

Week 11: Combinatorics: additional exercises

Instructor: Igor Kortchemski (igor.kortchemski@polytechnique.edu) Tutorial Assistants:

- Apolline Louvet (groups A&B, apolline.louvet@polytechnique.edu)
- Milica Tomasevic (groups C&E, milica.tomasevic@polytechnique.edu)
- Benoît Tran (groups D&F, benoit.tran@polytechnique.edu).

Exercise 1.

1. In how many ways can we write the 6 integers between 1 and 6 in the following squares

so that the first number is less than the second number?

2. In how many ways can we write the 6 integers between 1 and 6 in the following squares

so that the three numbers are in increasing order?

Exercise 2. Let $1 \le n \le p$ be integers. How many (strictly) increasing functions from $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., p\}$ are there?

Exercise 3. Let $n \ge 2$ be an integer and let us consider a deck of *n* cards numbered from 1 to *n*.

- 1. In how many ways is it possible to shuffle the deck so that the card with number 1 is further in the deck than the card 2?
- 2. In how many ways is it possible to shuffle the deck so that the cards with numbers 1 and 2 are neighbours ?

Exercise 4. Let $1 \le p \le n$ be integers. Let *E* be a set with *n* elements and *A* a subset of *E* with *p* elements. 1) How many subsets *X* of *E* such that $A \subset X$ are there?

- 2) If $p \le m \le m$, how many subsets *X* of *E* such that $A \subset X$ are there?
- 3) How many couples (X, Y) of subsets of *E* such that $X \cap Y = A$ are there?

Exercise 5. Let $n \ge 2$ be an integer. Find the number of permutations $\sigma \in S_n$ such that 1 and *n* belong to the same orbit of σ (that is, such that there exists an integer $k \ge 1$ with $\sigma^k(1) = n$).