

Random maps

Motivation for studying scaling limits

Let $\boldsymbol{\mathfrak{X}}_n$ be a set of combinatorial objects of "size" n

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Let X_n be a set of combinatorial objects of "size" n (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study X_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study \mathfrak{X}_n .

 \bigwedge Find the cardinal of \mathfrak{X}_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study \mathfrak{X}_n .

 $\Lambda \rightarrow$ Find the cardinal of \mathfrak{X}_n . (bijective methods, generating functions)

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study χ_n .

 \bigwedge Find the cardinal of χ_n . (bijective methods, generating functions)

 $\Lambda \rightarrow$ Understand the typical properties of \mathfrak{X}_n .

1/672

Motivation for studying scaling limits

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study χ_n .

- \bigwedge Find the cardinal of χ_n . (bijective methods, generating functions)
- Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*.

1/672

Motivation for studying scaling limits

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study χ_n .

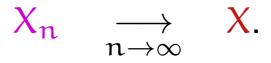
- \bigwedge Find the cardinal of χ_n . (bijective methods, generating functions)
- Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*. What can be said of X_n ?

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, walks, matrices, etc.).

Goal: study \mathfrak{X}_n .

- $\Lambda \rightarrow$ Find the cardinal of \mathfrak{X}_n . (bijective methods, generating functions)
- Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*. What can be said of X_n ?
- $\stackrel{\checkmark}{\longrightarrow} A \text{ possibility to study } X_n \text{ is to find a continuous object } X \text{ such that } X_n \to X \text{ as } n \to \infty.$

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:



Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Several consequences:

- From the discrete to the continuous world: if a property \mathcal{P} is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- From the world to the discrete world: if a property \mathcal{P} is satisfied by X and passes to the limit, X_n satisfies "approximately" \mathcal{P} for n large.
- Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

3 / 672

Motivation for studying scaling limits

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

 $\wedge \rightarrow$ In what space do the objects live?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

A→ In what space do the objects live? Here, a metric space (Z, d) (complete separable).

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

- A→ In what space do the objects live? Here, a metric space (Z, d) (complete separable).
- $\wedge \rightarrow$ What is the sense of the convergence when the objects are random?

Let $(X_n)_{n \ge 1}$ be "discrete" objects converging towards a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

- A→ In what space do the objects live? Here, a metric space (Z, d) (complete separable).
- √→ What is the sense of the convergence when the objects are random? Here, convergence in distribution:

$$\mathbb{E}\left[F(\mathbf{X}_{n})\right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[F(\mathbf{X})\right]$$

for every continous bounded function $F: Z \to \mathbb{R}$.

4 / 672

I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991)

I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991) II. SCALING LIMITS OF BGW TREES (INFINITE VARIANCE, 1998)

I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991) II. SCALING LIMITS OF BGW TREES (INFINITE VARIANCE, 1998) III. PLANE NON-CROSSING CONFIGURATIONS (2012)

I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991) II. SCALING LIMITS OF BGW TREES (INFINITE VARIANCE, 1998) III. PLANE NON-CROSSING CONFIGURATIONS (2012) IV. RANDOM MAPS (2004 – ?)

I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991)

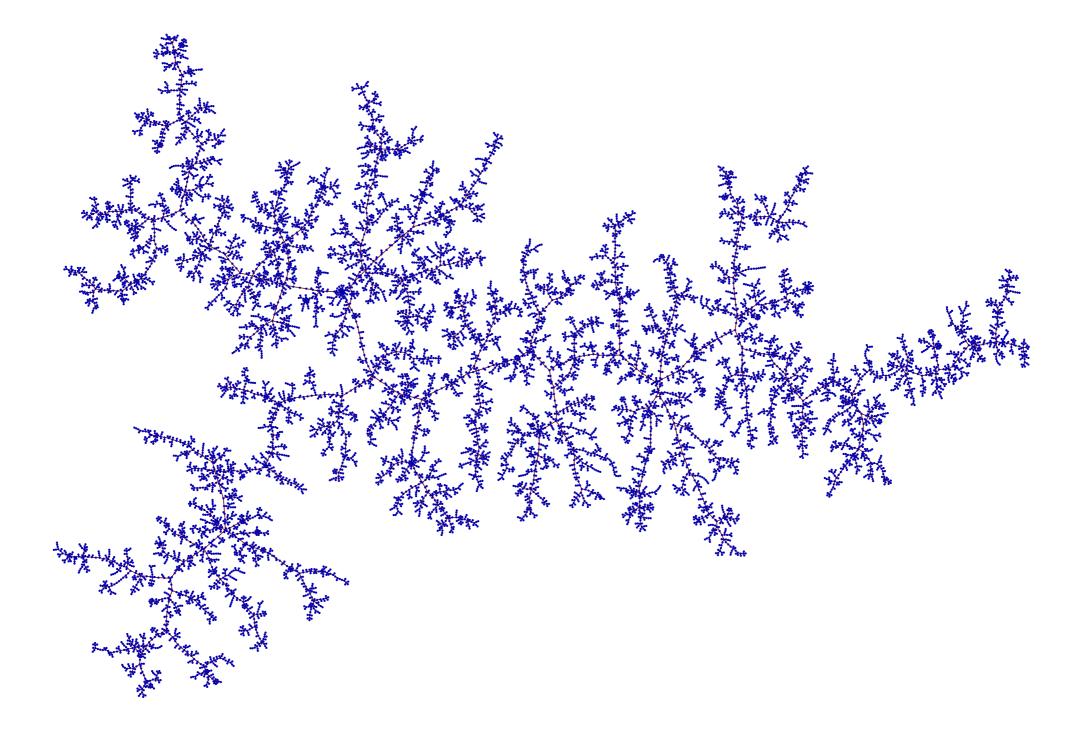
II. SCALING LIMITS OF BGW TREES (INFINITE VARIANCE, 1998)

III. PLANE NON-CROSSING CONFIGURATIONS (2012)

IV. RANDOM MAPS (2004 – ?)

What does a large Bienaymé–Galton–Watson look like ?

A simulation of a large random critical GW tree



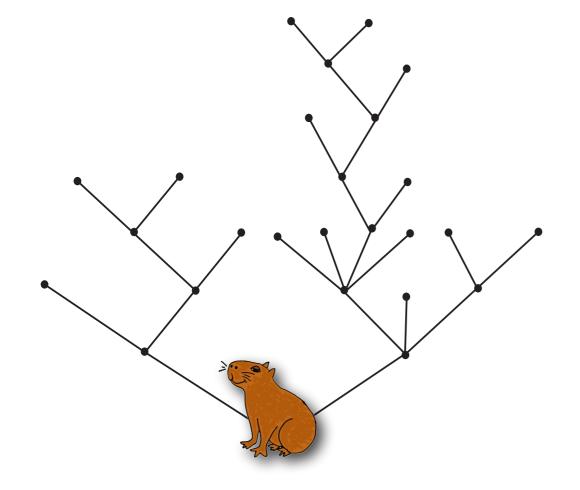
8 / 672

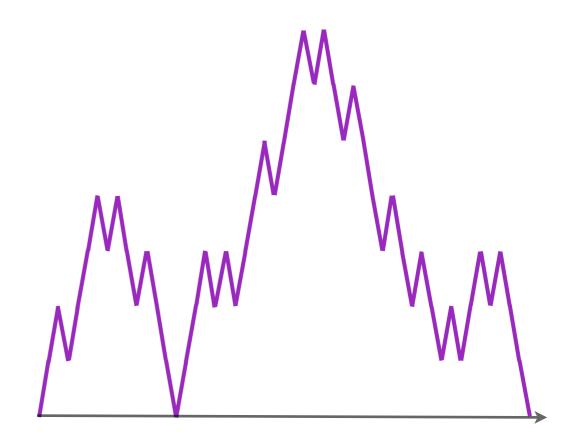
CODING TREES BY FUNCTIONS

Random maps

9/672

Define the contour function of a tree:





Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i \ge 0} i\mu(i) = 1$. Let \mathfrak{T}_n be a Galton–Watson tree conditioned on having n vertices.

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathfrak{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}$$

in the space of $\mathbb{R}\text{-valued}$ continuous functions on [0,1] equiped with the uniform topology

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathfrak{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

in the space of \mathbb{R} -valued continuous functions on [0,1] equiped with the uniform topology

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathbb{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

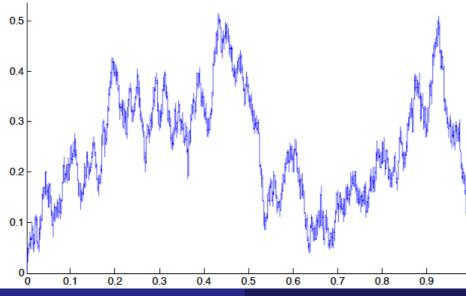
$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot \underline{e}(t)\right)_{0\leqslant t\leqslant 1},$$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathfrak{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$



Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathbb{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathcal{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

$$\begin{array}{l} \checkmark \rightarrow \quad \mbox{Consequence: for every } a > 0, \\ \mathbb{P}\left(\frac{\sigma}{2} \cdot \mbox{Height}(\mathfrak{t}_n) > a \cdot \sqrt{n}\right) \qquad \underset{n \to \infty}{\longrightarrow} \quad \mathbb{P}\left(\sup \mathbb{P} > a\right) \\ = \quad \sum_{k=1}^{\infty} (4k^2a^2 - 1)e^{-2k^2a^2} \end{array}$$

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathbb{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

in the space of \mathbb{R} -valued continuous functions on [0, 1] equiped with the uniform topology, where \mathbb{e} is the normalized Brownian excursion.

Idea of the proof:

Scaling limits

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geqslant 0}i\mu(i)=1.$ Let \mathbb{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

in the space of \mathbb{R} -valued continuous functions on [0, 1] equiped with the uniform topology, where \mathbb{e} is the normalized Brownian excursion.

Idea of the proof:

 $\land \rightarrow$ The Lukasieiwicz path of \Im_n , appropriately scaled, converges in distribution to ⊕ (conditioned Donsker's invariance principle).

Scaling limits

Let μ be an offspring distribution with **finite** positive variance such that $\sum_{i\geq 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Galton–Watson tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathfrak{T}_n)$ be the contour function of \mathfrak{T}_n . Then:

$$\left(\frac{1}{\sqrt{n}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad \left(\frac{2}{\sigma}\cdot \mathfrak{e}(t)\right)_{0\leqslant t\leqslant 1},$$

in the space of \mathbb{R} -valued continuous functions on [0, 1] equiped with the uniform topology, where e is the normalized Brownian excursion.

Idea of the proof:

- The Lukasieiwicz path of \mathcal{T}_n , appropriately scaled, converges in distribution \rightarrow to e (conditioned Donsker's invariance principle).
- $\Lambda \rightarrow$ Go from the Lukasieiwicz path of \mathfrak{T}_n to its contour function.

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

Yes, if we view trees as compact metric spaces by equiping the vertices with the graph distance!

Let X, Y be two subsets of the same metric space Z.

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y.

Random maps

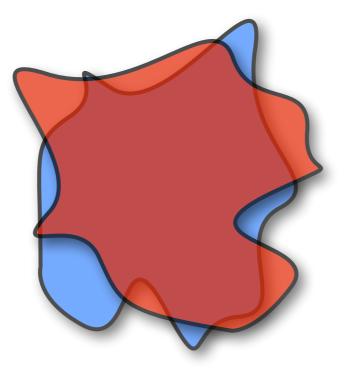
The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y. Set

 $d_H(X,Y) = \inf \left\{ r > 0; X \subset Y_r \text{ and } Y \subset X_r \right\}.$



