

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).
Goal: study X_{n}.

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_{n}.
\leadsto Find the cardinal of X_{n}.

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_{n}.
$\wedge \rightarrow$ Find the cardinal of X_{n}. (bijective methods, generating functions)

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_{n}.
$\curlywedge \rightarrow$ Find the cardinal of X_{n}. (bijective methods, generating functions)
\diamond Understand the typical properties of X_{n}.

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_{n}.
$\wedge \rightarrow$ Find the cardinal of X_{n}. (bijective methods, generating functions)
$\xrightarrow{\wedge}$ Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random.

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).
Goal: study X_{n}.
$\wedge \rightarrow$ Find the cardinal of X_{n}. (bijective methods, generating functions)
\leadsto Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random. What can be said of X_{n} ?

Motivation for studying scaling limits

Let X_{n} be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).
Goal: study X_{n}.
$\wedge \rightarrow$ Find the cardinal of X_{n}. (bijective methods, generating functions)
\leadsto Understand the typical properties of X_{n}. Let X_{n} be an element of X_{n} chosen uniformly at random. What can be said of X_{n} ?
\Downarrow A possibility to study X_{n} is to find a continuous object X such that $X_{n} \rightarrow X$ as $n \rightarrow \infty$.

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_{n} and passes to the limit, then X satisfies \mathcal{P}.

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_{n} and passes to the limit, then X satisfies \mathcal{P}.
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_{n} satisfies "approximately" \mathcal{P} for n large.

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_{n} and passes to the limit, then X satisfies \mathcal{P}.
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_{n} satisfies "approximately" \mathcal{P} for n large.
- Universality: if $\left(Y_{n}\right)_{n \geqslant 1}$ is another sequence of objects converging towards X, then X_{n} and Y_{n} share approximately the same properties for n large.

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\diamond In what space do the objects live?

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\leadsto In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\uparrow In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable (there exists a dense countable subset).

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\uparrow In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable (there exists a dense countable subset).
\checkmark What is the sense of the convergence when the objects are random?

Motivation for studying scaling limits

Let $\left(X_{n}\right)_{n \geqslant 1}$ be "discrete" objects converging towards a "continuous" object X :

$$
X_{n} \underset{n \rightarrow \infty}{\longrightarrow} X .
$$

\uparrow In what space do the objects live? Here, a metric space (Z, d) which will be complete and separable (there exists a dense countable subset).
\leadsto What is the sense of the convergence when the objects are random? Here, convergence in distribution:

$$
\mathbb{E}\left[F\left(X_{n}\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[F(X)]
$$

for every continous bounded function $F: Z \rightarrow \mathbb{R}$.

Outline

I. Random walks and Brownian motion (1951)
I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)

I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)

III. Plane non-crossing configurations (2012)
I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)

III. Plane non-crossing configurations (2012)

IV. Random planar maps (2004)

I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)
III. Plane non-crossing configurations (2012)
IV. Random planar maps (2004)

Central Limit Theorem

Theorem (Central Limit, $\simeq 1901$ Liapounov)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be i.i.d. (independent identically distributed) random variables with $\mathbb{E}\left[\mathrm{X}_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[\mathrm{X}_{1}{ }^{2}\right] \in\right] 0, \infty[$.

Central Limit Theorem

Theorem (Central Limit, $\simeq 1901$ Liapounov)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be i.i.d. (independent identically distributed) random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.

Central Limit Theorem

Theorem (Central Limit, $\simeq 1901$ Liapounov)

Let $\left(\mathrm{X}_{\mathrm{n}}\right)_{\mathrm{n} \geqslant 1}$ be i.i.d. (independent identically distributed) random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{(\mathrm{~d})} \mathcal{N}(0,1),
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.

Central Limit Theorem

Theorem (Central Limit, $\simeq 1901$ Liapounov)

Let $\left(\mathrm{X}_{\mathrm{n}}\right)_{\mathrm{n} \geqslant 1}$ be i.i.d. (independent identically distributed) random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{(\mathrm{~d})} \mathcal{N}(0,1),
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.

Here the metric space

$$
(Z, d) \quad \text { is } \quad \mathbb{R} .
$$

Central Limit Theorem

Theorem (Central Limit, $\simeq 1901$ Liapounov)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be i.i.d. (independent identically distributed) random variables with $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\frac{S_{n}}{\sigma \sqrt{n}} \underset{n \rightarrow \infty}{(\mathrm{~d})} \mathcal{N}(0,1),
$$

where $\mathcal{N}(0,1)$ is a standard Gaussian random variable.

