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Abstract We are interested in predator–prey dynamics on infinite trees, which can
informally be seen as particular two-type branching processes where individuals
may die (or be infected) only after their parent dies (or is infected). We study two
types of such dynamics: the chase–escape process, introduced by Kordzakhia with a
variant by Bordenave who sees it as a rumor propagation model, and the birth-and-
assassination process, introduced by Aldous and Krebs. We exhibit a coupling between
these processes and branching random walks killed at the origin. This sheds new light
on the chase–escape and birth-and-assassination processes, which allows us to recover
by probabilistic means previously known results and also to obtain new results. For
instance, we find the asymptotic behavior of the tail of the number of infected indi-
viduals in both the subcritical and critical regimes for the chase–escape process and
show that the birth-and-assassination process ends almost surely at criticality.

Keywords Chase–escape process · Birth-and-assassination process · Coupling ·
Killed branching random walks

Mathematic Subject Classifications (2010) 60J80 · 60J10 · 60F05

1 Introduction

We study the asymptotic behavior of two predator–prey dynamics on infinite trees. Let
us first give an informal description of the chase–escape process on regular trees, which
has been introduced by Kordzakhia [13]. Vertices can be of three types: predators, preys
or vacant. At fixed rate λ > 0, preys may only spread to vacant nearest neighbors

I. Kortchemski (B)
DMA, École Normale Supérieure, Paris, France
e-mail: igor.kortchemski@normalesup.org

123



J Theor Probab

(when a prey spreads to a vacant neighbor, both vertices are then preys), while at
fixed rate 1, predators may only spread to either vacant or prey nearest neighbors. The
evolution starts with one predator at the root and one neighboring prey. Kordzakhia
[13] identified the critical value of λ = λc that allows the preys to survive with positive
probability. Later, a variant has been considered by Bordenave [6], where this time
predators may only spread to nearest neighbors occupied by preys. In this context,
for a certain class of trees, Bordenave [7] extended Kordzakhia’s result, estimated the
probability of extinction of the preys for λ > λc, and studied the moments of the final
total number of predators.

Let us now informally describe the birth-and-assassination process, which was
introduced by Aldous and Krebs [3] and is a system of evolving individuals. During
its lifetime, each individual produces offspring at fixed rate μ > 0. In addition, each
individual u is equipped with a random timer of Ku units of times, where the positive
random variables (Ku) are all independent identically distributed. The individual’s
timer is triggered as soon as its parent dies, and an individual dies when its timer
reaches 0. The evolution starts with one individual with its timer triggered. Aldous
and Krebs give the image of a finite collection of clans (which are the connected
components of the living individuals in the genealogical trees) where only the heads
of clans can be killed. Under certain conditions on Ku , Aldous and Krebs identified the
critical value of μ = μc that allows the evolution to survive indefinitely with positive
probability (the motivation of Aldous and Krebs was to analyze a scaling limit of a
queueing process with blocking, arising in database processing [19]). Later, Bordenave
[6,7] studied the birth-and-assassination process when Ku is an exponential random
variable, and Bordenave proved in particular that the evolution stops at μ = μc with
probability 1.

In this work, we exhibit a coupling of these two models with branching random
walks killed at the barrier 0, thus shedding new light on these models and giving an
interesting application of the theory of killed branching random walks which do not
have independent displacements. In the case of the chase–escape model on super-
critical Galton–Watson trees, this enables us to make use of recent powerful results
concerning killed branching random walks [2] and extend (under slightly more restric-
tive conditions on the structure of the tree) several results of Bordenave obtained in an
analytic way and also to establish new results by probabilistic arguments. In particular,
for λ ≤ λc, we find the asymptotic behavior of the tail of the final number of predators.
Bordenave [7] observed that the chase–escape process exhibits heavy-tail phenomena
similar to those appearing in the Brunet–Derrida model of branching random walk
killed below a linear barrier. Our coupling shows that this is not a coincidence. In the
case of the birth-and-assassination process, we also show that in general case the evo-
lution stops at μ = μc with probability 1, without assuming that Ku is an exponential
random variable.

