Week 11: Combinatorics: additional exercises

Instructor: Igor Kortchemski (igor.kortchemski@polytechnique.edu)
Tutorial Assistants:

- Apolline Louvet (groups $A \& B$, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C\&E, milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups $D \& F$, benoit.tran@polytechnique.edu).

Exercise 1.

1. In how many ways can we write the 6 integers between 1 and 6 in the following squares

so that the first number is less than the second number?
2. In how many ways can we write the 6 integers between 1 and 6 in the following squares

so that the three numbers are in increasing order?

Exercise 2. Let $1 \leq n \leq p$ be integers. How many (Strictly) increasing functions from $\{1,2, \ldots, n\} \rightarrow$ $\{1,2, \ldots, p\}$ are there?

Exercise 3. Let $n \geq 2$ be an integer and let us consider a deck of n cards numbered from 1 to n.

1. In how many ways is it possible to shuffle the deck so that the card with number 1 is further in the deck than the card 2 ?
2. In how many ways is it possible to shuffle the deck so that the cards with numbers 1 and 2 are neighbours?

Exercise 4. Let $1 \leq p \leq n$ be integers. Let E be a set with n elements and A a subset of E with p elements.

1) How many subsets X of E such that $A \subset X$ are there?
2) If $p \leq m \leq m$, how many subsets X of E such that $A \subset X$ are there?
3) How many couples (X, Y) of subsets of E such that $X \cap Y=A$ are there?

Exercise 5. Let $n \geq 2$ be an integer. Find the number of permutations $\sigma \in S_{n}$ such that 1 and n belong to the same orbit of σ (that is, such that there exists an integer $k \geq 1$ with $\sigma^{k}(1)=n$).