Here the metric space

$$
(Z, d) \quad \text { is } \quad \mathbb{R} .
$$

$\stackrel{\text { Consequence: }}{ }$ for every $\mathrm{a}<\mathrm{b}$,

$$
\mathbb{P}\left(a<\frac{S_{n}}{\sigma \sqrt{n}}<b\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{a}^{b} d x \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} .
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in(0, \infty)$.

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $t \geqslant 0$.

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $t \geqslant 0$.

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)
$$

$$
\text { for } n=100 \text { : }
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}
$$

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)
$$

$$
\text { for } n=100 \text { : }
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}
$$

Here the metric space (Z, d) is $\mathcal{C}([0,1], \mathbb{R})$, the space of \mathbb{R}-valued continuous functions on $[0,1]$, equiped with the topology of uniform convergence on $[0,1]$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}
$$

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)
$$

$$
\text { for } n=100 \text { : }
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{(d)} \quad\left(W_{t}, 0 \leqslant t \leqslant 1\right),
$$

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)
$$

$$
\text { for } n=100 \text { : }
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(W_{t}, 0 \leqslant t \leqslant 1\right)
$$

where $\left(W_{t}, 0 \leqslant t \leqslant 1\right)$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called Brownian motion.

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)
$$

$$
\text { for } n=100:
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(W_{t}, 0 \leqslant t \leqslant 1\right)
$$

where $\left(W_{t}, 0 \leqslant t \leqslant 1\right)$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called Brownian motion. The law of W does not depend on the law of X_{1}.

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right)
$$

$$
\text { for } n=100:
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(W_{t}, 0 \leqslant t \leqslant 1\right)
$$

where $\left(W_{t}, 0 \leqslant t \leqslant 1\right)$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called Brownian motion. The law of W does not depend on the law of X_{1}.

$$
\begin{aligned}
& \left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \\
& \text { for } n=100000
\end{aligned}
$$

Brownian motion as a limit of discrete paths

Theorem (Donsker, 1951)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}\left[X_{1}\right]=0$ and $\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in(0, \infty)$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, and define $S_{n t}$ by linear interpolation for $\mathrm{t} \geqslant 0$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1\right) \quad \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(W_{t}, 0 \leqslant t \leqslant 1\right)
$$

where $\left(W_{t}, 0 \leqslant t \leqslant 1\right)$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called Brownian motion. The law of W does not depend on the law of X_{1}.
\diamond Consequence: for every $a>0$,

$$
\mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} \frac{S_{n t}}{\sigma \sqrt{n}}>a\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} W_{t}>a\right)=2 \int_{a}^{\infty} d x \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty[$.

Theorem (Conditioned Donsker Theorem, Kaigh '75)

Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$.

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \quad \underset{n \rightarrow \infty}{(d)}
$$

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{(d)}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right),
$$

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then: $\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0\right.$ for $\left.i<n\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(\mathbb{P}_{t}, 0 \leqslant t \leqslant 1\right)$,
where $\left(\mathbb{C}_{t}\right)_{0 \leqslant t \leqslant 1}$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called the Brownian excursion.

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) \text {, }
$$

where $\left(\mathbb{E}_{t}\right)_{0 \leqslant t \leqslant 1}$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called the Brownian excursion.

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}\left(\mathbb{e}_{\mathrm{t}}, 0 \leqslant t \leqslant 1\right) \text {, }
$$

where $\left(\mathbb{E}_{t}\right)_{0 \leqslant t \leqslant 1}$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called the Brownian excursion.

The Brownian excursion can be seen as Brownian motion ($W_{t}, 0 \leqslant t \leqslant 1$) conditioned by the events $W_{1}=0$ and $W_{t}>0$ for $\left.t \in\right] 0,1[$.

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) \text {, }
$$

where $\left(\mathbb{C}_{\mathrm{t}}\right)_{0 \leqslant t \leqslant 1}$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called the Brownian excursion.
\wedge Consequence: for every $a>0$,

$$
\mathbb{P}\left(\left.\sup _{0 \leqslant t \leqslant 1} \frac{S_{n t}}{\sigma \sqrt{n}}>a \right\rvert\, S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right)
$$

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) \text {, }
$$

where $\left(\mathbb{C}_{t}\right)_{0 \leqslant t \leqslant 1}$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called the Brownian excursion.
\leadsto Consequence: for every $a>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\left.\sup _{0 \leqslant t \leqslant 1} \frac{S_{n t}}{\sigma \sqrt{n}}>a \right\rvert\, S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \\
& \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} \mathbb{e}_{t}>a\right)
\end{aligned}
$$