1.1 The Chase–Escape Process

Following Bordenave [7], we now give a formal definition of the chase–escape
process. For convenience of notation, we shall define it as a susceptible–infected–
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recovered (SIR) dynamics, where preys (resp. predators and vacant sites) are infected
(resp. recovered and susceptible) sites. As in [6], one may also think of suscepti-
ble/infected/recovered individuals as normal individuals/individuals propagating a
rumor/individuals trying to scotch it.

Let G = (V, E) be a locally finite connected graph. Set X = {S, I, R}V and for
every v ∈ V , let Iv, Rv : X→ X be the maps defined by (Iv(x))u = (Rv(x))u = xu

if u �= v and (Iv(x))v = I and (Rv(x))v = R with x = (xu)u∈V . The chase–escape
process of infection intensity λ > 0 is a Markov process taking values in X with
transition rates

Q(x, Iv(x)) = λ · 1{xv=S} ·
∑

{u,v}∈E

1{xu=I }, Q(x, Rv(x))

= 1{xv=I } ·
∑

{u,v}∈E

1{xu=R} (v ∈ V, x ∈ X).

This means that infected vertices spread with rate λ to neighboring susceptible vertices
and that recovered vertices spread with rate 1 to neighboring infected vertices. Note that
up to a time change there is no loss in generality in supposing that recovered vertices
spread at rate 1. This dynamics differs from the classical SIR epidemics model, where
infected vertices recover at a fixed rate (not depending on their neighborhood). Earlier,
Kordzakhia [13] has considered a similar model where recovered vertices may spread
with rate 1 to neighbors who are either infected or recovered. We say that the chase–
escape process gets extinct if there exists a (random) time at which there are no more
infected vertices.

If there are no recovered vertices present in the beginning, this dynamics is the so-
called Richardson’s model [18]. Let us also mention that Häggström and Pemantle [10]
and Kordzakhia and Lalley [14] have studied an extension of Richardson’s model with
two species, in which infected and recovered vertices may only spread to susceptible
vertices (in particular, infected and recovered vertices never change states). The chase–
escape process is a variant of the famous and extensively studied Daley–Kendall model
[8] for rumor propagation (in which, in addition, an infected individual may become
recovered if it enters in contact with another infected individual or, in other words,
when two individuals spreading the rumor meet, one of them stops spreading it). See
also [6] for a directed version of the chase–escape process called the rumor-scotching
process, and [15] for a study of the chase–escape process on large complete graphs.

In this work, we will be interested in the chase–escape process on (rooted) trees.
To describe the initial condition which we will use, we introduce the following nota-
tion. First, let T be a tree. If A ⊂ T is a subset of vertices and x ≥ 0, we denote
by C(T ,A, x) the chase–escape process on T starting with the vertices of A being
infected and all the other vertices being susceptible, and with a recovered vertex
attached to the root of T (denoted by ∅) at time x . To simplify, we shall say that
C(T ,A, x) is the chase–escape process with initial condition A and delay x . In par-
ticular, if T is the tree obtained from T by adding a new parent to the root of T and
by rooting T at this new vertex, notice that the chase–escape process C(T , {∅}, 0)
may be seen as the chase–escape starting with the root of T being recovered, its child
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being infected and all the other vertices being susceptible. This is the initial condition
considered in [7].

1.2 Coupling the Chase–Escape Process with Branching Random Walks

We now introduce some background concerning one-dimensional discrete branching
random walks on the real line R. Let T be a tree rooted at ∅ and x ∈ R. If u ∈ T ,
let �∅, u� denote the vertices belonging to the shortest path connecting ∅ to u, set
�∅, u� = �∅, u�\{∅} and let |u| = #�∅, u� be the generation of u. Let (ξu ; u ∈ T ) be
a collection of independent and identically distributed (i.i.d.) random variables. Then
set

V (u) := x +
∑

v∈�∅,u�

ξv, u ∈ T . (1)

The collection (V (u); u ∈ T ) will be called a branching random walk on T with
displacement distribution ξ1, starting from x . If we view the tree T as a genealogical
tree and give each individual a displacement by saying that when a vertex u is born,
its displacement is obtained by adding ξu to the displacement of its parent (with the
displacement of the root being x), then the displacement of u is exactly V (u).

