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Triangulating stable laminations*
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Abstract

We study the asymptotic behaviour of random simply generated noncrossing planar
trees in the space of compact subsets of the unit disk, equipped with the Hausdorff
distance. Their distributional limits are obtained by triangulating at random the faces
of stable laminations, which are random compact subsets of the unit disk made of
non-intersecting chords and which are coded by stable Lévy processes. We also study
other ways to “fill-in” the faces of stable laminations, which leads us to introduce the
iteration of laminations and of trees.
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1 Introduction

We are interested in the structure of large random noncrossing trees. By definition, a
noncrossing tree with n vertices is a tree drawn in the unit disk of the complex plane,
having as vertices the n-th roots of unity and whose edges are straight line segments
which do not cross. The enumeration problem for noncrossing trees was first proposed
as Problem E3170 in the American Mathematical Monthly [20]. Dulucq & Penaud
[15] established a bijection between noncrossing trees with n vertices and ternary
trees with n internal vertices, thus showing that there are 1

2n−1
(
3n−3
n−1

)
noncrossing

trees with n vertices in another way. Noy [36] pushed forward the enumerative study
of noncrossing trees by counting them according to different statistics. Since then,
various authors have studied combinatorial and algebraic properties of noncrossing
trees [19, 12, 13, 37, 21]. See also [33] for motivations from linguistics and proof
theory, where noncrossing trees are for instance connected to the number of different
readings of an ambiguous sentence. Other families of noncrossing configurations have
also attracted some attention [14, 19, 2, 9].

*Support from Agence Nationale de la Recherche, grant number ANR-14-CE25-0014 (ANR GRAAL), the
“City of Paris, grant Emergences Paris 2013, Combinatoire à Paris” and the Swiss National Science Foundation
200021_144325/1.

†CNRS, CMAP, École polytechnique, Université Paris-Saclay, France. E-mail: igor.kortchemski@
normalesup.org

‡Institut für Mathematik, Universität Zürich, Switzerland. E-mail: cyril.marzouk@math.uzh.ch

http://ejp.ejpecp.org/
http://dx.doi.org/10.1214/16-EJP4559
http://arXiv.org/abs/1509.02829
http://hal.archives-ouvertes.fr/hal-01199295
mailto:igor.kortchemski@normalesup.org
mailto:igor.kortchemski@normalesup.org
mailto:cyril.marzouk@math.uzh.ch


Triangulating stable laminations

Figure 1: Simulations from left to right: the Brownian triangulation, an α = 1.1 stable
lamination, and the same lamination with its faces triangulated “uniformly” in dashed
red.

In this work, we are interested in the properties of random noncrossing trees and we
study in particular how the geometrical constraint of their planar embeddings influences
their structure. Marckert & Panholzer [30] have shown that uniform random noncrossing
trees on n vertices are almost conditioned Bienaymé–Galton–Watson trees, thus obtaining
interesting results concerning the structure of noncrossing trees by using the theory of
random plane trees. This was then used by Curien & Kortchemski [9] to establish limit
theorems for large uniform random noncrossing trees as compact subsets of the unit
disk. We shall generalise these results.

1.1 Noncrossing trees seen as subsets of the plane

Since noncrossing trees are given with a plane embedding, we naturally view them as
(closed) subsets of the (closed) unit disk by considering each edge as a line segment. This
idea goes back to Aldous [1], who showed that if Pn is the regular polygon spanned by
the n-th roots of unity, then, as n!1, a uniform random triangulation of Pn converges
in distribution for the Hausdorff distance to a random compact subset of the unit disk L2

called the Brownian triangulation. This set is indeed a triangulation, as its complement in
the unit disk is a disjoint union of triangles, and can be built from the Brownian excursion
(see Sec. 3.1 below for details). Curien & Kortchemski [9] showed that the Brownian
triangulation is the universal limit of various classes of uniform random noncrossing
graphs built using the vertices of Pn, such as dissections (which are collections of
noncrossing diagonals of Pn), noncrossing partitions or noncrossing trees.

Kortchemski [26] constructed a one parameter family (Lα : α 2 (1, 2)) of random
compact subsets of the unit disk called stable laminations, which are the distributional
limits of the more general model of Boltzmann-type random dissections chosen at random
according to certain sequences of weights. They also appear as limits of large simply
generated noncrossing partitions [27]. Stable laminations are coded by excursions of
spectrally positive strictly stable Lévy processes, and unlike the Brownian triangulation,
each face is surrounded by infinitely many chords; see Fig. 1 for a simulation and Sec.
3.2 below for details.