Theorem (Conditioned Donsker Theorem, Kaigh '75)
Let $\left(X_{n}\right)_{n \geqslant 1}$ be a sequence of i.i.d. random variables $\mathbb{E}\left[X_{1}\right]=0$ and $\left.\sigma^{2}=\mathbb{E}\left[X_{1}{ }^{2}\right] \in\right] 0, \infty\left[\right.$. Set $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then:

$$
\left(\frac{S_{n t}}{\sigma \sqrt{n}}, 0 \leqslant t \leqslant 1 \mid S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}}\left(\mathbb{e}_{t}, 0 \leqslant t \leqslant 1\right) \text {, }
$$

where $\left(\mathbb{C}_{\mathrm{t}}\right)_{0 \leqslant t \leqslant 1}$ is a random variable with values in $\mathcal{C}([0,1], \mathbb{R})$ called the Brownian excursion.
\uparrow Consequence: for every $a>0$,

$$
\begin{aligned}
\mathbb{P}\left(\left.\sup _{0 \leqslant t \leqslant 1} \frac{S_{n t}}{\sigma \sqrt{n}}>a \right\rvert\, S_{n}=0, S_{i} \geqslant 0 \text { for } i<n\right) & \\
& \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}\left(\sup _{0 \leqslant t \leqslant 1} \mathbb{E}_{t}>a\right) \\
& =\sum_{k=1}^{\infty}\left(4 k^{2} a^{2}-1\right) e^{-2 k^{2} a^{2}}
\end{aligned}
$$

I. Random walks and Brownian motion (1951)
II. Scaling limits of BGW trees (1991)
III. Plane non-Crossing Configurations (2012)
IV. Random planar maps (2004)

Recall that in a Bienaymé-Galton-Watson tree, every individual has a random number of children (independently of each other) distributed according to μ (offspring distribution).

Recall that in a Bienaymé-Galton-Watson tree, every individual has a random number of children (independently of each other) distributed according to μ (offspring distribution).

What does a large Bienaymé-Galton-Watson tree look like ?

A simulation of a large random critical GW tree

Coding trees by functions CMOM

Contour function of a tree

Define the contour function of a tree:

Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}}
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{(\mathrm{~d})}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$, where \mathbb{e} is the normalized Brownian excursion.

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$, where \mathbb{e} is the normalized Brownian excursion.

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$, where \mathbb{e} is the normalized Brownian excursion.
\leadsto Consequence: for every $a>0$, $\mathbb{P}\left(\frac{\sigma}{2} \cdot \operatorname{Height}\left(\mathcal{T}_{n}\right)>a \cdot \sqrt{n}\right) \quad \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}(\sup \mathbb{E}>a)$

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$, where \mathbb{e} is the normalized Brownian excursion.
\leadsto Consequence: for every $a>0$, $\mathbb{P}\left(\frac{\sigma}{2} \cdot \operatorname{Height}\left(\mathcal{J}_{n}\right)>a \cdot \sqrt{n}\right) \quad \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{P}(\sup \mathbb{e}>a)$

$$
=\quad \sum_{k=1}^{\infty}\left(4 k^{2} a^{2}-1\right) e^{-2 k^{2} a^{2}}
$$

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$, where \mathbb{e} is the normalized Brownian excursion.

Idea of the proof:

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$, where \mathbb{e} is the normalized Brownian excursion.

Idea of the proof:
\diamond The Lukasieiwicz path of $\mathfrak{T}_{\mathfrak{n}}$, appropriately scaled, converges in distribution to \mathbb{e} (conditioned Donsker's invariance principle).

Scaling limits

Let μ be an offspring distribution with finite positive variance such that $\sum_{i \geqslant 0} i \mu(i)=1$. Let \mathcal{T}_{n} be a Galton-Watson tree conditioned on having n vertices.

Theorem (Aldous '93)
Let σ^{2} be the variance of μ. Let $t \mapsto C_{t}\left(\mathcal{T}_{n}\right)$ be the contour function of \mathcal{T}_{n}. Then:

$$
\left(\frac{1}{\sqrt{n}} C_{2 n t}\left(\mathcal{T}_{n}\right)\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\frac{2}{\sigma} \cdot \mathbb{e}(t)\right)_{0 \leqslant t \leqslant 1},
$$

where the convergence holds in distribution in $\mathcal{C}([0,1], \mathbb{R})$, where \mathbb{e} is the normalized Brownian excursion.