Random maps

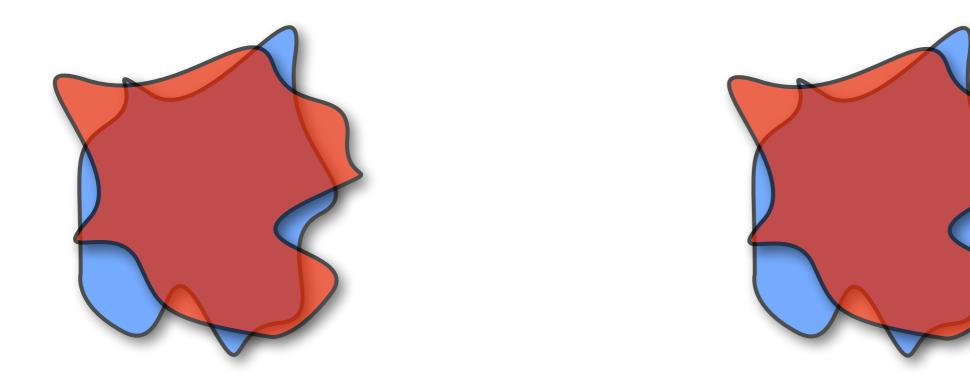
The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{Y}) \leqslant \mathsf{r} \}$

be the r-neighborhoods of X and Y. Set

 $d_{H}(X, Y) = \inf \{r > 0; X \subset Y_{r} \text{ and } Y \subset X_{r} \}.$

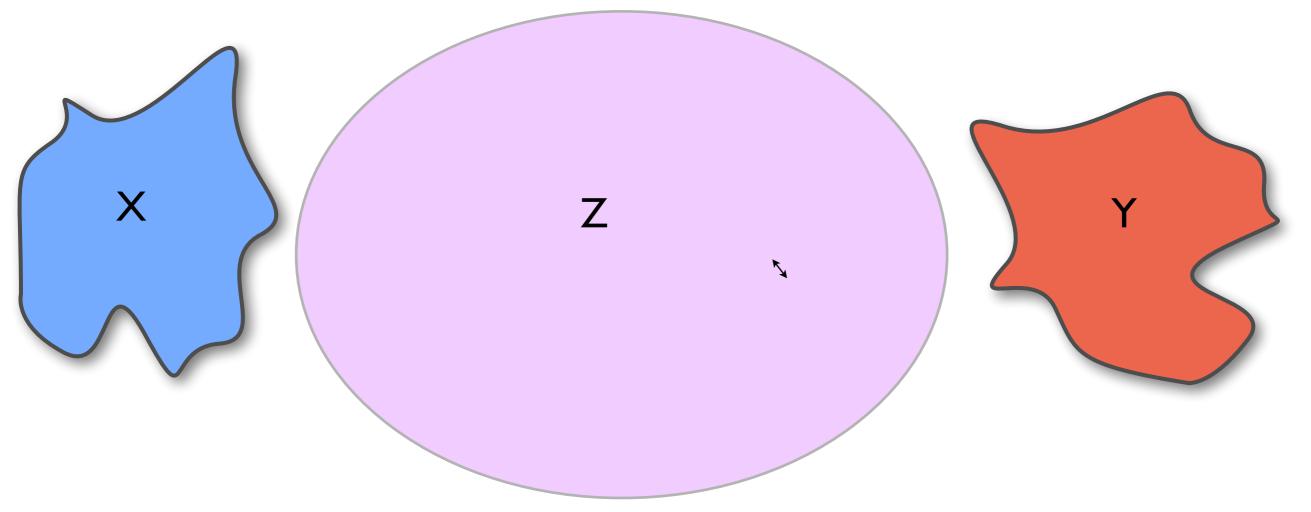


The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.



The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff distance between all possible isometric embeddings of X and Y in a same metric space Z.

Random maps

The Brownian tree

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}}\cdot \mathbf{t}_{n} \quad \xrightarrow[n\to\infty]{(d)} \quad \mathfrak{T}_{\mathbb{e}},$$

holds in distribution for the Gromov-Hausdorff distance.

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\mathbb{e}},$$

holds in distribution for the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space (Z, $a \cdot d$).

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\mathbb{e}},$$

holds in distribution for the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space (Z, $a \cdot d$).

The metric space \mathfrak{T}_{e} is called the *Brownian continuum random tree (CRT)*, and is coded by a Brownian excursion.

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}}\cdot \mathbf{t}_{\mathbf{n}} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \mathcal{T}_{\mathbf{e}},$$

holds in distribution for the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space $(Z, a \cdot d)$.

The metric space \mathfrak{T}_{e} is called the *Brownian continuum random tree (CRT)*, and is coded by a Brownian excursion.

Formally, for $0 \leqslant s, t \leqslant 1$, set

$$\mathbf{d}_{\mathbf{e}}(s,t) = \mathbf{e}(s) + \mathbf{e}(t) - 2 \min_{[s \wedge t, s \vee t]} \mathbf{e},$$

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}}\cdot \mathbf{t}_{n} \quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \mathcal{T}_{\mathbb{e}},$$

holds in distribution for the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space $(Z, a \cdot d)$.

The metric space \mathfrak{T}_{e} is called the *Brownian continuum random tree (CRT)*, and is coded by a Brownian excursion.

Formally, for $0 \leq s, t \leq 1$, set

$$\mathbf{d}_{\mathbf{e}}(s,t) = \mathbf{e}(s) + \mathbf{e}(t) - 2 \min_{[s \wedge t, s \vee t]} \mathbf{e},$$

and write $s \sim t$ if $d_{e}(s, t) = 0$.

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$\frac{\sigma}{2\sqrt{n}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\mathbb{e}},$$

holds in distribution for the Gromov-Hausdorff distance.

Notation: for a metric space (Z, d) and a > 0, $a \cdot Z$ is the metric space $(Z, a \cdot d)$.

The metric space \mathfrak{T}_{e} is called the *Brownian continuum random tree (CRT)*, and is coded by a Brownian excursion.

Formally, for $0 \leqslant s, t \leqslant 1$, set

$$\mathbf{d}_{\mathbf{e}}(s,t) = \mathbf{e}(s) + \mathbf{e}(t) - 2 \min_{[s \wedge t, s \vee t]} \mathbf{e},$$

and write $s \sim t$ if $d_e(s, t) = 0$. The Brownian tree \mathcal{T}_e is then defined to be the quotient metric space $[0, 1] / \sim$ equiped with d_e .

I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991)

II. SCALING LIMITS OF BGW TREES (INFINITE VARIANCE, 1998)

III. PLANE NON-CROSSING CONFIGURATIONS (2012)

IV. RANDOM MAPS (2004 - ?)

Fix $\pmb{\alpha} \in (1,2).$ Let $\pmb{\mu}$ be an offspring distribution such that

$$\begin{split} \sum_{i \ge 0} i\mu(i) &= 1 & (\mu \text{ is critical}) \\ \mu([i,\infty)) &\sim \frac{c}{i \rightarrow \infty} & \frac{c}{i^{\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \ge 0} i\mu(i) &= 1 & (\mu \text{ is critical}) \\ \mu([i,\infty)) &\sim \frac{c}{i \rightarrow \infty} & \frac{c}{i^{\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let t_n be a BGW_µ tree conditioned on having n vertices.

Fix $\alpha \in (1,2).$ Let μ be an offspring distribution such that

$$\begin{split} \sum_{i \ge 0} i\mu(i) &= 1 & (\mu \text{ is critical}) \\ \mu([i,\infty)) &\sim \frac{c}{i \rightarrow \infty} & \frac{c}{i^{\alpha}} & (\mu \text{ has a heavy tail}) \end{split}$$

Let t_n be a BGW_µ tree conditioned on having n vertices.

What does t_n look like for large n?