1.2 Simply generated noncrossing trees

In this work, we introduce and study the asymptotic behaviour of simply generated
noncrossing trees in the space of compact subsets of the unit disk equipped with the
Hausdorff distance. Given a sequence of nonnegative real numbers (w(k) : k � 1), we
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de�ne the weight of a noncrossing tree � by


 w (� ) =
Y

u2 �

w(degu):

Next, for every integer n � 1, we denote by NCn the set of noncrossing trees with n
vertices and we set

Z w
n =

X

� 2 NC n


 w (� ):

Finally, if Z w
n > 0 (and we will always implicitly restrict our attention to those values of n

for which it is the case), we de�ne a probability measure on NCn by

Pw
n (� ) =

1
Z w

n

 w (� ) for all � 2 NCn : (1.1)

A random noncrossing tree sampled according to Pw
n is called simply generated . We

choose this terminology because of the similarity with the model of simply generated
plane trees, introduced by Meir & Moon [34].

Note that if w � 1, then Pw
n is the uniform distribution on NCn . More generally, if A

is a subset of N and if w(k) = 1k2 A , then Pw
n is the uniform distribution on the set of all

noncrossing trees with n vertices with all degrees belonging to A (provided this set is
not empty).

Theorem 1.1. Fix � 2 (1; 2]. There exists a random compact subset of the unit disk,
denoted by L U

� , with Hausdorff dimension 1 + 1
� such that the following holds. Let

(w(k) : k � 1) be a sequence of nonnegative real numbers such that there exists b > 0
satisfying

1X

k=0

(k + 1)( k � 1)w(k + 1) bk = 0 ; (1.2)

and, moreover, such that the probability measure

� (k) =
(k + 1) w(k + 1) bk

P 1
` =0 (` + 1) w(` + 1) b̀

(k � 0)

belongs to the domain of attraction of a stable law of index � . If � n is a random
noncrossing tree sampled according to Pw

n , then the convergence in distribution

� n
(d)

�!
n !1

L U
�

holds for the Hausdorff distance on the space of all compact subsets of the unit disk.

Recall that a probability distribution � belongs to the domain of attraction of a stable
law if either it has �nite variance (in which case � = 2 ), or there exists a slowly varying
function g : R+ ! R+ such that � ([n; 1 )) = g(n)n� � for n � 1. See Remark 5.2 for a
probabilistic interpretation of condition (1.2).

Let us give a rough description of L U
� . In the case � = 2 , L U

2 = L 2 is simply Aldous'
Brownian triangulation, whereas for � 2 (1; 2), L U

� is a triangulation that strictly contains
the � -stable lamination L � . Intuitively, L U

� is constructed from L � by “triangulating”
each face of L � from a uniform random vertex, i.e. by joining this vertex to each other
vertex of the face by a chord. We refer the reader to Fig. 1 for a simulation and to Sec.
3.3 for a precise de�nition. The random compact set L U

� is called the uniform � -stable
triangulation . It is interesting to note that unlike the Brownian triangulation or stable
laminations, L U

� is not simply coded by a function as we will see in Remark 3.3.
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It is interesting to compare the Hausdorff dimension of L U
� with that of L � computed

in [ 26 ], which is equal to 2� 1
� . Since 1+ 1

� > 3
2 > 2� 1

� , any uniform stable triangulation
is “fatter” than the Brownian triangulation and any stable lamination.

The main steps to prove Theorem 1.1 are the following. We �rst establish determin-
istic invariance principles in the space of compact subsets of the unit disk (Propositions
4.1 and 4.6) for noncrossing trees under conditions involving their shape , which is the
plane tree structure that they carry (see Fig. 2 for an illustration). We then estab-
lish (Theorem 5.1) that the shape of � n is a “modi�ed” Bienaymé–Galton–Watson tree,
where the root has a different offspring distribution, conditioned to have size n. This
extends a result of Marckert & Panholzer [ 30 ] for the uniform distribution. Finally,
we show that such trees ful�ll the framework of our invariance principles with high
probability.
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Figure 2: A non-crossing tree with its vertices labelled in clockwise-order and the
associated plane tree, called its shape, with its vertices labelled in lexicographical order.