Idea of the proof:
\nrightarrow The Lukasieiwicz path of \mathfrak{T}_{n}, appropriately scaled, converges in distribution to \mathbb{e} (conditioned Donsker's invariance principle).
\diamond Go from the Lukasieiwicz path of $\mathcal{I}_{\mathfrak{n}}$ to its contour function.

Do the discrete trees converge to a continuous tree? Cosers)

Do THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

Yes, if we view trees as compact metric spaces by equiping the vertices with the graph distance!

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z.

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

be the r-neighborhoods of X and Y.

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

be the r-neighborhoods of X and Y. Set

$$
d_{H}(X, Y)=\inf \left\{r>0 ; X \subset Y_{r} \text { and } Y \subset X_{r}\right\} .
$$

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

$$
X_{r}=\{z \in Z ; d(z, X) \leqslant r\}, \quad Y_{r}=\{z \in Z ; d(z, Y) \leqslant r\}
$$

be the r-neighborhoods of X and Y. Set

$$
d_{H}(X, Y)=\inf \left\{r>0 ; X \subset Y_{r} \text { and } Y \subset X_{r}\right\} .
$$

The Gromov-Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov-Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov-Hausdorff distance between X and Y is the smallest Hausdorff distance between all possible isometric embeddings of X and Y in a same metric space Z.

The Brownian tree

\wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2 \sqrt{n}} \cdot t_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}} \mathcal{T}_{\mathbb{e}},
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov-Hausdorff distance.

The Brownian tree

\wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2 \sqrt{n}} \cdot t_{n} \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \mathcal{T}_{\mathbb{e}},
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and $a>0, a \cdot Z$ is the metric space (Z, a $\cdot d$).

The Brownian tree

\diamond Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2 \sqrt{n}} \cdot t_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}} \mathcal{T}_{e},
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and $a>0, a \cdot Z$ is the metric space (Z, a $\cdot \mathrm{d}$).

The metric space $\mathcal{T}_{\mathbb{e}}$ is called the Brownian continuum random tree (CRT), and is coded by a Brownian excursion.

The Brownian tree

\wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2 \sqrt{n}} \cdot t_{n} \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \mathcal{T}_{\mathbb{e}},
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and $a>0, a \cdot Z$ is the metric space (Z, a $\cdot \mathrm{d}$).

The metric space $\mathcal{T}_{\mathbb{e}}$ is called the Brownian continuum random tree (CRT), and is coded by a Brownian excursion.

Formally, for $0 \leqslant s, t \leqslant 1$, set

$$
\mathrm{d}_{\mathrm{e}}(\mathrm{~s}, \mathrm{t})=\mathrm{e}(\mathrm{~s})+\mathrm{e}(\mathrm{t})-2 \min _{[\mathrm{s} \wedge \mathrm{t}, \mathrm{~s} \vee \mathrm{t}]} \mathrm{e},
$$

The Brownian tree

\diamond Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2 \sqrt{n}} \cdot t_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}} \mathcal{T}_{e},
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and $a>0, a \cdot Z$ is the metric space ($Z, a \cdot d$).

The metric space $\mathcal{T}_{\mathbb{e}}$ is called the Brownian continuum random tree (CRT), and is coded by a Brownian excursion.

Formally, for $0 \leqslant s, t \leqslant 1$, set

$$
\mathrm{d}_{\mathrm{e}}(\mathrm{~s}, \mathrm{t})=\mathrm{e}(\mathrm{~s})+\mathrm{e}(\mathrm{t})-2 \min _{[\mathrm{s} \wedge \mathrm{t}, \mathrm{~s} \backslash \mathrm{t}]} \mathrm{e},
$$

and write $s \sim t$ if $d_{e}(s, t)=0$.

The Brownian tree

\wedge Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2 \sqrt{n}} \cdot t_{n} \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \mathcal{T}_{e},
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and $a>0, a \cdot Z$ is the metric space (Z, a $\cdot \mathrm{d}$).

The metric space $\mathcal{T}_{\mathbb{e}}$ is called the Brownian continuum random tree (CRT), and is coded by a Brownian excursion.

Formally, for $0 \leqslant s, t \leqslant 1$, set

$$
\mathrm{d}_{\mathrm{e}}(\mathrm{~s}, \mathrm{t})=\mathrm{e}(\mathrm{~s})+\mathrm{e}(\mathrm{t})-2 \min _{[\mathrm{s} \wedge \mathrm{t}, \mathrm{~s} \backslash \mathrm{t}]} \mathrm{e},
$$

and write $s \sim t$ if $d_{e}(s, t)=0$. The Brownian tree \mathcal{T}_{e} is then defined to be the quotient metric space $[0,1] / \sim$ equiped with d_{e}.