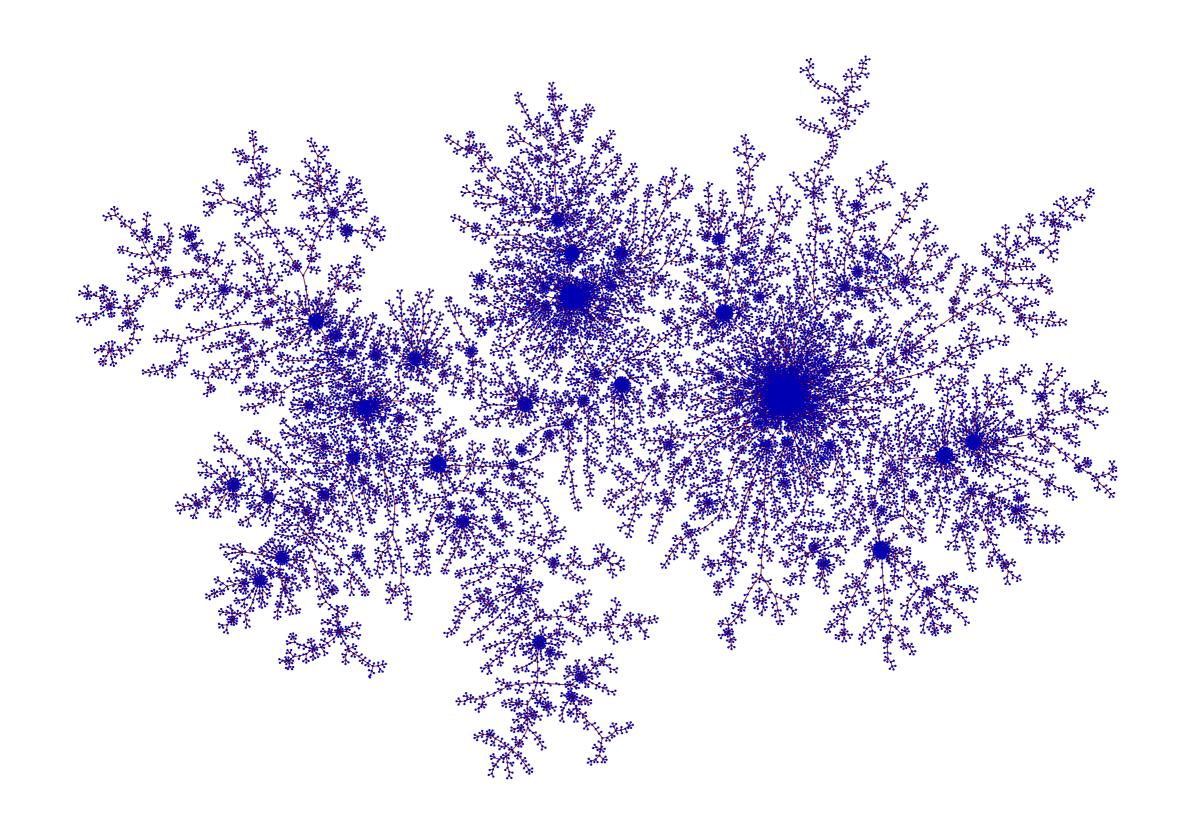


Figure: A large $\alpha = 1.1 - \text{stable tree}$

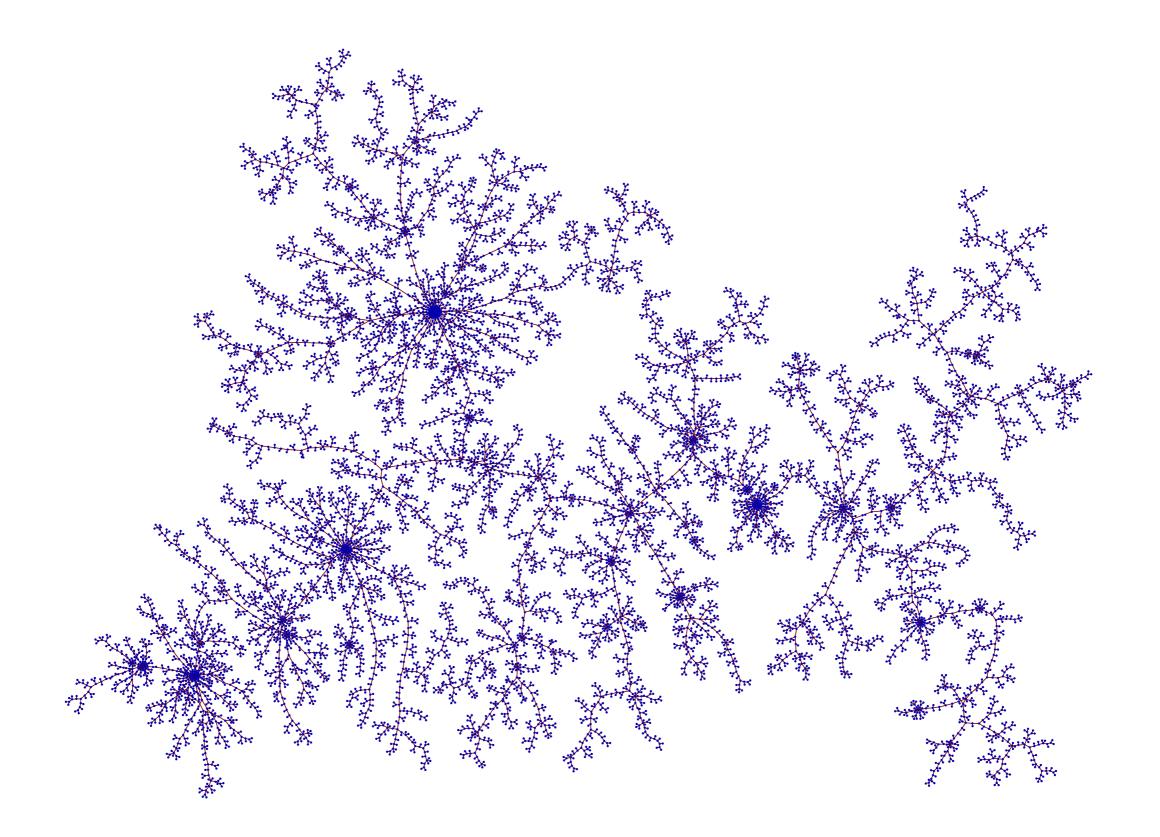


Figure: A large $\alpha = 1.5$ – stable tree

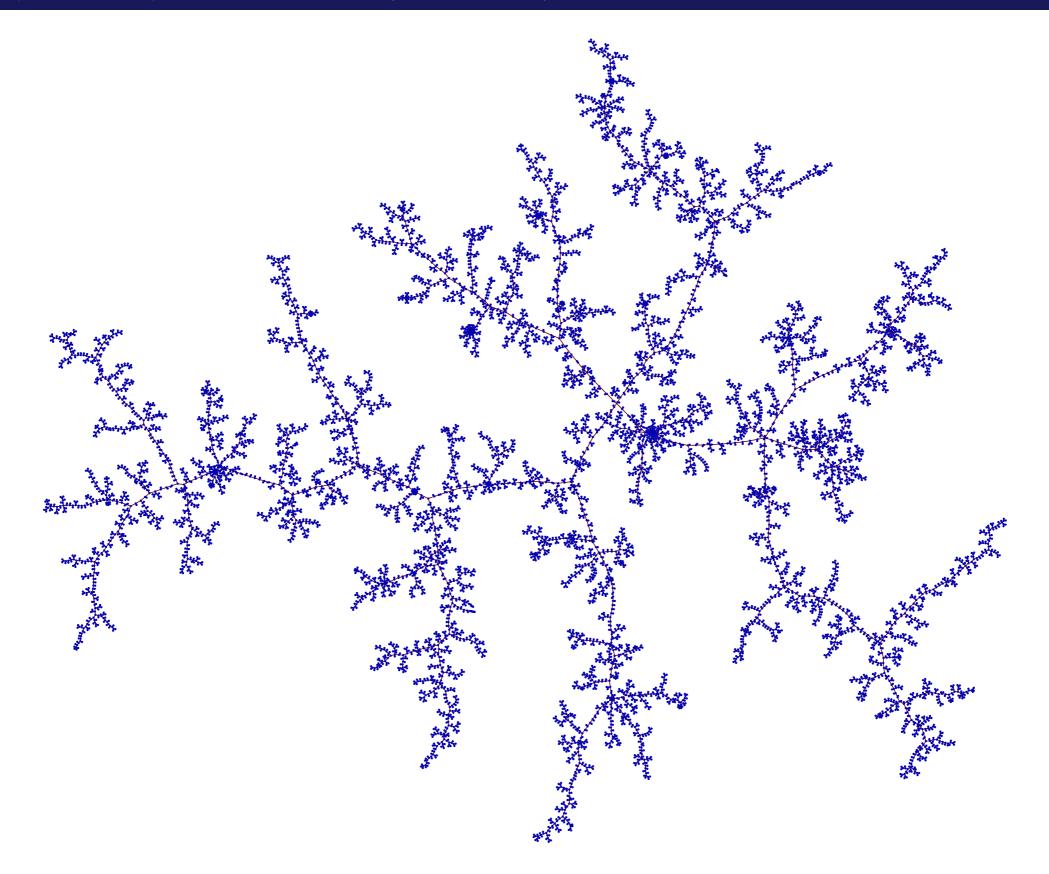


Figure: A large $\alpha = 1.9$ – stable tree

CONVERGENCE OF THE CONTOUR FUNCTION

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let \mathfrak{t}_n be a BGW_{μ} tree conditioned on having n vertices.

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. Theorem (Duquesne '03)

There exists a random continuous function $\mathcal{H}^{(\alpha)}$ on [0, 1] (whose law only depends of α) such that:

$$\left(\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \xrightarrow[n\to\infty]{(d)}$$

Fix $\alpha \in (1,2)$. Let μ be a **critical** offspring distribution such that $\mu([i,\infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. Theorem (Duquesne '03)

There exists a random continuous function $\mathcal{H}^{(\alpha)}$ on [0, 1] (whose law only depends of α) such that:

$$\left(\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}}C_{2nt}(\mathfrak{T}_{n})\right)_{0\leqslant t\leqslant 1}\quad \xrightarrow[n\to\infty]{(d)}$$

where the convergence holds in distribution in the space of continuous functions on [0, 1] with the uniform norm.

Fix $\alpha \in (1,2)$. Let μ be a **critical** offspring distribution such that $\mu([i,\infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. Theorem (Duquesne '03)

There exists a random continuous function $\mathcal{H}^{(\alpha)}$ on [0, 1] (whose law only depends of α) such that:

$$\left(\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}}C_{2nt}(\mathfrak{T}_n)\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathcal{H}^{\alpha}(t))_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in the space of continuous functions on [0, 1] with the uniform norm.

Fix $\alpha \in (1,2)$. Let μ be a **critical** offspring distribution such that $\mu([i,\infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. Theorem (Duquesne '03)

There exists a random continuous function $\mathcal{H}^{(\alpha)}$ on [0, 1] (whose law only depends of α) such that:

$$\left(\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}}C_{2nt}(\mathfrak{T}_n)\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathcal{H}^{\alpha}(t))_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in the space of continuous functions on [0, 1] with the uniform norm.

Idea of the proof:

Fix $\alpha \in (1,2)$. Let μ be a **critical** offspring distribution such that $\mu([i,\infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. Theorem (Duquesne '03)

There exists a random continuous function $\mathcal{H}^{(\alpha)}$ on [0, 1] (whose law only depends of α) such that:

$$\left(\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}}C_{2nt}(\mathfrak{T}_n)\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathcal{H}^{\alpha}(t))_{0\leqslant t\leqslant 1},$$

where the convergence holds in distribution in the space of continuous functions on [0, 1] with the uniform norm.

Idea of the proof:

 $\land \rightarrow$ The Lukasiewicz path of $𝔅n_n$, appropriately scaled, converges in distribution to the normalized excursion of a spectrally positive stable Lévy process of index α (conditioned Donsker's invariance principle).

Fix $\alpha \in (1,2)$. Let μ be a **critical** offspring distribution such that $\mu([i,\infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. Theorem (Duquesne '03)

There exists a random continuous function $\mathcal{H}^{(\alpha)}$ on [0, 1] (whose law only depends of α) such that:

$$\left(\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}}C_{2nt}(\mathfrak{T}_n)\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathcal{H}^{\alpha}(t))_{0\leqslant t\leqslant 1},$$

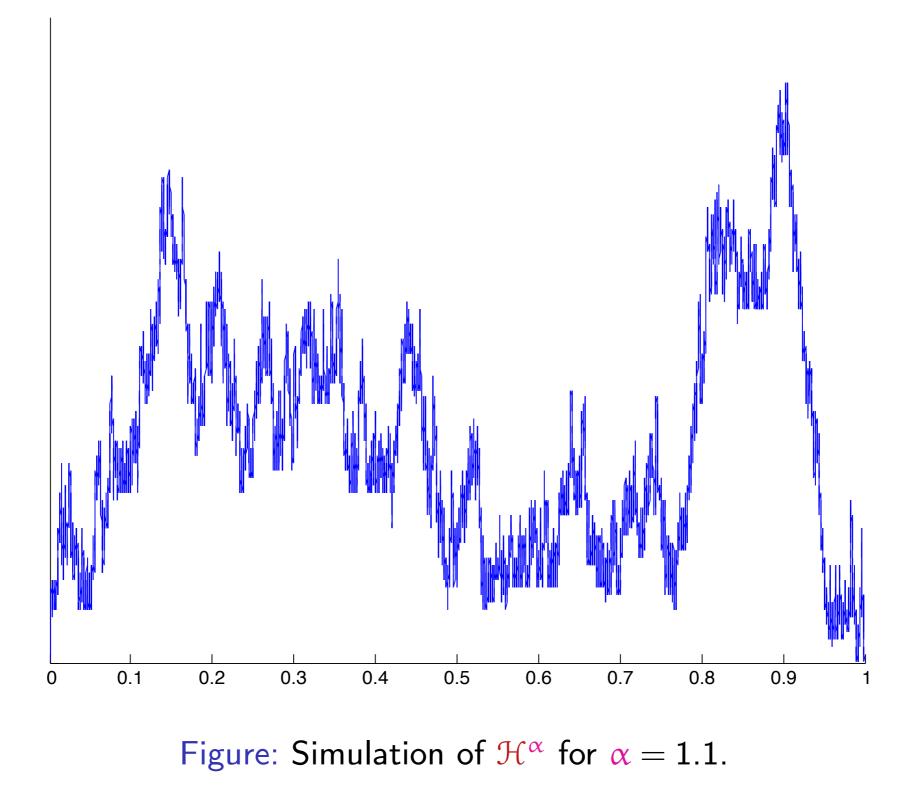
where the convergence holds in distribution in the space of continuous functions on [0, 1] with the uniform norm.

Idea of the proof:

 Λ → Go from the Lukasieiwicz path of \mathfrak{T}_n to its contour function.

Random maps

Simulations of $\mathcal{H}^{(\alpha)}$



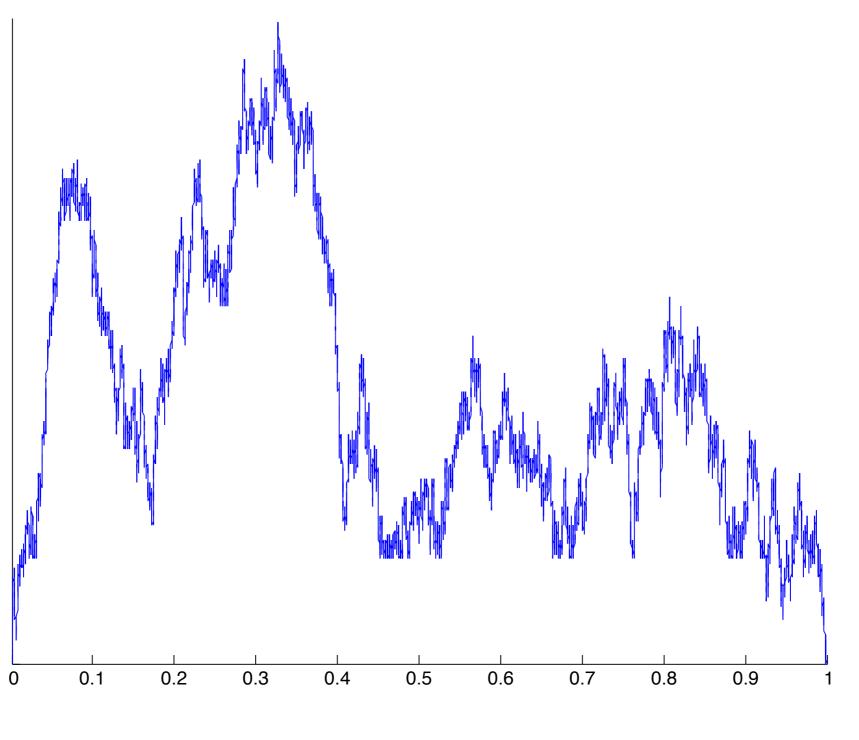


Figure: Simulation of \mathcal{H}^{α} for $\alpha = 1.6$.

Scaling limits in the Gromov-Hausdorff topology

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let \mathfrak{t}_n be a BGW_{μ} tree conditioned on having n vertices.

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathcal{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\alpha},$$

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathcal{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \mathcal{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \quad \mathfrak{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

 $\land \rightarrow$ The tree $𝔅_{\alpha}$ is called the stable tree of index α (introduced by Le Gall & Le Jan).

Fix $\alpha \in (1, 2)$. Let μ be a **critical** offspring distribution such that $\mu([i, \infty)) \sim c/i^{\alpha}$. Let t_n be a BGW_{μ} tree conditioned on having n vertices. View t_n as a compact metric space (the vertices of t_n are endowed with the graph distance).

Theorem (Duquesne '03)

There exists a random compact metric space \mathbb{T}_{α} such that:

$$\frac{(c|\Gamma(1-\alpha)|)^{1/\alpha}}{n^{1-1/\alpha}} \cdot \mathfrak{t}_{n} \quad \xrightarrow[n \to \infty]{} \mathcal{T}_{\alpha},$$

where the convergence holds in distribution for the Gromov-Hausdorff distance on compact metric spaces.

Remarks

 $\land \rightarrow$ The tree $𝔅_{\alpha}$ is called the stable tree of index α (introduced by Le Gall & Le Jan).

 $\wedge \to \mathcal{T}_{\alpha}$ is coded by $\mathcal{H}^{(\alpha)}$.

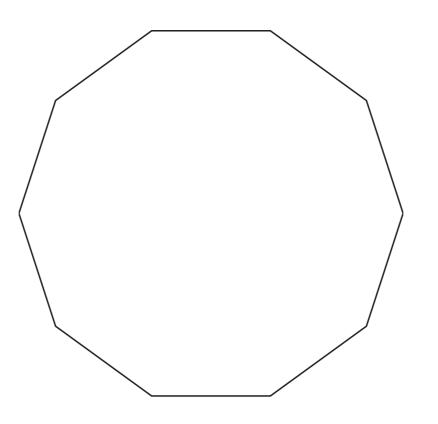
I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991)

II. SCALING LIMITS OF BGW TREES (INFINITE VARIANCE, 1998)

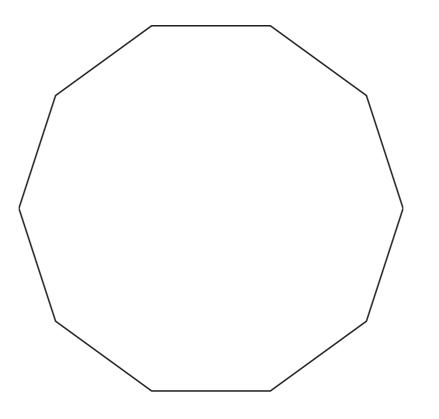
III. PLANE NON-CROSSING CONFIGURATIONS (2012)

IV. RANDOM MAPS (2004 - ?)

Let P_n be the polygon with vertices $e^{\frac{2i\pi j}{n}}(j=0,1,\ldots,n-1)$.

