis 
ep. For n = 2, by the previous que
ion,

P(A1 ∪A2) = P(A1) +P(A2)−P(A1 ∩A2).

Since P(A1 ∩A2) ≥ 0, we get that P(A1 ∪A2) ≤ P(A1) +P(A2).

Indu�ive 
ep. Fix n ≥ 2 and assume that P (n) is true. Let (Ak)1≤k≤n+1 be events. Using the fa�


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that P (n) and P (2) are true, we have

P

(
A1 ∪A2 ∪ · · · ∪An ∪An+1

)
= P

(
A1 ∪A2 ∪ · · · ∪An−1 ∪ (An ∪An+1)

)
≤ P(A1) + · · ·+P(An−1) +P(An ∪An+1)

≤ P(A1) + · · ·+P(An−1) +P(An) +P(An+1)

This completes the proof.

)
a) Using the previous que
ion, write

P

( n⋃
k=1

Ak

)
≤

n∑
k=1

P(Ak) =
n∑

k=1

0 = 0.

Hence P

(⋃n
k=1Ak

)
= 0.

b) We use the equality
n⋂

k=1

Ak =
n⋃

k=1

Ak

(which can be checked by double inclusion) to write

P

 n⋂
k=1

Ak

 = 1−P

 n⋂
k=1

Ak

 = 1−P

 n⋃
k=1

Ak

 .
But P

(
Ak

)
= 1 − P (Ak) = 0 for every 1 ≤ k ≤ n, so P

(⋃n
k=1Ak

)
= 0 by a), which completes the

proof.

 Homework exercise

You have to individually hand in the written solution of the next exercise to your TA on Monday, January th.

Exercise 5. Five people each throw a fair dice (a dice is fair when the probability of falling on its different

faces is the same). Among the five people, three people have one dice with 6 faces from 1 to 6 and two

people have one dice with 4 faces from 1 to 4.

) Con
ru� a finite probability space to model this experiment.

) Compute the probabilities of the following events:

(a) everyone gets 4; (b) everyone gets 5 (c) all the numbers are different;

(d) at lea
 two people obtain the same number; (e) one of the dices having 6 faces gives the same

number as one of the dices having 4 faces.

Solution of exercise 5. ) We take Ω = {1,2,3,4,5,6}3×{1,2,3,4}2 (which has 63×42 elements), equipped

with the uniform probability measure (recall that this means that if A ⊆Ω, P(A) = Card(A)
Card(Ω) ).

)
(a) P(everyone gets 4) = 1

63×42

(
= 1

3456

)
.


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(b) The event “everyone gets 5 ” is the empty set, so its probability is 0.

(c) We count configurations such that all the numbers are different. To this end, the idea is

to 
art with the 4-faced dices: 4 choices for the outcome of the fir
 dice, then 3 choices for the

outcome of the second dice, then 4 choices for the outcome of the fir
 6-faced dice, 3 choices for the

second and 2 choices for the third one. Therefore

P(all the numbers are different) =
4× 3× 4× 3× 2

63 × 42

(
=

1
12

)
.

(d) The complementary event is ”all the numbers are different”, so the answer is

1− 4× 3× 4× 3× 2
63 × 42

(
=

11
12

)
.

(e) The complementary event is ”the numbers appearing on the dices having 6 faces are all

different from the numbers appearing on the dices having 4 faces”. We count such configurations :

Fir
 case: the numbers appearing on the dices having 4 faces are the same; 4 possibilities. For

each one of these possibilities, we have 53 possibilities for the 6-faced dices. In total this gives 4×53

possibilities.

Second case: the numbers appearing on the dices having 4 faces are different; 4× 3 possibilities.

For each one of these possibilities, we have 43 possibilities for the 6-faced dices. In total this gives

4× 3× 43 possibilities.

We conclude that the result is

1− 4× 53 + 4× 3× 43

63 × 42

(
= 1− 317

864
=

547
864

)
.

 More involved exercises (optional)

The solution of these exercises will be available on the course webpage at the end of week .

Exercise 6. Fix integers 1 ≤ r ≤ n. We put r (indi
inguishable) purple balls into n urns (numbered from

1 to n), uniformly at random.

) Con
ru� a finite probability space to model this experiment.

) Find the probability that every urn has at mo
 one ball.

Solution of exercise 6.
) For every urn, we record the number of balls it contains. In other words, we take

Ω = {(a1, . . . , an) : for every 1 ≤ i ≤ n,0 ≤ ai ≤ r and a1 + · · ·+ an = r}.

If ω = (a1, . . . , an) ∈ Ω, the integer ai represents the number of balls which fall in the urn i. Recall

from Exercise  of week  that Card(Ω) =
(n+r−1

r

)
.

We equip Ω with the uniform probability measure, which we denote by P.


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) Let A be the event “every urn has at mo
 one ball”. Note that con
ru�ing such a configu-

ration amounts to choosing the r urns which will each contain a ball. Therefore Card(A) =
(n
r

)
, so

that

P(A) =
(n
r

)(n+r−1
r

) .

Exercise 7. Let A1, . . . , An be events of a finite probability space (Ω,P).

) Show that P(A1 ∩ · · · ∩An) ≤min1≤i≤nP(Ai).

) Show that P(A1 ∩ · · · ∩An) ≥
∑n

i=1P(Ai)− (n− 1).

Solution of exercise 7.