I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)
III. Plane non-crossing configurations (2012)
\qquad
IV. RANDOM PLANAR MAPS (2004)

Let P_{n} be the polygon with vertices $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Let P_{n} be the polygon with vertices $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

General philosophy: chose at random a non crossing configuration, obtained from the vertices of P_{n} by drawing diagonals which may not cross.

Let P_{n} be the polygon with vertices $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

General philosophy: chose at random a non crossing configuration, obtained from the vertices of P_{n} by drawing diagonals which may not cross.

What happens for n large?

Case of triangulations of P_{n}

Let $\mathcal{T}_{\mathfrak{n}}$ be a random triangulation, chosen uniformly among all triangulations of $\mathrm{P}_{\mathfrak{n}}$. What does $\mathcal{T}_{\mathfrak{n}}$ look like when \mathfrak{n} is large?

Let $\mathcal{T}_{\mathfrak{n}}$ be a random triangulation, chosen uniformly among all triangulations of P_{n}. What does $\mathcal{T}_{\mathfrak{n}}$ look like when n is large?

Theorem (Aldous '94)

For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation of P_{n}.

Theorem (Aldous '94)

For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation of P_{n}. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation of P_{n}. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation of P_{n}. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.
$\mathrm{L}(\mathbb{e})$ is the Brownian triangulation.

Theorem (Aldous '94)

For $n \geqslant 3$, let T_{n} be a uniform triangulation of P_{n}. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{\mathrm{n}} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.
$\mathrm{L}(\mathbb{e})$ is the Brownian triangulation.
\checkmark Consequence: The length (that is its normalised angle from the center, $360^{\circ}=1$) of the longest diagonal of T_{n} converges in distribution to the length of the longest chord of $\mathrm{L}(\mathbb{e})$.

Theorem (Aldous '94)

For $\mathrm{n} \geqslant 3$, let T_{n} be a uniform triangulation of P_{n}. Then there exists a random compact subset $\mathrm{L}(\mathbb{e})$ of the unit disk such that

$$
\mathrm{T}_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \mathrm{L}(\mathbb{e}),
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

$\mathrm{L}(\mathbb{e})$ is the Brownian triangulation.

\wedge Consequence: The length (that is its normalised angle from the center, $360^{\circ}=1$) of the longest diagonal of T_{n} converges in distribution to the length of the longest chord of $\mathrm{L}(\mathbb{e})$. We get that the length of the longest chord of $\mathrm{L}(\mathbb{e})$ has density:

$$
\frac{1}{\pi} \frac{3 x-1}{x^{2}(1-x)^{2} \sqrt{1-2 x}} 1_{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}} \mathrm{~d} x .
$$

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ et $\mathrm{d}_{\mathrm{t}}=\inf \left\{s>\mathrm{t} ; \mathbb{e}_{\mathrm{s}}=\mathbb{e}_{\mathrm{t}}\right\}$.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ et $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{\mathrm{t}}\right\}$.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ et $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ and $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 \mathrm{i} \pi d_{\mathrm{t}}}\right]$.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ et $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ and $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi d_{t}}\right]$.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel. Set $g_{t}=\sup \left\{\mathrm{s}<\mathrm{t} ; \mathbb{e}_{\mathrm{s}}=\mathbb{e}_{\mathrm{t}}\right\}$ et $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ and $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 i \pi d_{\mathrm{t}}}\right]$.
Do this for all local minimum times.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel. Set $g_{t}=\sup \left\{s<t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$ et $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{\mathrm{t}}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ and $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 \mathrm{i} \pi \mathrm{d}_{\mathrm{t}}}\right]$.
Do this for all local minimum times.

Construction of the Brownian triangulation

Start from the Brownian excursion \mathbb{e} :

Let t be a local minimum timel. Set $g_{\mathrm{t}}=\sup \left\{\mathrm{s}<\mathrm{t}\right.$; $\left.\mathbb{e}_{\mathrm{s}}=\mathbb{e}_{\mathrm{t}}\right\}$ et $d_{t}=\inf \left\{s>t ; \mathbb{e}_{s}=\mathbb{e}_{t}\right\}$. Draw the chords $\left[e^{-2 i \pi g_{t}}, e^{-2 i \pi t}\right],\left[e^{-2 i \pi t}, e^{-2 i \pi d_{t}}\right]$ and $\left[e^{-2 i \pi g_{\mathrm{t}}}, e^{-2 i \pi d_{\mathrm{t}}}\right]$.
Do this for all local minimum times.
The closure of this object, denoted by $\mathrm{L}(\mathbb{e})$, is called the Brownian triangulation.