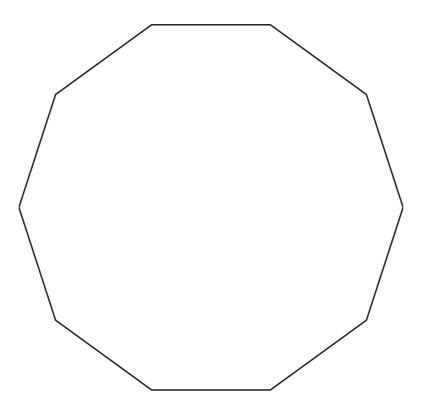


Let P_n be the polygon with vertices $e^{\frac{2i\pi j}{n}}(j = 0, 1, ..., n-1)$.



General philosophy: chose at random a non crossing configuration, obtained from the vertices of P_n by drawing diagonals which may not cross.

Let P_n be the polygon with vertices $e^{\frac{2i\pi j}{n}}(j=0,1,\ldots,n-1)$.



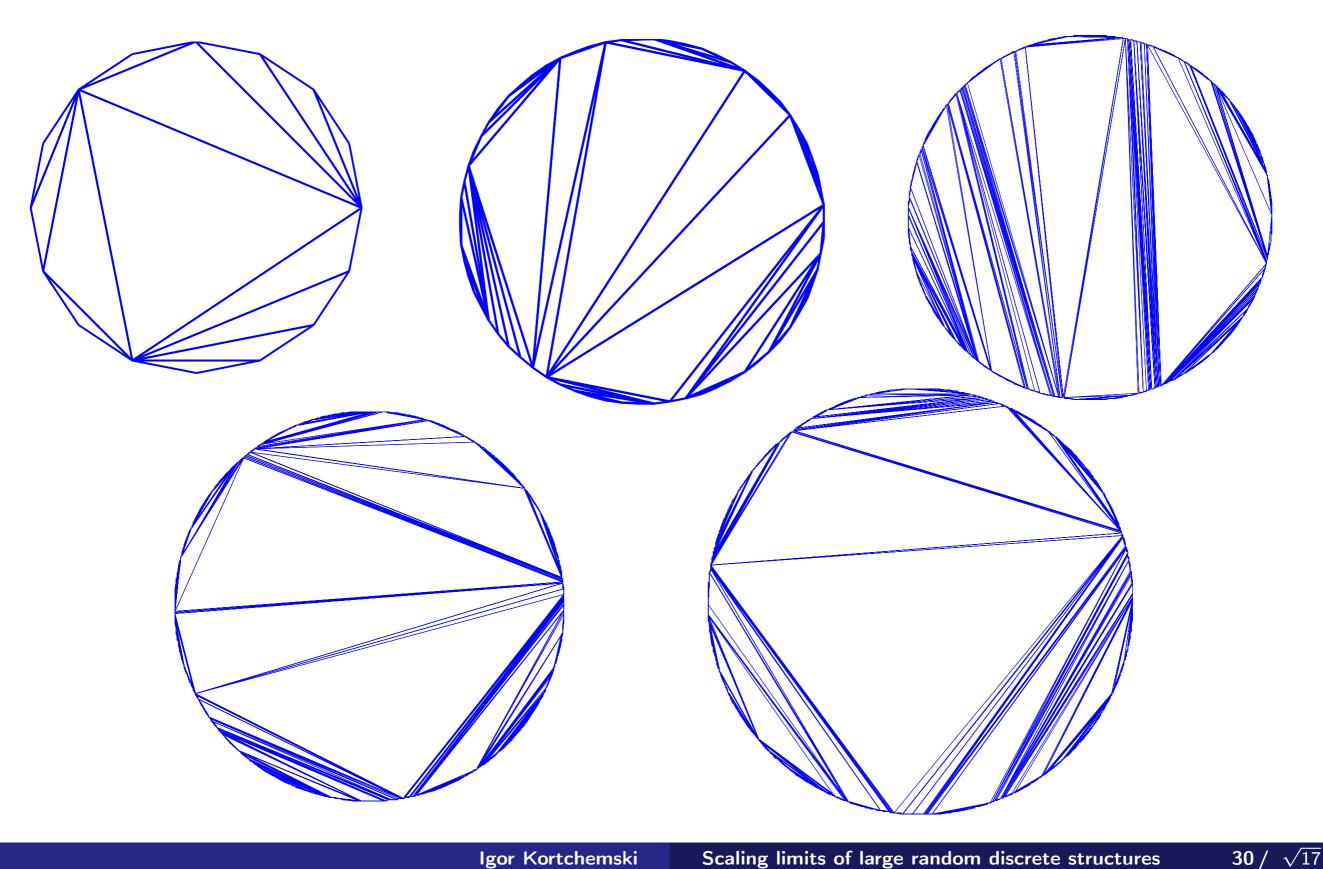
General philosophy: chose at random a non crossing configuration, obtained from the vertices of P_n by drawing diagonals which may not cross.

What happens for n large?

Case of triangulations of P_n

Let \mathfrak{T}_n be a random triangulation, chosen uniformly among all triangulations of P_n . What does \mathfrak{T}_n look like when n is large?

Let \mathcal{T}_n be a random triangulation, chosen uniformly among all triangulations of P_n . What does \mathcal{T}_n look like when n is large?



For $n \ge 3$, let T_n be a uniform triangulation of P_n .

For $n \ge 3$, let T_n be a uniform triangulation of P_n . Then there exists a random compact subset L(e) of the unit disk such that

$$\Gamma_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad L(\mathbb{e}),$$

For $n \ge 3$, let T_n be a uniform triangulation of P_n . Then there exists a random compact subset L(e) of the unit disk such that

$$T_n \xrightarrow{(d)} L(e),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

For $n \ge 3$, let T_n be a uniform triangulation of P_n . Then there exists a random compact subset L(e) of the unit disk such that

$$\Gamma_n \xrightarrow[n \to \infty]{(d)} L(\mathbb{P}),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

L(e) is the **Brownian triangulation**.

For $n \ge 3$, let T_n be a uniform triangulation of P_n . Then there exists a random compact subset L(e) of the unit disk such that

$$\Gamma_n \xrightarrow[n \to \infty]{(d)} L(\mathbb{P}),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

L(e) is the **Brownian triangulation**.

 \bigwedge Consequence: The length (that is its normalised angle from the center) of the longest diagonal of T_n converges in distribution to a probability measure with density:

For $n \ge 3$, let T_n be a uniform triangulation of P_n . Then there exists a random compact subset L(e) of the unit disk such that

$$I_n \xrightarrow{(d)} L(e),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

L(e) is the **Brownian triangulation**.

 \bigwedge Consequence: The length (that is its normalised angle from the center) of the longest diagonal of T_n converges in distribution to a probability measure with density:

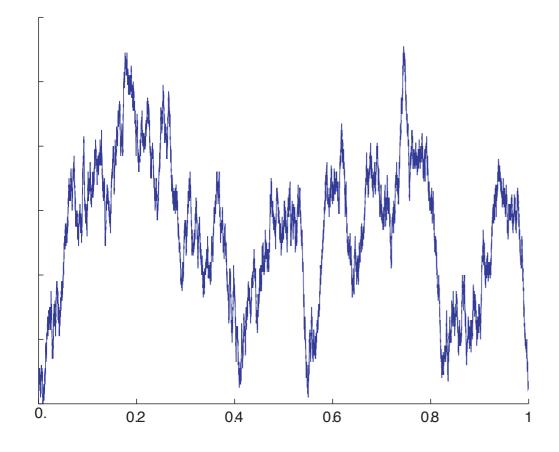
$$\frac{1}{\pi} \frac{3x-1}{x^2(1-x)^2\sqrt{1-2x}} \mathbf{1}_{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}} dx.$$

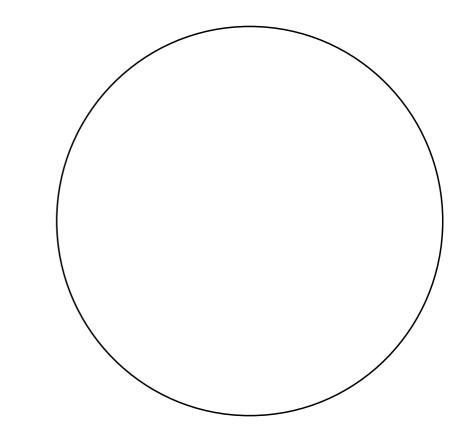
Random maps

Construction of the Brownian triangulation

Start from the Brownian excursion \oplus :

Start from the Brownian excursion \oplus :

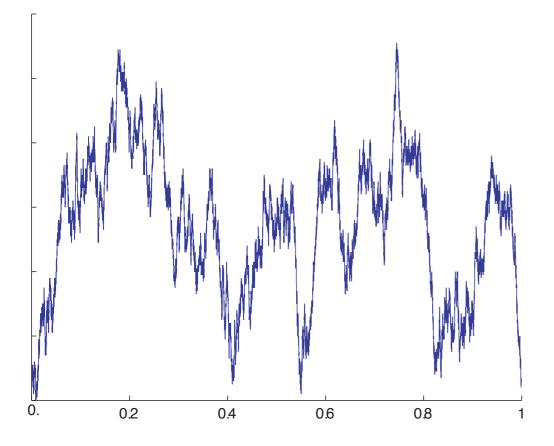


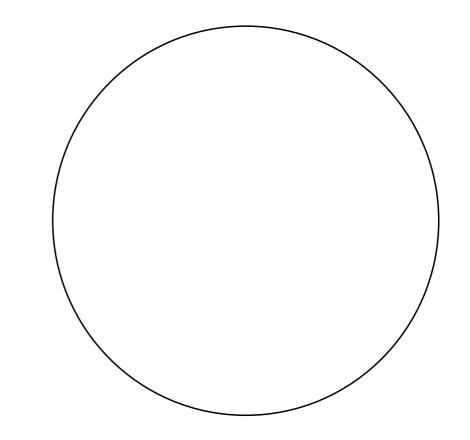


Random maps

Construction of the Brownian triangulation

Start from the Brownian excursion \oplus :



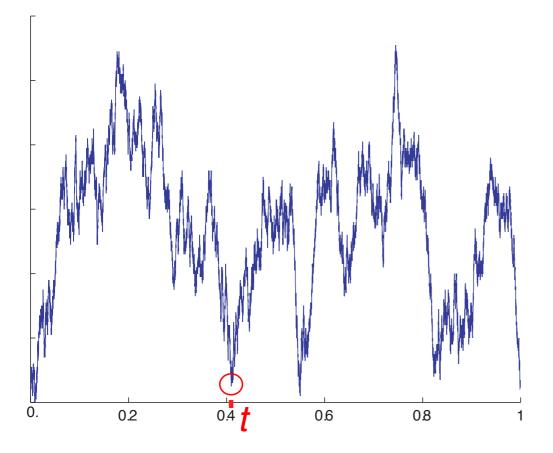


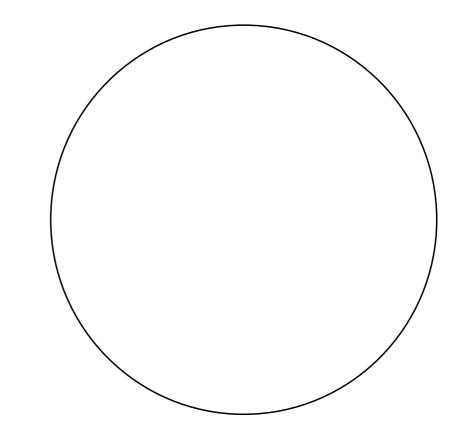
Let t be a local minimum timel.