An interesting consequence of Theorem 1.1 is that the geometry of large simply
generated noncrossing trees may be very different from that of large simply generated
plane trees with the same weights, see Remark 5.5. Theorem 1.1 also has applications
concerning the length of the longest chord of a noncrossing tree. By de�nition, the
(angular) length of a chord [e� 2i�s ; e� 2i�t ] with 0 � s � t � 1 is min( t � s; 1� t + s). Denote
by �( � ) the length of the longest chord of a noncrossing tree � and by �( L U

� ) the length
of the longest chord of �( L U

� ).

Corollary 1.2. Under the assumptions of Theorem 1.1, we have

�(� n )
(d)

�!
n !1

�( L U
� ):

This simply follows from Theorem 1.1 since the longest chord is a continuous func-
tional for the Hausdorff distance on compact subsets of the unit disk obtained as the
union of noncrossing chords. In the case � = 2 , it is known [ 1, 14 ] that the law of the
longest chord of the Brownian triangulation is

1
�

3x � 1
x2(1 � x)2

p
1 � 2x

1 1
3 � x � 1

2
dx: (1.3)

It would be interesting to �nd an explicit formula for the length of the longest chord
of the uniform � -stable triangulation for � 2 (1; 2). See [ 39 , Proposition 4.3.] for the
expression of the cumulative distribution function of the length of the longest chord in
the � -stable lamination.
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1.3 Degree-constrained noncrossing trees

For each integer n � 1 and each subset A � N , we denote by NCA
n the set of all

noncrossing trees having n vertices and with degrees only belonging to A .

Corollary 1.3. For every n � 1 for which NCA
n 6= ? , sample a random noncrossing tree

� A
n uniformly at random in NCA

n . Then � A
n converges in distribution to the Brownian

triangulation as n ! 1 .

Indeed, this follows from Theorem 1.1 by taking w(k) = 1k2 A , as in this case � admits
�nite small exponential moments (since b < 1, see the beginning of the proof of Theorem
1.4 below). Theorem 1.1 thus extends Theorem 3.1 in [ 9], which shows the convergence
to the Brownian triangulation of large uniform noncrossing trees. Also, by Corollary 1.2,
the length of the longest chord of � A

n converges in distribution to the random variable
whose law is given by (1.3) . It is remarkable that this limiting distribution does not
depend on A .

As an application of our techniques, we also establish the following enumerative
result.

Theorem 1.4. Assume that A 6= f 1; 2g. Let b > 0 be such that
P

k+1 2 A (k +1)( k � 1)bk = 0
and de�ne

K A := gcd(A � 1) �

s P
k+1 2 A (k + 1) bk

2�
P

k+1 2 A (k + 1)( k2 � 1)bk �

 
X

k2 A

kbk

!

:

We have

# NCA
n �

n !1
K A �

 
X

k+1 2 A

(k + 1) bk � 1

! n � 1

� n� 3=2;

where the limit is taken along the subsequence of those values of n for which NCA
n 6= ? .

We give a simple proof of this by using the probabilistic structure of simply generated
non-crossing trees. Observe that Theorem 1.4 is consistent with the fact that # NCn =

1
2n � 1

� 3n � 3
n � 1

�
since, for A = N , it reads # NCn � (9

p
3� ) � 1 � (27=4)n � n� 3=2 as n ! 1 .

1.4 Iterating laminations

The random set L U
� is constructed from an � -stable lamination L � by triangulating

independently each face of L � . More generally, one can consider independent random
� -laminations in each face of L � (see Fig. 3 for an illustration). We can also iterate this
procedure: �x a sequence (� k : k � 1) with values in (1; 2), let L (0) be the unit circle
and de�ne next recursively for n � 1 random sets L (n ) by sampling independently an
� n -stable lamination in each face of L (n � 1) . We give a formal de�nition of this procedure
in Sec. 6, with several possible further directions of research concerning the study of
L (n ) .

The rest of this paper is organised as follows. In Section 2, we de�ne discrete
plane trees and their coding by a discrete paths, and we describe a bijection between
noncrossing trees and plane trees. Next, in Section 3, we describe the continuous
analogues which are the stable laminations of the disk and their triangulated versions,
we also compute the Hausdorff dimension which appears in Theorem 1.1. In Section 4,
we state and prove deterministic invariance principles for noncrossing trees and apply
them to trees obtained by embedding in the disk a size-conditioned Bienaymé–Galton–
Watson trees. In Section 5, we show that simply generated noncrossing trees are almost
size-conditioned Bienaymé–Galton–Watson trees and prove Theorems 1.1 and 1.4. Finally,
in Section 6 we give some extensions concerning the iteration of laminations.
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