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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

Motivation for studying scaling limits

Let Xn be a set of combinatorial objects of “size” n

(permutations, partitions,
graphs, functions, walks, matrices, etc.).

Goal: study Xn.

y Find the cardinal of Xn.

(bijective methods, generating functions)

y Understand the typical properties of Xn. Let Xn be an element of Xn

chosen uniformly at random. What can be said of Xn?

y A possibility to study Xn is to find a continuous object X such that
Xn ! X as n ! 1.
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Motivation for studying scaling limits

Let (Xn)n>1 be “discrete” objects converging towards a “continuous” object X:

Xn �!
n!1

X.

Several consequences:

- From the discrete to the continuous world: if a property P is satisfied by all
the Xn and passes to the limit, then X satisfies P.

- From the world to the discrete world: if a property P is satisfied by X and
passes to the limit, Xn satisfies “approximately” P for n large.

- Universality: if (Yn)n>1 is another sequence of objects converging towards
X, then Xn and Yn share approximately the same properties for n large.
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Motivation for studying scaling limits

Let (Xn)n>1 be “discrete” objects converging towards a “continuous” object X:

Xn �!
n!1

X.

y In what space do the objects live?

Here, a metric space (Z,d) (complete
separable).y What is the sense of the convergence when the objects are random? Here,
convergence in distribution:

E [
F(Xn)] �!

n!1
E [

F(X)]

for every continous bounded function F : Z ! R.
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Outline

I. Scaling limits of BGW trees (finite variance, 1991)

II. Scaling limits of BGW trees (infinite variance, 1998)

III. Plane non-crossing configurations (2012)

IV. Random maps (2004 – ?)
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What does a large Bienaymé–Galton–Watson look like ?
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A simulation of a large random critical GW tree
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Coding trees by functions
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Contour function of a tree
Define the contour function of a tree:
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Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.
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Scaling limits
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Galton–Watson tree conditioned on having n

vertices.

Theorem (Aldous ’93)

Let �2 be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.
Then: ✓

1p
n

C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�

· (t)

◆

06t61

,

in the space of R-valued continuous functions on [0, 1] equiped with the
uniform topology, where is the normalized Brownian excursion.

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution
to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.
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y Consequence: for every a > 0,

P
⇣
�

2
· Height(tn) > a ·

p
n

⌘
�!
n!1

P (sup > a

)

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution
to (conditioned Donsker’s invariance principle).
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(4k2a2 - 1)e-2k2a2
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Do the discrete trees converge to a continuous tree?

Yes, if we view trees as compact metric spaces by equiping the vertices with the
graph distance!
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The Hausdorff distance

Let X, Y be two subsets of the same metric space Z.

Let

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

be the r-neighborhoods of X and Y. Set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff
distance between all possible isometric embeddings of X and Y in a same metric
space Z.
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The Brownian tree
y Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a
compact metric space such that the convergence

�

2
p
n

· tn
(d)�!

n!1
T ,

holds in distribution for the Gromov–Hausdorff distance.

Notation: for a metric space (Z,d) and a > 0, a · Z is the metric space
(Z,a · d).

The metric space T is called the Brownian continuum random tree (CRT), and
is coded by a Brownian excursion.

Formally, for 0 6 s, t 6 1, set

de(s, t) = e(s) + e(t)- 2 min
[s^t,s_t]

e,

and write s ⇠ t if de(s, t) = 0. The Brownian tree Te is then defined to be the
quotient metric space [0, 1]/ ⇠ equiped with de.
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I. Scaling limits of BGW trees (finite variance, 1991)

II. Scaling limits of BGW trees (infinite variance, 1998)

III. Plane non-crossing configurations (2012)

IV. Random maps (2004 – ?)
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Scaling limits: domain of attraction of a stable law

Fix ↵ 2 (1, 2). Let µ be an offspring distribution such that
X

i>0

iµ(i) = 1 (µ is critical)

µ([i,1)) ⇠
i!1

c

i

↵
(µ has a heavy tail)

Let tn be a BGWµ tree conditioned on having n vertices.

What does tn look like for large n?
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Figure: A large ↵ = 1.1 – stable tree
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Figure: A large ↵ = 1.5 – stable tree
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Figure: A large ↵ = 1.9 – stable tree
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Convergence of the contour function
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Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that
µ([i,1)) ⇠ c/i

↵. Let tn be a BGWµ tree conditioned on having n vertices.

Theorem (Duquesne ’03)

There exists a random continuous function H(↵) on [0, 1] (whose law only
depends of ↵) such that:

✓
(c|�(1- ↵)|)1/↵

n

1-1/↵
C2nt(Tn)

◆

06t61

(d)�!
n!1

(H↵(t))06t61 ,

where the convergence holds in distribution in the space of continuous
functions on [0, 1] with the uniform norm.