Random maps

Construction of the Brownian triangulation

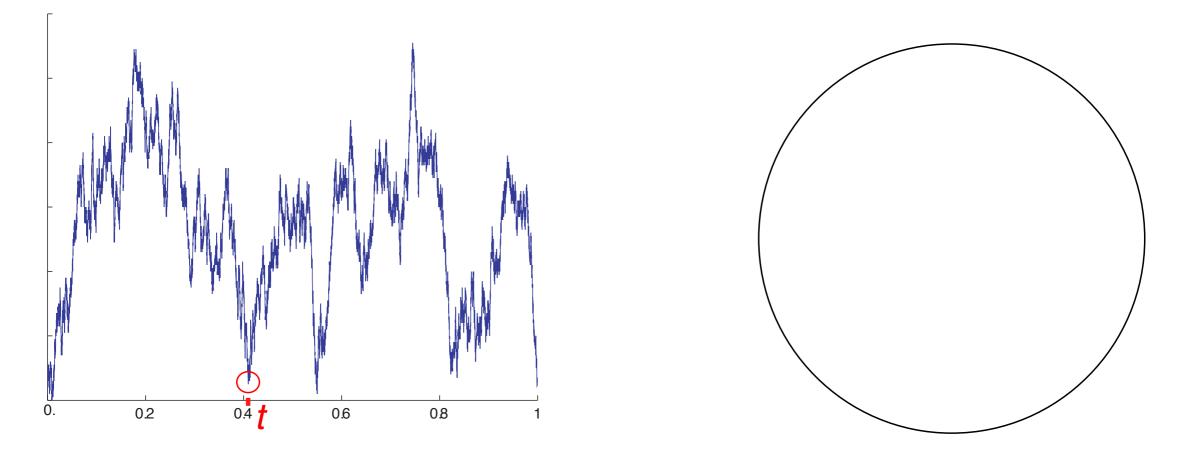
Start from the Brownian excursion \oplus :





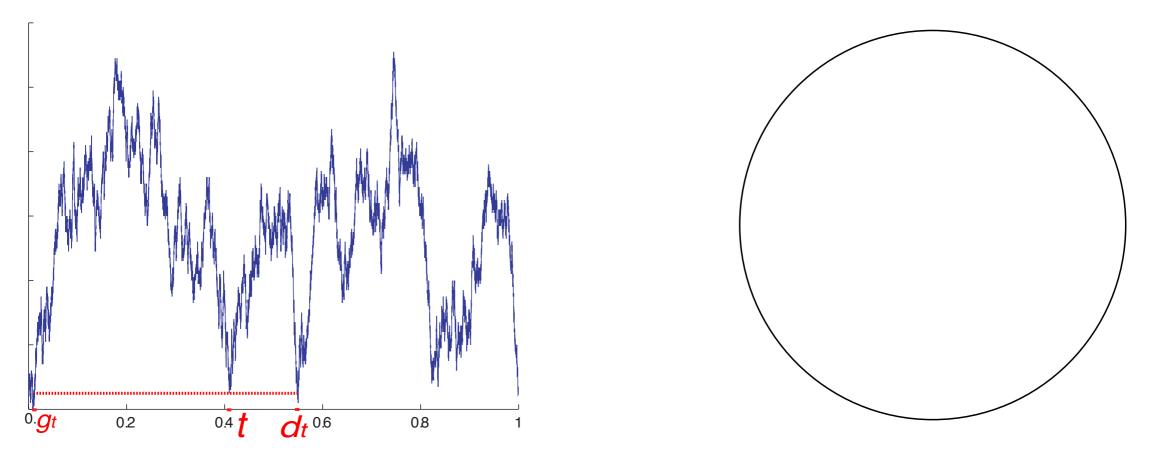
Let t be a local minimum timel.

Start from the Brownian excursion \oplus :



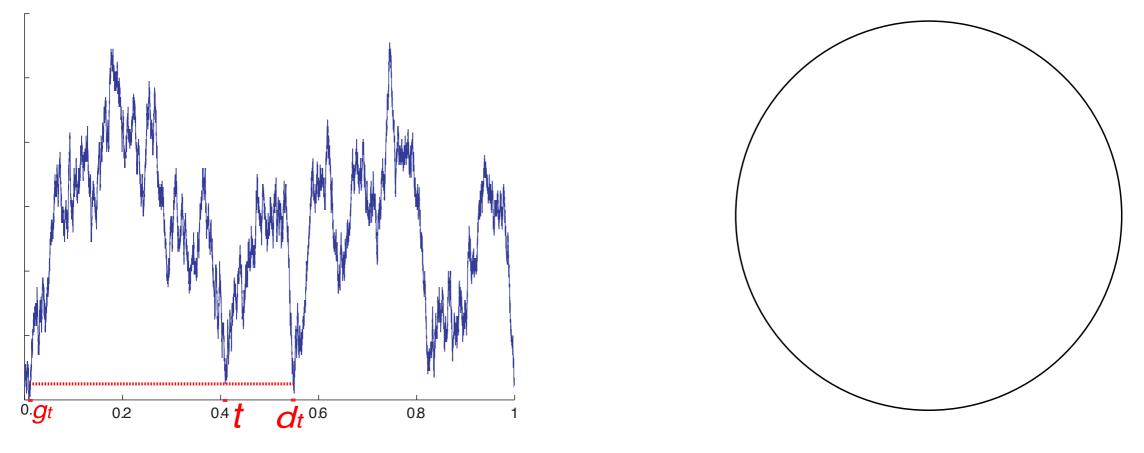
Let t be a local minimum timel. Set $g_t = \sup\{s < t; e_s = e_t\}$ et $d_t = \inf\{s > t; e_s = e_t\}$.

Start from the Brownian excursion \oplus :



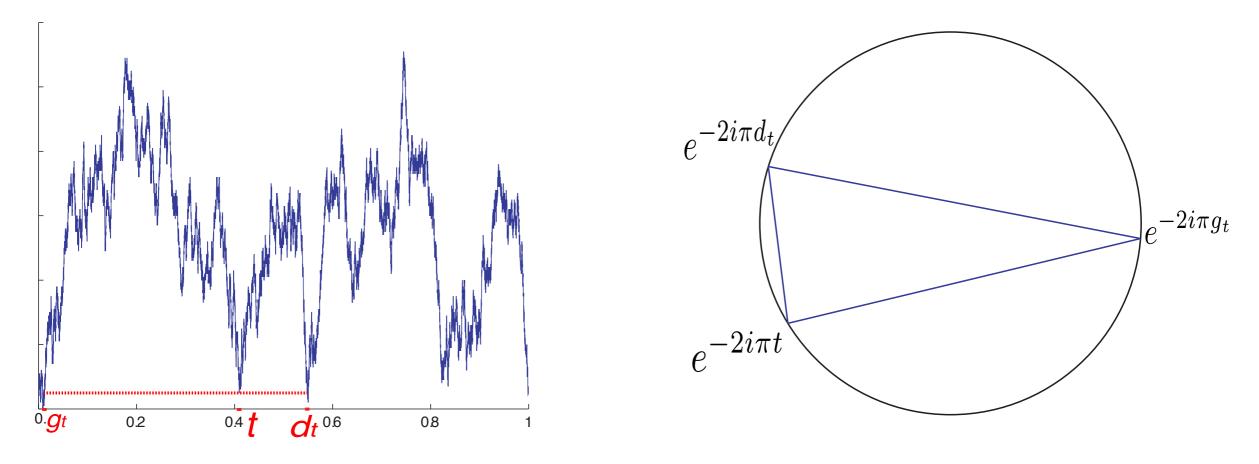
Let t be a local minimum timel. Set $g_t = \sup\{s < t; e_s = e_t\}$ et $d_t = \inf\{s > t; e_s = e_t\}$.

Start from the Brownian excursion \oplus :



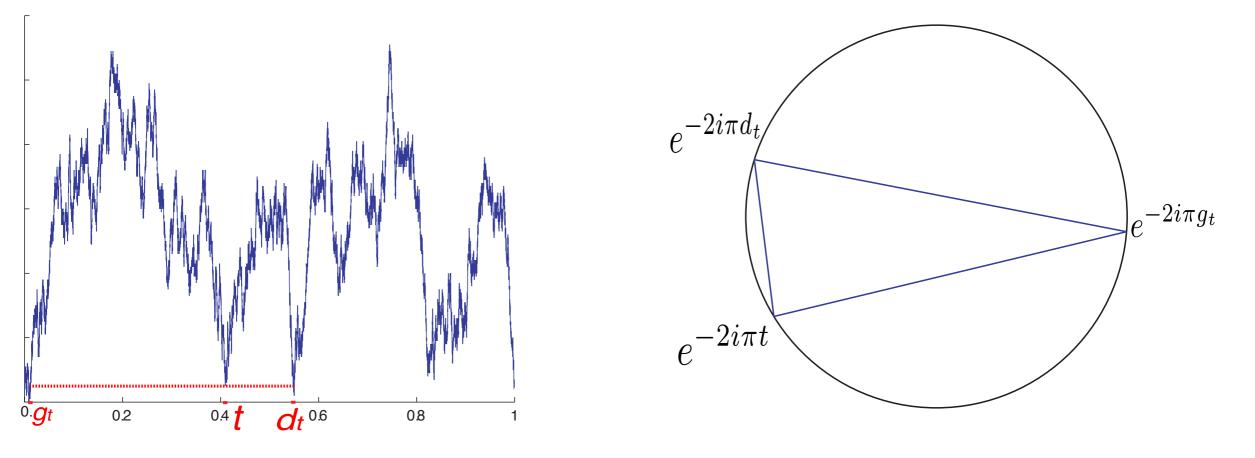
Let t be a local minimum timel. Set $g_t = \sup\{s < t; e_s = e_t\}$ et $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $\left[e^{-2i\pi g_t}, e^{-2i\pi t}\right]$, $\left[e^{-2i\pi t}, e^{-2i\pi d_t}\right]$ and $\left[e^{-2i\pi g_t}, e^{-2i\pi d_t}\right]$.

Start from the Brownian excursion \oplus :



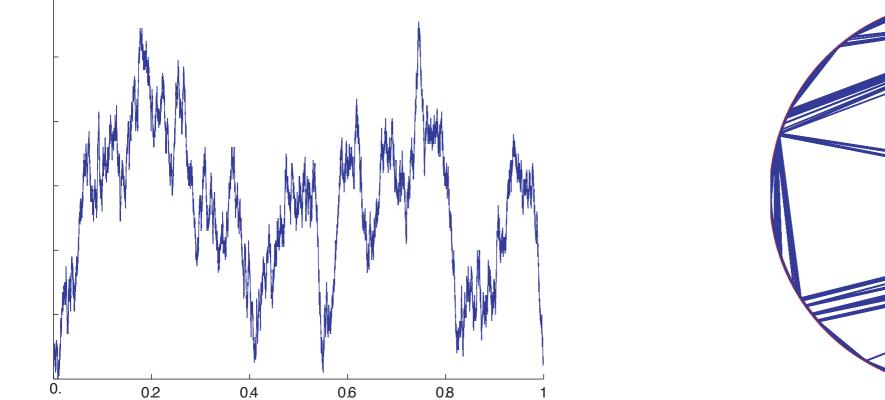
Let t be a local minimum timel. Set $g_t = \sup\{s < t; e_s = e_t\}$ et $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $\left[e^{-2i\pi g_t}, e^{-2i\pi t}\right]$, $\left[e^{-2i\pi t}, e^{-2i\pi d_t}\right]$ and $\left[e^{-2i\pi g_t}, e^{-2i\pi d_t}\right]$.

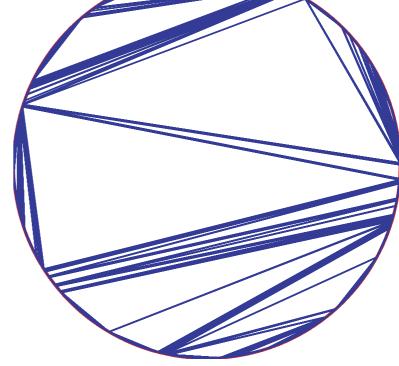
Start from the Brownian excursion \oplus :



Let t be a local minimum timel. Set $g_t = \sup\{s < t; e_s = e_t\}$ et $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Do this for all local minimum times.

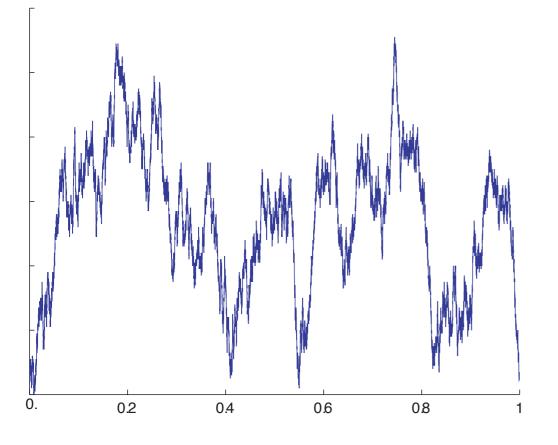
Start from the Brownian excursion \oplus :

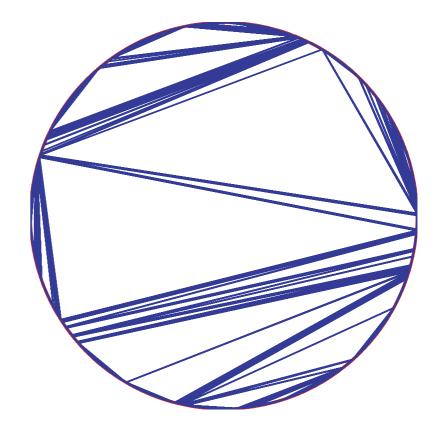




Let t be a local minimum timel. Set $g_t = \sup\{s < t; e_s = e_t\}$ et $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Do this for all local minimum times.