Case of dissections of P_{n}

Dissections

Recall that P_{n} is the polygon with vertices $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Dissections

Recall that P_{n} is the polygon with vertices $e^{\frac{2 i \pi j}{n}}(j=0,1, \ldots, n-1)$.

Not a dissection!

A dissection!

A dissection of P_{n} is the union of P_{n} with a collection of non-crossing diagonals.

Dissections

Let \mathcal{D}_{n} be a random dissection, chosen uniformly at random among all dissections of P_{n}. What does \mathcal{D}_{n} look like as $\mathrm{n} \rightarrow \infty$?

Dissections

Let \mathcal{D}_{n} be a random dissection, chosen uniformly at random among all dissections of P_{n}. What does \mathcal{D}_{n} look like as $\mathrm{n} \rightarrow \infty$?

Theorem (Curien \& K. '12).

For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}.

Theorem (Curien \& K. '12).

For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}. Then

$$
\mathrm{D}_{\mathrm{n}} \xrightarrow[\mathrm{n} \rightarrow \infty]{\mathrm{d})} \mathrm{L}(\mathbb{E}),
$$

Theorem (Curien \& K. '12).

For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}. Then

$$
\mathrm{D}_{\mathrm{n}} \xrightarrow[\mathrm{n} \rightarrow \infty]{\mathrm{d})} \mathrm{L}(\mathbb{E}) \text {, }
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien \& K. '12).

For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}. Then

$$
D_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \mathrm{L}(\mathbb{e}) \text {, }
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.
(Many other models of random plane non-crossing configurations converge to the Brownian triangulation: non-crossing trees, non-crossing partitions, etc. Curien \& K. '12, K. \& Marzouk '15).

Theorem (Curien \& K. '12).

For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}. Then

$$
\mathrm{D}_{\mathrm{n}} \xrightarrow[\mathrm{n} \rightarrow \infty]{(\mathrm{d})} \mathrm{L}(\mathbb{E})
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.
(Many other models of random plane non-crossing configurations converge to the Brownian triangulation: non-crossing trees, non-crossing partitions, etc. Curien \& K. '12, K. \& Marzouk '15).
\checkmark Consequence: The length (that is its normalised angle from the center) of the longest diagonal of D_{n} converges in distribution to a probability measure with density:

Theorem (Curien \& K. '12).

For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}. Then

$$
\mathrm{D}_{\mathrm{n}} \xrightarrow[\mathrm{n} \rightarrow \infty]{(\mathrm{d})} \mathrm{L}(\mathbb{E})
$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.
(Many other models of random plane non-crossing configurations converge to the Brownian triangulation: non-crossing trees, non-crossing partitions, etc. Curien \& K. '12, K. \& Marzouk '15).
\checkmark Consequence: The length (that is its normalised angle from the center) of the longest diagonal of D_{n} converges in distribution to a probability measure with density:

$$
\frac{1}{\pi} \frac{3 x-1}{x^{2}(1-x)^{2} \sqrt{1-2 x}} 1_{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}} \mathrm{~d} x .
$$

How to prove that these models converge to the Brownian triangulation?

How to prove that these models converge to the Brownian triangulation?

Key point: these trees can be coded by BGW trees.

Figure: The dual tree of a dissection.

Figure: Normalized contour function of a large conditioned Bienaymé-Galton-Watson.

Figure: Normalized contour function of a large conditioned Bienaymé-Galton-Watson.

Strategy of the proof:

Figure: Normalized contour function of a large conditioned Bienaymé-Galton-Watson.

Strategy of the proof:

- These models can be coded a random conditioned Bienaymé-Galton-Watson tree.

Figure: Normalized contour function of a large conditioned Bienaymé-Galton-Watson.

Strategy of the proof:

- These models can be coded a random conditioned Bienaymé-Galton-Watson tree.
- The normalized contour functions of these conditioned Bienaymé-Galton-Watson trees converge to the Brownian excursion.

Figure: Normalized contour function of a large conditioned Bienaymé-Galton-Watson.

Strategy of the proof:

- These models can be coded a random conditioned Bienaymé-Galton-Watson tree.
- The normalized contour functions of these conditioned Bienaymé-Galton-Watson trees converge to the Brownian excursion.
- The Brownian excursion codes the Brownian triangulationL(e).

Figure: Normalized contour function of a large conditioned Bienaymé-Galton-Watson.

Strategy of the proof:

- These models can be coded a random conditioned Bienaymé-Galton-Watson tree.
- The normalized contour functions of these conditioned Bienaymé-Galton-Watson trees converge to the Brownian excursion.
- The Brownian excursion codes the Brownian triangulationL(e).