Idea of the proof:

y Go from the Lukasieiwicz path of Tn to its contour function.
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Simulations of H(↵)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: Simulation of H↵
for ↵ = 1.1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: Simulation of H↵
for ↵ = 1.6.
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Scaling limits in the Gromov–Hausdorff topology
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Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that
µ([i,1)) ⇠ c/i

↵. Let tn be a BGWµ tree conditioned on having n vertices.

View tn as a compact metric space (the vertices of tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)1/↵

n

1-1/↵
· tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarks

y The tree T↵ is called the stable tree of index ↵ (introduced by Le Gall &
Le Jan).y T↵ is coded by H(↵).
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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

I. Scaling limits of BGW trees (finite variance, 1991)

II. Scaling limits of BGW trees (infinite variance, 1998)

III. Plane non-crossing configurations (2012)

IV. Random maps (2004 – ?)
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Let Pn be the polygon with vertices e

2i⇡j
n (j = 0, 1, . . . ,n- 1).

General philosophy: chose at random a non crossing configuration, obtained
from the vertices of Pn by drawing diagonals which may not cross.

What happens for n large?
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Case of triangulations of Pn
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Let Tn be a random triangulation, chosen uniformly among all triangulations of
Pn. What does Tn look like when n is large?
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Let Tn be a random triangulation, chosen uniformly among all triangulations of
Pn. What does Tn look like when n is large?
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Theorem (Aldous ’94)

For n > 3, let Tn be a uniform triangulation of Pn.

Then there exists a random
compact subset L( ) of the unit disk such that

Tn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact subsets of
the unit disk equiped with the Hausdorff distance.

L( ) is the Brownian triangulation.

y Consequence: The length (that is its normalised angle from the center) of
the longest diagonal of Tn converges in distribution to a probability measure
with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.
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Construction of the Brownian triangulation

Start from the Brownian excursion :
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Construction of the Brownian triangulation

Start from the Brownian excursion :

0.2 0.4 0.6 0.8 10. t

Let t be a local minimum timel. Set gt = sup{s < t; s = t} et
dt = inf{s > t; s = t}.
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Construction of the Brownian triangulation

Start from the Brownian excursion :

0.2 0.4 0.6 0.8 10.gt dtt
Let t be a local minimum timel. Set gt = sup{s < t; s = t} et
dt = inf{s > t; s = t}. Draw the chords

⇥
e

-2i⇡gt , e-2i⇡t⇤,
⇥
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-2i⇡t, e-2i⇡dt
⇤

and
⇥
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-2i⇡gt , e-2i⇡dt
⇤
.
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Construction of the Brownian triangulation
Start from the Brownian excursion :

0.2 0.4 0.6 0.8 10.

Let t be a local minimum timel. Set gt = sup{s < t; s = t} et
dt = inf{s > t; s = t}. Draw the chords

⇥
e

-2i⇡gt , e-2i⇡t⇤,
⇥
e

-2i⇡t, e-2i⇡dt
⇤

and
⇥
e

-2i⇡gt , e-2i⇡dt
⇤
.

Do this for all local minimum times.

The closure of this object, denoted by L( ), is called the Brownian
triangulation.
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Case of dissections of Pn
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Dissections

Recall that Pn is the polygon with vertices e

2i⇡j
n (j = 0, 1, . . . ,n- 1).

A dissection of Pn is the union of Pn with a collection of non-crossing
diagonals.
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Dissections

Let Dn be a random dissection, chosen uniformly at random among all
dissections of Pn. What does Dn look like as n ! 1?
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For n > 3, let Dn be a uniform dissection of Pn.

Then

Dn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact
subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to
the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.
Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of
the longest diagonal of Dn converges in distribution to a probability measure
with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 36 / @0



Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact
subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to
the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.
Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of
the longest diagonal of Dn converges in distribution to a probability measure
with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 36 / @0



Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact
subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to
the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.
Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of
the longest diagonal of Dn converges in distribution to a probability measure
with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 36 / @0



Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact
subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to
the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.
Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of
the longest diagonal of Dn converges in distribution to a probability measure
with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 36 / @0



Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact
subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to
the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.
Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of
the longest diagonal of Dn converges in distribution to a probability measure
with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 36 / @0



Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact
subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to
the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.
Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of
the longest diagonal of Dn converges in distribution to a probability measure
with density:

1

⇡

3x- 1

x

2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 36 / @0



Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

How to prove that these models converge to the
Brownian triangulation?

Key point: these trees can be coded by BGW trees.
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Figure: The dual tree of a dissection.
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0.2 0.4 0.6 0.8 10.

Figure: Normalized contour function of a large conditioned Bienaymé–Galton-Watson.

Strategy of the proof:

I These models can be coded a random conditioned
Bienaymé–Galton–Watson tree.

I The normalized contour functions of these conditioned
Bienaymé–Galton–Watson trees converge to the Brownian excursion.