Start from the Brownian excursion \oplus :





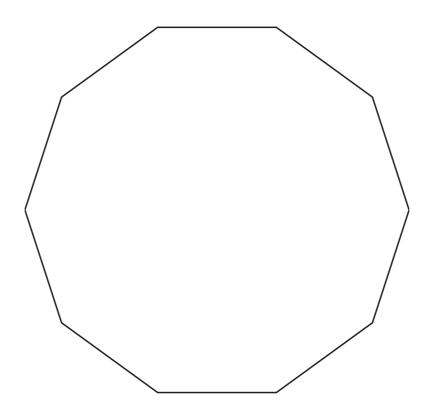
Let t be a local minimum timel. Set $g_t = \sup\{s < t; e_s = e_t\}$ et $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ and $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Do this for all local minimum times.

The closure of this object, denoted by L(e), is called the Brownian triangulation.

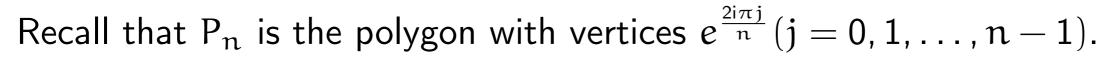
Case of dissections of P_n

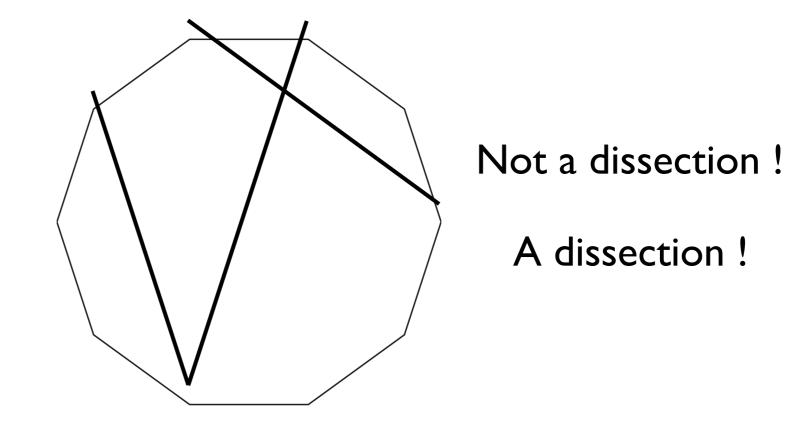
Dissections

Recall that P_n is the polygon with vertices $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).



Dissections



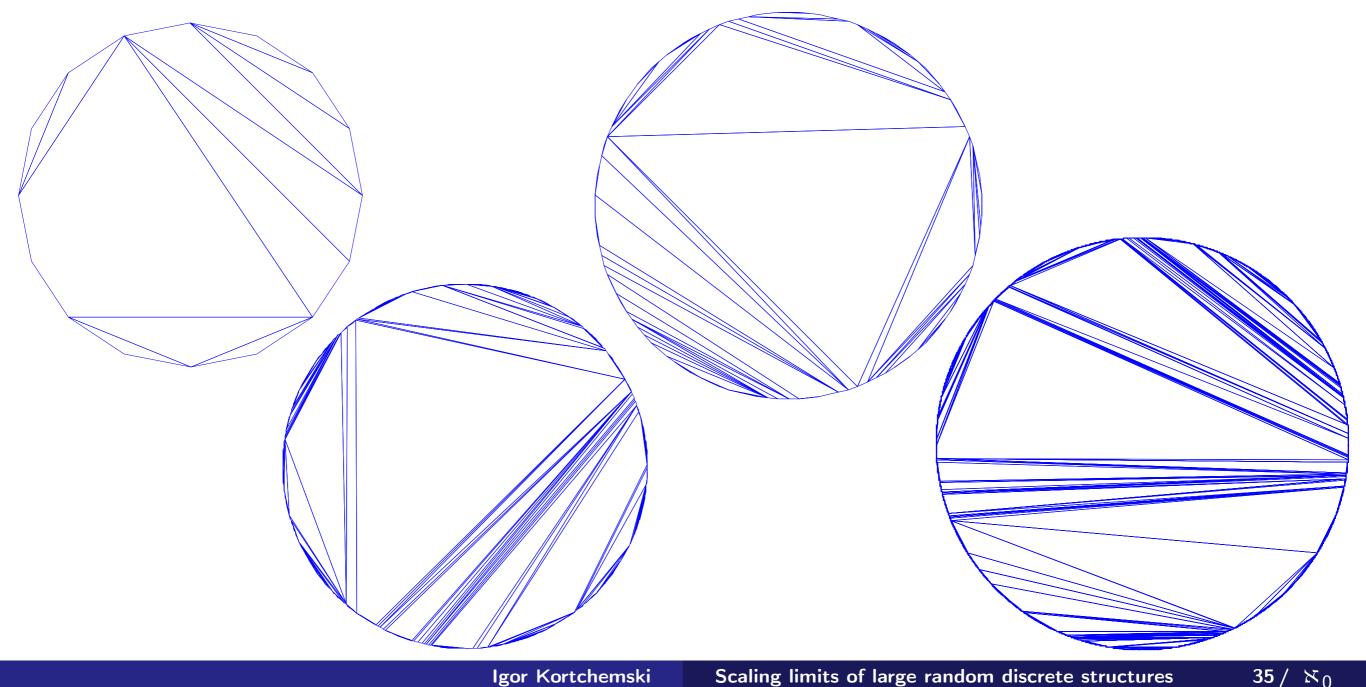


A *dissection* of P_n is the union of P_n with a collection of non-crossing diagonals.

Let \mathfrak{D}_n be a random dissection, chosen uniformly at random among all dissections of P_n . What does \mathfrak{D}_n look like as $n \to \infty$?

Dissections

Let \mathfrak{D}_n be a random dissection, chosen uniformly at random among all dissections of P_n . What does \mathfrak{D}_n look like as $n \to \infty$?



36/×0

Theorem (Curien & K. '12).

For $n \ge 3$, let D_n be a uniform dissection of P_n .

Theorem (Curien & K. '12). For $n \ge 3$, let D_n be a uniform dissection of P_n . Then $D_n \quad \frac{(d)}{n \to \infty} \quad L(e),$

Theorem (Curien & K. '12).

For $n \ge 3$, let D_n be a uniform dissection of P_n . Then

$$D_n \xrightarrow[n \to \infty]{(d)} L(e),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. '12).

For $n \ge 3$, let D_n be a uniform dissection of P_n . Then

$$D_n \xrightarrow[n \to \infty]{(d)} L(\mathbb{e}),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

(Many other models of random plane non-crossing configurations converge to the Brownian triangulation: non-crossing trees, non-crossing partitions, etc. Curien & K. '12, K. & Marzouk '15).

Theorem (Curien & K. '12).

For $n \ge 3$, let D_n be a uniform dissection of P_n . Then

$$D_n \xrightarrow[n \to \infty]{(d)} L(\mathbb{e}),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

(Many other models of random plane non-crossing configurations converge to the Brownian triangulation: non-crossing trees, non-crossing partitions, etc. Curien & K. '12, K. & Marzouk '15).

 \bigwedge Consequence: The length (that is its normalised angle from the center) of the longest diagonal of D_n converges in distribution to a probability measure with density:

Theorem (Curien & K. '12).

For $n \ge 3$, let D_n be a uniform dissection of P_n . Then

$$D_n \xrightarrow[n \to \infty]{(d)} L(\mathbb{e}),$$

where the convergence holds in distribution in the space of compact subsets of the unit disk equiped with the Hausdorff distance.

(Many other models of random plane non-crossing configurations converge to the Brownian triangulation: non-crossing trees, non-crossing partitions, etc. Curien & K. '12, K. & Marzouk '15).

 \bigwedge Consequence: The length (that is its normalised angle from the center) of the longest diagonal of D_n converges in distribution to a probability measure with density:

$$\frac{1}{\pi} \frac{3x-1}{x^2(1-x)^2\sqrt{1-2x}} \mathbf{1}_{\frac{1}{3} \leqslant x \leqslant \frac{1}{2}} dx.$$

How to prove that these models converge to the Brownian triangulation?

How to prove that these models converge to the Brownian triangulation?

<u>രക്കം</u>

Key point: these trees can be coded by BGW trees.

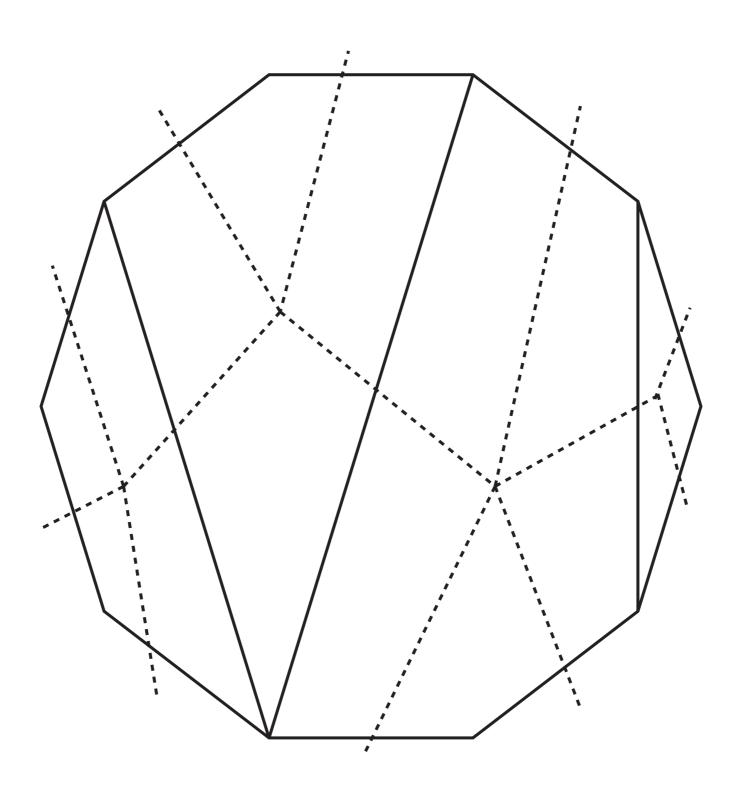
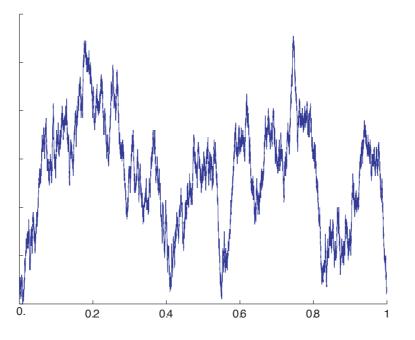
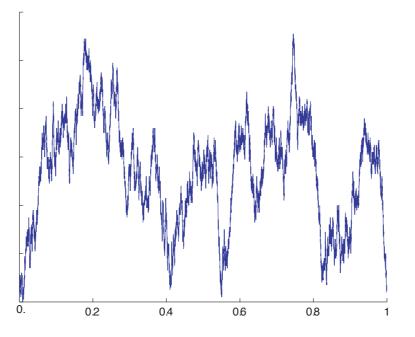
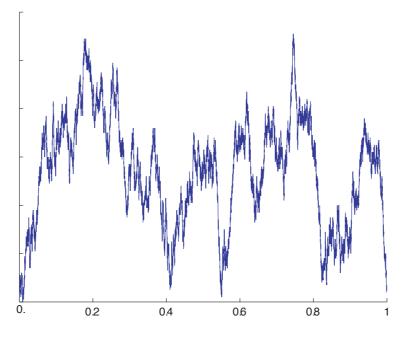


Figure: The dual tree of a dissection.



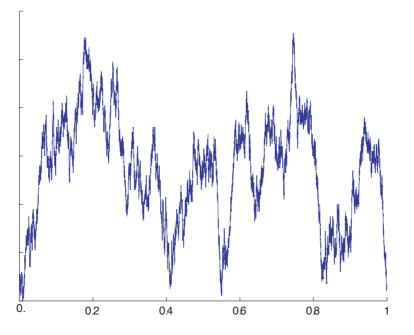


Strategy of the proof:



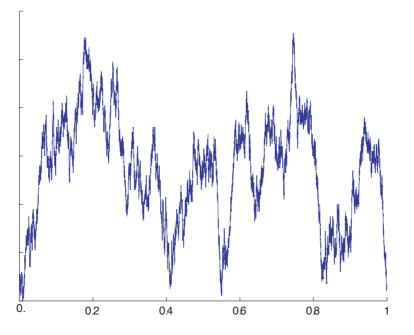
Strategy of the proof:

These models can be coded a random conditioned Bienaymé–Galton–Watson tree.



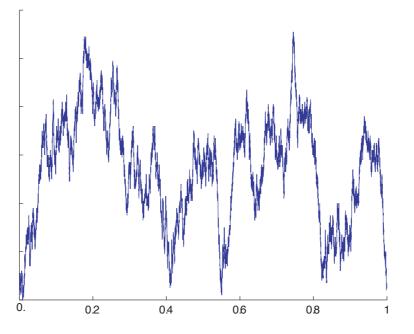
Strategy of the proof:

- These models can be coded a random conditioned Bienaymé–Galton–Watson tree.
- The normalized contour functions of these conditioned Bienaymé–Galton–Watson trees converge to the Brownian excursion.