Therefore these random plane non-crossing configurations converge to $\mathrm{L}(\mathbb{e})$.

What about dissections seen as Compact metric spaces?

Dissections seen as compact metric spaces

Figure: A uniform dissection of P_{45}.

Dissections seen as compact metric spaces

Figure: A uniform dissection of P_{260}.

Dissections seen as compact metric spaces

Figure: A uniform dissection of P_{387}.

Dissections seen as compact metric spaces

Figure: A uniform dissection of P_{637}.

Dissections seen as compact metric spaces

Figure: A uniform dissection of P_{8916}.

Dissections seen as compact metric spaces

Theorem (Curien, Haas \& K. '13).
For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}.

Dissections seen as compact metric spaces

Theorem (Curien, Haas \& K. '13).
For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}. Then

$$
\frac{1}{\sqrt{n}} \cdot D_{n} \xrightarrow[n \rightarrow \infty]{(\mathrm{d})} \quad \frac{1}{7}(3+\sqrt{2}) 2^{3 / 4} \cdot \mathcal{T}_{\mathrm{e}}
$$

Dissections seen as compact metric spaces

Theorem (Curien, Haas \& K. '13).

For $n \geqslant 3$, let D_{n} be a uniform dissection of P_{n}. Then

$$
\frac{1}{\sqrt{n}} \cdot D_{n} \xrightarrow[n \rightarrow \infty]{(d)} \quad \frac{1}{7}(3+\sqrt{2}) 2^{3 / 4} \cdot \mathcal{T}_{\mathbb{e}},
$$

in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov-Hausdorff distance.
I. Scaling limits of BGW trees (finite variance, 1991)
II. Scaling limits of BGW trees (infinite variance, 1998)
III. Plane non-crossing configurations (2012)
IV. RANDOM MAPS (2004-?)

What does a "typical" random surface look like?

In dimension one

It is natural to view Brownian motion as a "typical" random path, describing the motion of a particle moving "uniformly at random".
\wedge Idea: construct a (two-dimensional) random surface as a limit of random discrete surfaces.
\wedge Idea: construct a (two-dimensional) random surface as a limit of random discrete surfaces.

Consider \mathfrak{n} triangles, and glue them uniformly at random in such a way to get a surface homeomorphic to a sphere.
\wedge Idea: construct a (two-dimensional) random surface as a limit of random discrete surfaces.

Consider n triangles, and glue them uniformly at random in such a way to get a surface homeomorphic to a sphere.

Figure: A large random triangulation (simulation by Nicolas Curien)

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles.

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance.

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges towards a random compact metric space (the Brownian map)

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov-Hausdorff topology.

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov-Hausdorff topology.

Solved by Le Gall in 2011.

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov-Hausdorff topology.

Solved by Le Gall in 2011.
Since, many different models of discrete surfaces have been shown to converge to the Brownian map (Miermont, Beltran \& Le Gall, Addario-Berry \& Albenque, Bettinelli \& Jacob \& Miermont, Abraham)

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov-Hausdorff topology.

Solved by Le Gall in 2011.
Since, many different models of discrete surfaces have been shown to converge to the Brownian map (Miermont, Beltran \& Le Gall, Addario-Berry \& Albenque, Bettinelli \& Jacob \& Miermont, Abraham), using various techniques (in particular bijective codings by labelled trees)

The Brownian map

Problem (Schramm at ICM '06): Let T_{n} be a random uniform triangulation of the sphere with n triangles. View T_{n} as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1 / 4} \cdot T_{n}$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov-Hausdorff topology.

Solved by Le Gall in 2011.
Since, many different models of discrete surfaces have been shown to converge to the Brownian map (Miermont, Beltran \& Le Gall, Addario-Berry \& Albenque, Bettinelli \& Jacob \& Miermont, Abraham), using various techniques (in particular bijective codings by labelled trees)
(see Le Gall's proceeding at ICM '14 for more information and references)

Definitions

A planar map is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations).

Definitions

A planar map is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations).

Figure: Two identical maps .

Definitions

A planar map is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations). It is a p-angulation when all the faces have degree p.

Figure: Two identical maps .

Definitions

A planar map is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations). It is a p-angulation when all the faces have degree p.

Figure: Two identical 3-angulations .

Why study maps?