I The Brownian excursion codes the Brownian triangulationL( ).
Therefore these random plane non-crossing configurations converge to L( ).
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Figure: Normalized contour function of a large conditioned Bienaymé–Galton-Watson.

Strategy of the proof:
I These models can be coded a random conditioned

Bienaymé–Galton–Watson tree.
I The normalized contour functions of these conditioned

Bienaymé–Galton–Watson trees converge to the Brownian excursion.
I The Brownian excursion codes the Brownian triangulationL( ).

Therefore these random plane non-crossing configurations converge to L( ).
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What about dissections seen as compact metric spaces?
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Dissections seen as compact metric spaces

Figure: A uniform dissection of P45.
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Dissections seen as compact metric spaces

Figure: A uniform dissection of P260.
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Dissections seen as compact metric spaces

Figure: A uniform dissection of P387.
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Dissections seen as compact metric spaces

Figure: A uniform dissection of P637.
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Dissections seen as compact metric spaces

Figure: A uniform dissection of P8916.
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Dissections seen as compact metric spaces

For n > 3, let Dn be a uniform dissection of Pn.

Then

1p
n

·Dn
(d)���!

n!1

1

7
(3+

p
2)23/4 · T ,

in distribution in the space of isometry classes of compact metric spaces
equipped with the Gromov–Hausdorff distance.

Theorem (Curien, Haas & K. ’13).
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I. Scaling limits of BGW trees (finite variance, 1991)

II. Scaling limits of BGW trees (infinite variance, 1998)

III. Plane non-crossing configurations (2012)

IV. Random maps (2004 – ?)
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What does a “typical” random surface look like?
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In dimension one

It is natural to view Brownian motion as a “typical” random path, describing the
motion of a particle moving “uniformly at random”.
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Brownian motion as a limit of discrete paths
Theorem (Donsker, 1951)

Let (Xn)n>1 be a sequence of i.i.d. random variables such that E [
X1] = 0 and

�

2 = E
⇥
X1

2
⇤
2 (0,1).

Set Sn = X1 + X2 + · · ·+ Xn , and define Snt by linear
interpolation for t > 0. Then:

✓
Snt

�

p
n

, t > 0

◆
(d)�!

n!1
(Wt, t > 0),

where (Wt, t > 0) is Brownian motion

and the convergence holds for the
topology of uniform convergence on compact sets.

✓
Snt

�

p
n

, 0 6 t 6 1

◆

for n = 100000:
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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random mapsy Idea: construct a (two-dimensional) random surface as a limit of random
discrete surfaces.

Consider n triangles, and glue them uniformly at random in such a way to get a
surface homeomorphic to a sphere.

Figure: A large random triangulation (simulation by Nicolas Curien)
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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

The Brownian map

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of
the sphere with n triangles.

View Tn as a compact metric space, by equipping
its vertices with the graph distance. Show that n-1/4 · Tn converges towards a
random compact metric space (the Brownian map), in distribution for the
Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

Since, many different models of discrete surfaces have been shown to converge
to the Brownian map (Miermont, Beltran & Le Gall, Addario-Berry & Albenque,
Bettinelli & Jacob & Miermont, Abraham)

, using various techniques (in
particular bijective codings by labelled trees)

(see Le Gall’s proceeding at ICM ’14 for more information and references)
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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

Definitions
A planar map is a finite connected graph properly embedded in the sphere
(seen up to orientation preserving deformations).

It is a p-angulation when all
the faces have degree p.
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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

Definitions
A planar map is a finite connected graph properly embedded in the sphere
(seen up to orientation preserving deformations). It is a p-angulation when all
the faces have degree p.
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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

Why study maps?

y Combinatorics (Tutte starting in ’60)

y Probability theory (model for a Brownian surface)

y Algebraix and geometric motivations Motivations (cf Lando–Zvonkine ’04
Graphs on surfaces and their applications)

y Theoretical physics (connections with matrix integrals, 2D Liouville
quantum gravity, KPZ formula.)
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Random trees (finite variance) Random trees (infinite variance) Plane non-crossing configurations Random maps

Scaling limits of large planar maps
Fix p > 3. Let Mn be a planar map, chosen uniformly at random among all
p-angulations with n faces.

Let V(Mn) be its vertices.

Theorem (Le Gall (p = 3 or p odd), Miermont (p = 4), 2011)

There exists a constant cp > 0 and a random compact metric space (m1,D⇤),
called the Brownian map, such that the convergence

⇣
V(Mn), cpn

-1/4
dgr

⌘
(d)�!

n!1
(m1,D⇤)

holds in distribution in the space of isometry classes of compact metric spaces
equiped with the Gromov–Hausdorff distance.

y 3/2-stable spectrally positive Lévy processes and 3/2-stable trees play a
crucial role in the study of these maps, see the talk of Nicolas Curien next week.
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