Strategy of the proof:

- These models can be coded a random conditioned Bienaymé–Galton–Watson tree.
- The normalized contour functions of these conditioned Bienaymé–Galton–Watson trees converge to the Brownian excursion.
- ► The Brownian excursion codes the Brownian triangulationL(@).



Strategy of the proof:

- These models can be coded a random conditioned Bienaymé–Galton–Watson tree.
- The normalized contour functions of these conditioned Bienaymé–Galton–Watson trees converge to the Brownian excursion.
- ► The Brownian excursion codes the Brownian triangulationL(@).

Therefore these random plane non-crossing configurations converge to L(e).

40/ X₀

WHAT ABOUT DISSECTIONS SEEN AS COMPACT METRIC SPACES?

Dissections seen as compact metric spaces

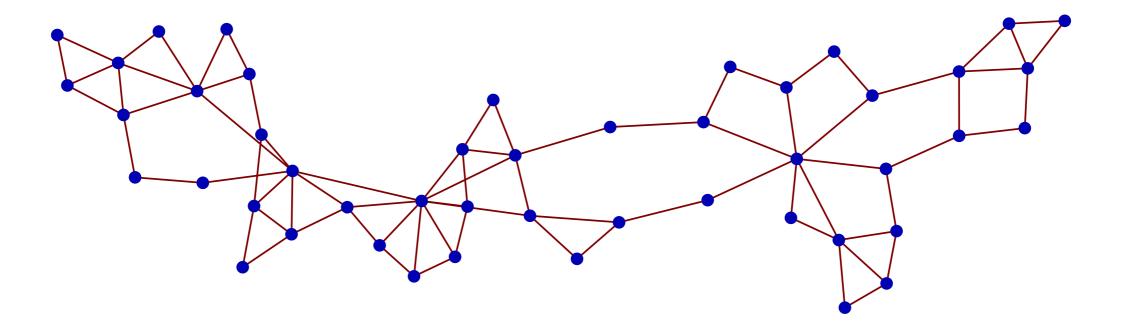


Figure: A uniform dissection of P_{45} .

Dissections seen as compact metric spaces

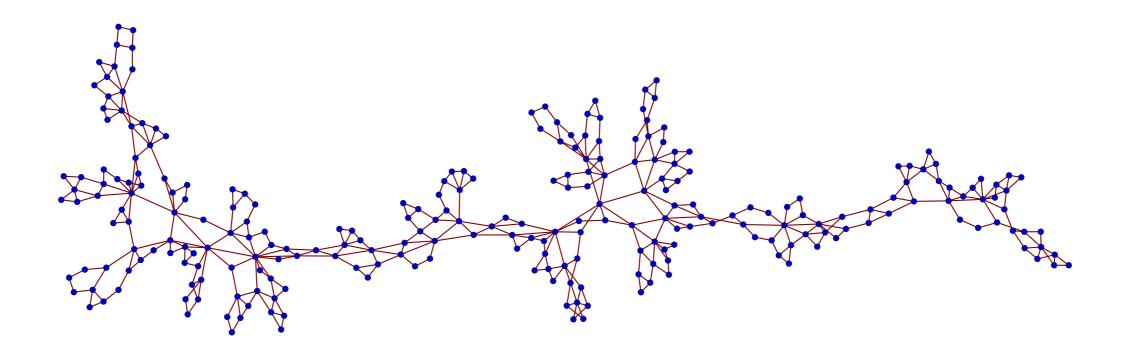


Figure: A uniform dissection of P_{260} .

Dissections seen as compact metric spaces

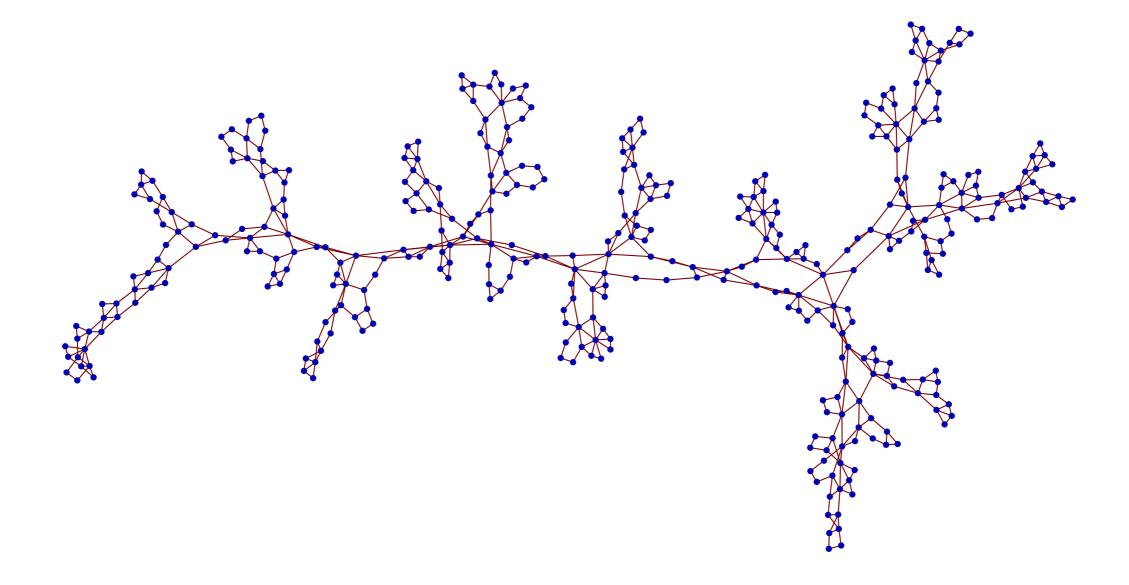


Figure: A uniform dissection of P_{387} .

Dissections seen as compact metric spaces

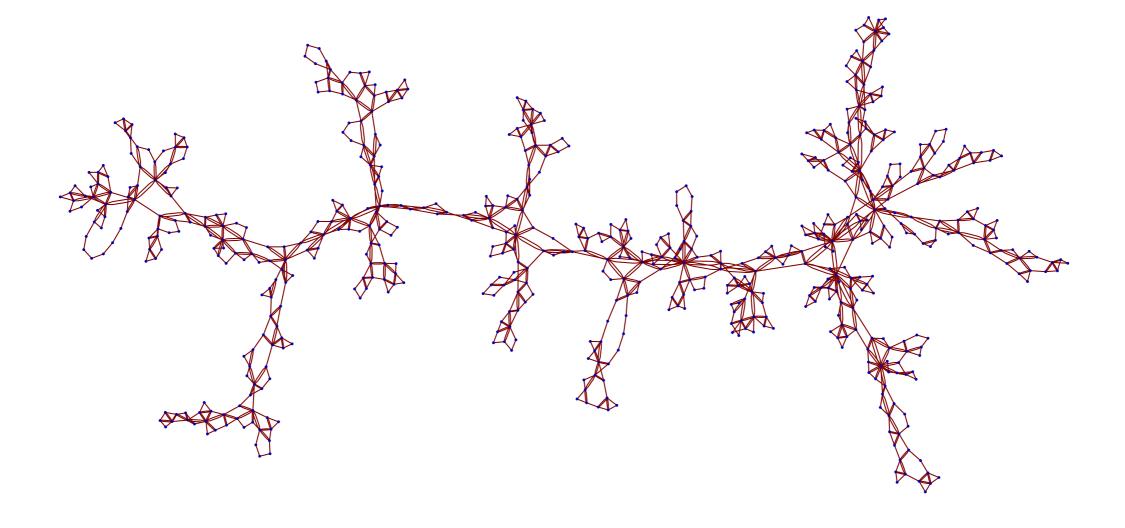


Figure: A uniform dissection of P_{637} .

Dissections seen as compact metric spaces

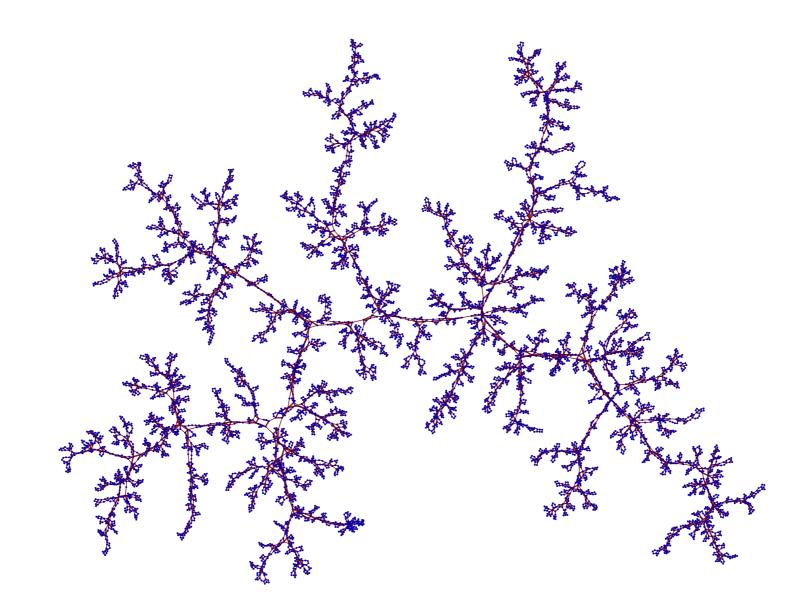


Figure: A uniform dissection of P_{8916} .

Dissections seen as compact metric spaces

Theorem (Curien, Haas & K. '13).

For $n \ge 3$, let D_n be a uniform dissection of P_n .

Dissections seen as compact metric spaces

Theorem (Curien, Haas & K. '13).
For
$$n \ge 3$$
, let D_n be a uniform dissection of P_n . Then

$$\frac{1}{\sqrt{n}} \cdot \mathbb{D}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \frac{1}{7}(3 + \sqrt{2})2^{3/4} \cdot \mathbb{T}_{\mathbb{P}},$$

Dissections seen as compact metric spaces

For $n \ge 3$, let D_n be a uniform dissection of P_n . Then

$$\frac{1}{\sqrt{n}} \cdot \mathbf{D}_{n} \quad \xrightarrow[n \to \infty]{(d)} \quad \frac{1}{7} (3 + \sqrt{2}) 2^{3/4} \cdot \mathfrak{T}_{e},$$

in distribution in the space of isometry classes of compact metric spaces equipped with the Gromov–Hausdorff distance.

43 / ×1

I. SCALING LIMITS OF BGW TREES (FINITE VARIANCE, 1991)

II. SCALING LIMITS OF BGW TREES (INFINITE VARIANCE, 1998)

III. PLANE NON-CROSSING CONFIGURATIONS (2012)

IV. RANDOM MAPS (2004 - ?)

What does a "typical" random surface look like?

It is natural to view Brownian motion as a "typical" random path, describing the motion of a particle moving "uniformly at random".

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0, \infty)$.

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0, \infty)$. Set $S_n = X_1 + X_2 + \cdots + X_n$

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0, \infty)$. Set $S_n = X_1 + X_2 + \dots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$.

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0,\infty)$. Set $S_n = X_1 + X_2 + \dots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}}$$

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0,\infty)$. Set $S_n = X_1 + X_2 + \cdots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \xrightarrow[n \to \infty]{} \quad (W_t, t \ge 0),$$

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0,\infty)$. Set $S_n = X_1 + X_2 + \dots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (W_t, t \ge 0),$$

where $(W_t, t \ge 0)$ is Brownian motion

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0,\infty)$. Set $S_n = X_1 + X_2 + \dots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (W_t, t \ge 0),$$

Theorem (Donsker, 1951)

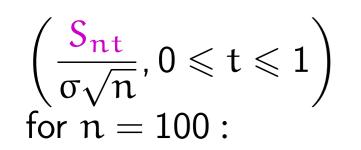
Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0,\infty)$. Set $S_n = X_1 + X_2 + \dots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$. Then:

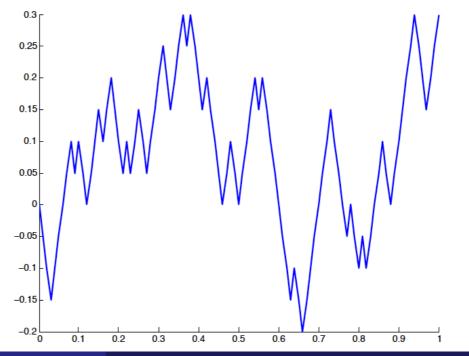
$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (W_t, t \ge 0),$$

Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0,\infty)$. Set $S_n = X_1 + X_2 + \dots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (W_t, t \ge 0),$$



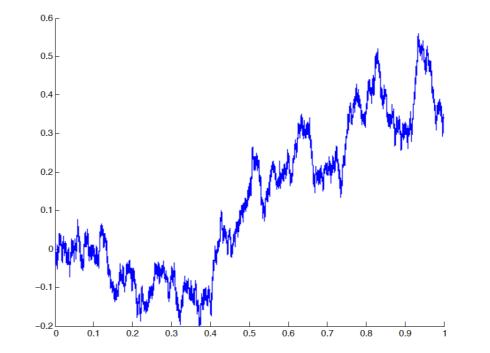


Theorem (Donsker, 1951)

Let $(X_n)_{n \ge 1}$ be a sequence of i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\sigma^2 = \mathbb{E}[X_1^2] \in (0,\infty)$. Set $S_n = X_1 + X_2 + \cdots + X_n$, and define S_{nt} by linear interpolation for $t \ge 0$. Then:

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, t \ge 0\right) \quad \stackrel{(d)}{\underset{n \to \infty}{\longrightarrow}} \quad (W_t, t \ge 0),$$

$$\left(\frac{S_{nt}}{\sigma\sqrt{n}}, 0 \leqslant t \leqslant 1\right)$$
 for $n = 100000$:



A→ Idea: construct a (two-dimensional) random surface as a limit of random discrete surfaces.