. For every i ∈ {1, . . . ,n}, A1 ∩ · · · ∩An ⊆ Ai , hence P(A1 ∩ · · · ∩An) ≤ P(Ai). Therefore P (A1 ∩ · · · ∩
An) ≤min1≤i≤nP(Ai).

. Let us consider the complementary event:

1−P(A1 ∩ · · · ∩An) = P(A1 ∪ · · · ∪An)

≤
n∑
i=1

P(Ai)

=
n∑
i=1

(1−P(Ai)) = n−
n∑
i=1

P(Ai),

and the desired result follows.

Exercise 8. Let (Ω,P) be a finite probability space, n ≥ 1 an integer and A1, . . . ,An events. Set ~1,n� =

{1,2, . . . ,n}. Show that

P

( n⋃
i=1

Ai

)
=

∑
I⊆~1,n�
I,∅

(−1)−1+|I |
P

(⋂
i∈I

Ai

)
.

Solution of exercise 8. We argue by indu�ion on n. For n = 1, there is nothing to do.

Assume that the result holds for a fixed n ≥ 1 and let us show that it holds for n + 1. Let


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A1, . . . ,An+1 be events. Set Ân = A1 ∪A2 ∪ · · · ∪An. Then,

P

(
Ân ∪An+1) = P(Ân) +P(An+1)−P(Ân ∩An+1)

= P(Ân) +P(An+1)−P
( n⋃
i=1

(Ai ∩An+1)
)

=
∑
I⊆~1,n�
I,∅

(−1)−1+|I |
P

(⋂
i∈I

Ai

)
+P(An+1)−

∑
I⊆~1,n�
I,∅

(−1)−1+|I |
P

(⋂
i∈I

(Ai ∩An+1)
)

=
∑

I⊆~1,n+1�
I,∅,n+1<I

(−1)−1+|I |
P

(⋂
i∈I

Ai

)
+P(An+1) +

∑
I⊆~1,n+1�

I,{n+1},n+1∈I

(−1)−1+|I |
P

(⋂
i∈I

Ai

)

=
∑

I⊆~1,n+1�
I,∅

(−1)−1+|I |
P

(⋂
i∈I

Ai

)
,

and the proof is complete.

Remark. This formula, called the inclusion-exclusion formula, extends the identity P(A∪ B) =

P(A) + P(B) −P(A ∩ B) to a finite number of events, and is sometimes very useful to compute the

probability of a union of non-disjoint events.

Exercise 9. Let (Ω,P) be a finite probability space and fix two events A,B. Show that |P(A ∩ B) −
P(A)P(B)| ≤ 1

4 .

Solution of exercise 9. . Fir
 observe that P(A) ≥ P(A∩B) and P(B) ≥ P(A∩B); hence

P(A∩B)−P(A)P(B) ≤ P(A∩B)−P(A∩B)2 ≤ 1
4

by 
udying the variations of x 7→ x(1− x) on [0,1].

. We now show that P(A∩B)−P(A)P(B) ≥ −1
4 .

• Fir
 case: assume that P(A) +P(B) < 1 (that is P(B) < 1−P(A)). Then,

P(A∩B)−P(A)P(B) ≥ 0−P(A)P(B) > −P(A)(1−P(A)) ≥ −1
4

by using the same argument with the fun�ion x 7→ x(1− x).

• Second case: assume that 1−P(B) ≤ P(A). Then,

P(A∩B)−P(A)P(B) = P(A) +P(B)−P(A∪B)−P(A)P(B)

≥ P(A) +P(B)− 1−P(A)P(B)

= −(1−P(A))(1−P(B))

≥ −(1−P(A))P(A) ≥ −1
4
.


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 Fun exercise (optional)

The solution of this exercise will be available on the course webpage at the end of week .

Exercise 10. A colony of n vampires lives in the Carpathian mountains. The Countess Dracula wishes

to e
imate the number n of vampires (Dracula is not considered as being part of the colony). To do so,

one night, she captures ten of them at random, bits their ears and releases them. The next night, she

captures again 10 vampires at random. It turns out that 3 of them have their ears bitten.

Denote by pn the probability that 3 vampires have their ears bitten when one chooses 10 of them

uniformly at random in a population of n vampires with 10 having their ears bitten. For what integer n

is the quantity pn maximal?

Hint. You may simplify the quantity pn
pn+1

.

Solution of exercise 10. The number of ways of choosing 10 vampires among n is
( n
10
)
. Now, choosing

10 vampires in a population of n vampires with 10 having their ears bitten so that only 3 have their

ears bitten amounts to fir
 choosing 3 vampires among the 10 with bitten ears, and then 7 vampires

among the n− 10 others without bitten ears. Therefore

pn =
(10

3
)(n−10

7
)( n

10
) .

To find the value of n which maximises this quantity, we note that

pn
pn+1

=
n2 − 15n− 16
n2 − 18n+ 81

,

which is (
ri�ly) less that 1 for n ≤ 32 and (
ri�ly) greater than 1 for n ≥ 33. Thus pn is maximal

for n = 33.

Remark. In the language of Stati
ics, we have built an e
imator based on the maximum like-

lihood for the a priori unknown quantity n. The method used in this exercise is simple, but is

used by biologi
s 
udying populations of animals (capture-mark-recapture method, see https:

//en.wikipedia.org/wiki/Mark_and_recapture)


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