\diamond Combinatorics (Tutte starting in '60)
$\xrightarrow{\wedge}$ Probability theory (model for a Brownian surface)
\checkmark Algebraix and geometric motivations Motivations (cf Lando-Zvonkine '04 Graphs on surfaces and their applications)
\checkmark Theoretical physics (connections with matrix integrals, 2D Liouville quantum gravity, KPZ formula.)

Scaling limits of large planar maps

Fix $p \geqslant 3$. Let M_{n} be a planar map, chosen uniformly at random among all p-angulations with n faces.

Scaling limits of large planar maps

Fix $p \geqslant 3$. Let M_{n} be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V\left(M_{n}\right)$ be its vertices.

Scaling limits of large planar maps

Fix $p \geqslant 3$. Let M_{n} be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V\left(M_{n}\right)$ be its vertices.
Theorem (Le Gall ($p=3$ or p odd), Miermont ($p=4$), 2011)
There exists a constant $\mathrm{c}_{\mathfrak{p}}>0$ and a random compact metric space ($\mathrm{m}_{\infty}, \mathrm{D}^{*}$), called the Brownian map, such that the convergence

$$
\left(V\left(M_{n}\right), c_{p} n^{-1 / 4} d_{g r}\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}\left(m_{\infty}, D^{*}\right)
$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov-Hausdorff distance.

Scaling limits of large planar maps

Fix $p \geqslant 3$. Let M_{n} be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V\left(M_{n}\right)$ be its vertices.
Theorem (Le Gall ($p=3$ or p odd), Miermont ($p=4$), 2011)
There exists a constant $\mathrm{c}_{\mathrm{p}}>0$ and a random compact metric space ($\mathrm{m}_{\infty}, \mathrm{D}^{*}$), called the Brownian map, such that the convergence

$$
\left(V\left(M_{n}\right), c_{p} n^{-1 / 4} d_{g r}\right) \underset{n \rightarrow \infty}{\xrightarrow{(d)}}\left(m_{\infty}, D^{*}\right)
$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov-Hausdorff distance.
\diamond Chassaing-Schaeffer '04: graph distances inV $\left(M_{n}\right)$ are of order $\mathfrak{n}^{1 / 4}$ (case $p=4$).

Scaling limits of large planar maps

Fix $p \geqslant 3$. Let M_{n} be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V\left(M_{n}\right)$ be its vertices.
Theorem (Le Gall ($p=3$ or p odd), Miermont ($p=4$), 2011)
There exists a constant $\mathrm{c}_{\mathfrak{p}}>0$ and a random compact metric space ($\mathrm{m}_{\infty}, \mathrm{D}^{*}$), called the Brownian map, such that the convergence

$$
\left(\mathrm{V}\left(M_{n}\right), \mathrm{c}_{\mathfrak{p}} \mathrm{n}^{-1 / 4} \mathrm{~d}_{\mathrm{gr}}\right) \underset{n \rightarrow \infty}{\stackrel{(\mathrm{~d})}{\longrightarrow}}\left(\mathrm{m}_{\infty}, \mathrm{D}^{*}\right)
$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov-Hausdorff distance.
\diamond Chassaing-Schaeffer '04: graph distances inV $\left(M_{n}\right)$ are of order $\mathfrak{n}^{1 / 4}$ (case $p=4$).
\diamond Le Gall \& Paulin and Miermont '07: almost surely, $\left(m_{\infty}, D^{*}\right)$ is homeomorphic to the sphere.

Scaling limits of large planar maps

Fix $p \geqslant 3$. Let M_{n} be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V\left(M_{n}\right)$ be its vertices.
Theorem (Le Gall ($p=3$ or p odd), Miermont ($p=4$), 2011)
There exists a constant $\mathrm{c}_{\mathfrak{p}}>0$ and a random compact metric space ($\mathrm{m}_{\infty}, \mathrm{D}^{*}$), called the Brownian map, such that the convergence

$$
\left(V\left(M_{n}\right), c_{p} n^{-1 / 4} d_{g r}\right) \underset{n \rightarrow \infty}{(\mathrm{~d})}\left(m_{\infty}, D^{*}\right)
$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov-Hausdorff distance.
\diamond Chassaing-Schaeffer '04: graph distances in $\mathrm{V}\left(\mathrm{M}_{n}\right)$ are of order $\mathfrak{n}^{1 / 4}$ (case $p=4$).
\diamond Le Gall \& Paulin and Miermont '07: almost surely, $\left(m_{\infty}, D^{*}\right)$ is homeomorphic to the sphere.
\diamond Le Gall '08: almost surely, ($\mathrm{m}_{\infty}, \mathrm{D}^{*}$) has Hausdorff dimension 4.