47 / X₁

A→ Idea: construct a (two-dimensional) random surface as a limit of random discrete surfaces.

Consider n triangles, and glue them uniformly at random in such a way to get a surface homeomorphic to a sphere.

A→ Idea: construct a (two-dimensional) random surface as a limit of random discrete surfaces.

Consider n triangles, and glue them uniformly at random in such a way to get a surface homeomorphic to a sphere.

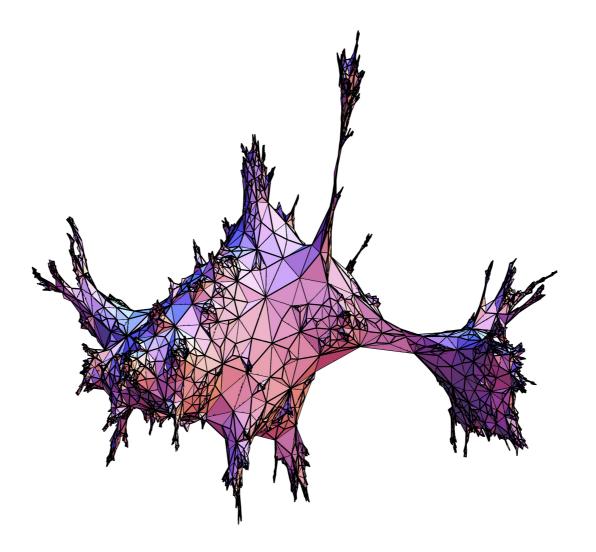


Figure: A large random triangulation (simulation by Nicolas Curien)

48 / ×1

The Brownian map

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles.

48 / ×1

The Brownian map

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles. View T_n as a compact metric space, by equipping its vertices with the graph distance.

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles. View T_n as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1/4} \cdot T_n$ converges towards a random compact metric space (the Brownian map)

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles. View T_n as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1/4} \cdot T_n$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov–Hausdorff topology.

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles. View T_n as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1/4} \cdot T_n$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles. View T_n as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1/4} \cdot T_n$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

Since, many different models of discrete surfaces have been shown to converge to the Brownian map (Miermont, Beltran & Le Gall, Addario-Berry & Albenque, Bettinelli & Jacob & Miermont, Abraham)

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles. View T_n as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1/4} \cdot T_n$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

Since, many different models of discrete surfaces have been shown to converge to the Brownian map (Miermont, Beltran & Le Gall, Addario-Berry & Albenque, Bettinelli & Jacob & Miermont, Abraham), using various techniques (in particular bijective codings by labelled trees)

Problem (Schramm at ICM '06): Let T_n be a random uniform triangulation of the sphere with n triangles. View T_n as a compact metric space, by equipping its vertices with the graph distance. Show that $n^{-1/4} \cdot T_n$ converges towards a random compact metric space (the Brownian map), in distribution for the Gromov–Hausdorff topology.

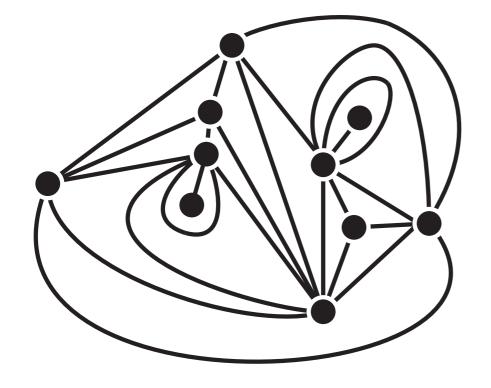
Solved by Le Gall in 2011.

Since, many different models of discrete surfaces have been shown to converge to the Brownian map (Miermont, Beltran & Le Gall, Addario-Berry & Albenque, Bettinelli & Jacob & Miermont, Abraham), using various techniques (in particular bijective codings by labelled trees)

(see Le Gall's proceeding at ICM '14 for more information and references)

A **planar map** is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations).

A **planar map** is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations).



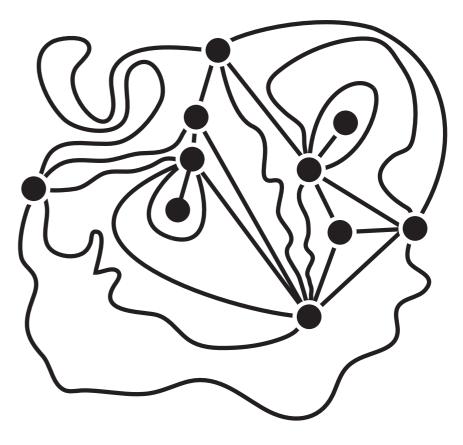


Figure: Two identical maps .

A planar map is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations). It is a p-angulation when all the faces have degree p.

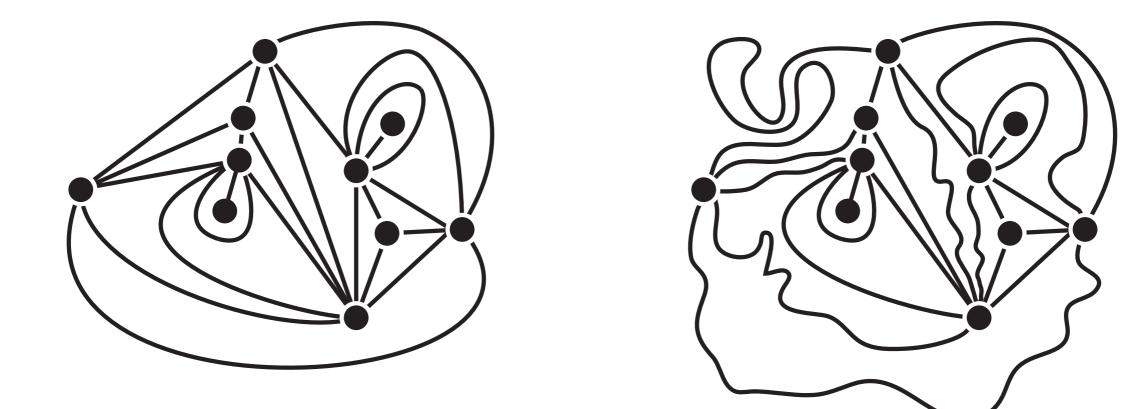


Figure: Two identical maps .

A planar map is a finite connected graph properly embedded in the sphere (seen up to orientation preserving deformations). It is a p-angulation when all the faces have degree p.

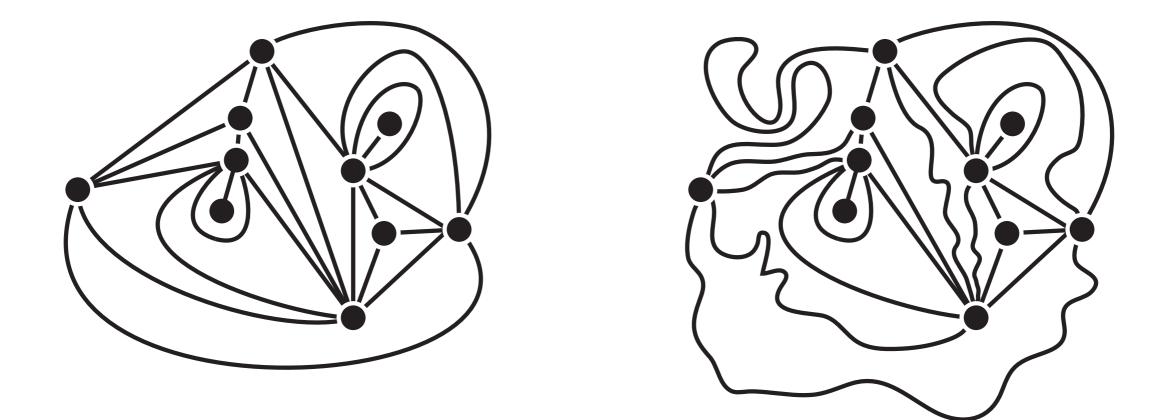


Figure: Two identical 3-angulations .

- A→ Combinatorics (Tutte starting in '60)
- -∧→ Probability theory (model for a Brownian surface)
- Algebraix and geometric motivations Motivations (cf Lando–Zvonkine '04 Graphs on surfaces and their applications)
- A→ Theoretical physics (connections with matrix integrals, 2D Liouville quantum gravity, KPZ formula.)

51 / X1

Scaling limits of large planar maps

Fix $p \ge 3$. Let M_n be a planar map, chosen uniformly at random among all p-angulations with n faces.

51 / X1

Scaling limits of large planar maps

Fix $p \ge 3$. Let M_n be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V(M_n)$ be its vertices.

Fix $p \ge 3$. Let M_n be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V(M_n)$ be its vertices.

Theorem (Le Gall (p = 3 or p odd), Miermont (p = 4), 2011)

There exists a constant $c_p > 0$ and a random compact metric space $(\mathfrak{m}_{\infty}, \mathsf{D}^*)$, called the Brownian map, such that the convergence

$$\left(V(M_n), c_p n^{-1/4} d_{gr}\right) \xrightarrow[n \to \infty]{(d)} (m_{\infty}, D^*)$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov–Hausdorff distance.

Fix $p \ge 3$. Let M_n be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V(M_n)$ be its vertices.

Theorem (Le Gall (p = 3 or p odd), Miermont (p = 4), 2011)

There exists a constant $c_p > 0$ and a random compact metric space $(\mathfrak{m}_{\infty}, \mathsf{D}^*)$, called the Brownian map, such that the convergence

$$\left(V(M_n), c_p n^{-1/4} d_{gr}\right) \xrightarrow[n \to \infty]{(d)} (m_{\infty}, D^*)$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov–Hausdorff distance.

∧→ Chassaing–Schaeffer '04: graph distances inV(M_n) are of order $n^{1/4}$ (case p = 4).

Fix $p \ge 3$. Let M_n be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V(M_n)$ be its vertices.

Theorem (Le Gall (p = 3 or p odd), Miermont (p = 4), 2011)

There exists a constant $c_p > 0$ and a random compact metric space (m_{∞}, D^*) , called the Brownian map, such that the convergence

$$\left(V(M_n), c_p n^{-1/4} d_{gr}\right) \xrightarrow[n \to \infty]{(d)} (m_{\infty}, D^*)$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov–Hausdorff distance.

✓ Chassaing-Schaeffer '04: graph distances inV(M_n) are of order n^{1/4} (case p = 4).
 ✓ Le Gall & Paulin and Miermont '07: almost surely, (m_∞, D*) is

homeomorphic to the sphere.

Fix $p \ge 3$. Let M_n be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V(M_n)$ be its vertices.

Theorem (Le Gall (p = 3 or p odd), Miermont (p = 4), 2011)

There exists a constant $c_p > 0$ and a random compact metric space $(\mathfrak{m}_{\infty}, \mathsf{D}^*)$, called the Brownian map, such that the convergence

$$\left(V(M_n), c_p n^{-1/4} d_{gr}\right) \xrightarrow[n \to \infty]{(d)} (m_{\infty}, D^*)$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov–Hausdorff distance.

- ∧→ Chassaing–Schaeffer '04: graph distances inV(M_n) are of order $n^{1/4}$ (case p = 4).
- ∧→ Le Gall & Paulin and Miermont '07: almost surely, (m_{∞}, D^*) is homeomorphic to the sphere.
- ∧→ Le Gall '08: almost surely, (m_{∞}, D^*) has Hausdorff dimension 4.

Fix $p \ge 3$. Let M_n be a planar map, chosen uniformly at random among all p-angulations with n faces. Let $V(M_n)$ be its vertices.

Theorem (Le Gall (p = 3 or p odd), Miermont (p = 4), 2011)

There exists a constant $c_p > 0$ and a random compact metric space $(\mathfrak{m}_{\infty}, \mathsf{D}^*)$, called the Brownian map, such that the convergence

$$\left(V(M_n), c_p n^{-1/4} d_{gr}\right) \xrightarrow[n \to \infty]{(d)} (m_{\infty}, D^*)$$

holds in distribution in the space of isometry classes of compact metric spaces equiped with the Gromov–Hausdorff distance.

 $\wedge \rightarrow 3/2$ -stable spectrally positive Lévy processes and 3/2-stable trees play a crucial role in the study of these maps, see the talk of Nicolas Curien next week.