We are now ready to present the link between the chase–escape process on trees
and branching random walks. Here and later, Exp(λ) denotes an exponential random
variable of parameter λ > 0, independent of all the other mentioned random variables
(in particular, different occurrences of Exp(1) denote different independent random
variables).

Fix a tree T . Let (R(u); u ∈ T ) be a branching random walk on T with displace-
ment distribution Exp(1), starting from a random point distributed according to an
(independent) Exp(1) random variable. Let also (I (u); u ∈ T ) be a branching ran-
dom walk on T with displacement distribution Exp(λ), starting from 0. Finally, for
every u ∈ T , let ←−u be the parent of u and set W (u) = R(←−u ) − I (u), with the

convention R(
←−∅ ) = 0.

Theorem 1 (Coupling for the chase–escape process) For every t ≥ 0 and u ∈ T , set:

Xt (u) =

⎧
⎪⎨

⎪⎩

I if I (u) ≤ t < R(u) and W (v) ≥ 0 for every v ∈ �∅, u�,

R if R(u) ≤ t and W (v) ≥ 0 for every v ∈ �∅, u�,

S otherwise.

Then (Xt )t≥0 has the same distribution as the chase–escape process C(T , {∅}, 0).

Intuitively, if we let ∅ = u0, u1, . . . , u|u| = u be the vertices belonging to the
shortest path connecting ∅ to u ∈ T , then u becomes infected if and only if, for every
1 ≤ i ≤ |u|, ui has been infected before its parent has recovered, meaning that W (v) ≥
0 for every v ∈ �∅, u�. In this case, I (u) is the first time when u becomes infected,
while R(u) is the first time u recovers. Theorem 1 is then a simple consequence of the
memoryless property of the exponential distribution. We omit a formal proof, since
it would not be enlightening. This coupling, based on two independent branching
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random walks, is reminiscent of the Athreya–Karlin coupling [4] used to study urn
schemes by introducing independent branching processes.

Without further notice, we will assume that the chase–escape process is the process
(Xt )t≥0 constructed in Theorem 1.

1.3 Coupling the Final State of the Chase–Escape Process with Killed Branching
Random Walks

By taking the limit t → ∞ in Theorem 1, we get that the total number of infected
individuals in the chase–escape process is equal to the number of elements of {u ∈
T ; W (v) ≥ 0 for every v ∈ �∅, u�}. Unfortunately, W is not a branching random
walk in the sense defined by (1). However, we still manage to represent the number
of infected individuals as the total progeny of a killed branching random walk by
allowing branching random walks with nonindependent increments.

More precisely, consider a single individual located at x ∈ R. Its children are
positioned on R according to a certain point process L on R and represent the first
generation. Each one of the individuals of the first generation independently gives
birth to new individuals positioned (with respect to their birth places) according to
an independent point process having the same law as L, which represent the second
generation. This process continues similarly for the next generation. The genealogy of
the individuals forms a Galton–Watson tree denoted by T and for every u ∈ T we let
V (u) be the position (or displacement) of u. We say that the collection (V (u); u ∈ T )
is a branching random walk with displacement distribution given by the point process
L, starting from x . We also introduce a killing barrier at the origin: We imagine that any
individual entering (−∞, 0) is immediately killed and that its descendants is removed.
Therefore, at every generation n ≥ 0, only the individuals with a displacement that has
always remained nonnegative up to generation n survive. In particular, {u ∈ T ; V (v) ≥
0,∀v ∈ �∅, u�} is the set of all the individuals that survive.

Corollary 2 Let V be the branching random walk produced with the point process

U∑

i=1

δ{E−Expi (λ)},

starting from x, where U is a nonnegative integer valued random variable, where
E is an independent exponential random variable of parameter 1 and (Expi (λ))i≥1
is an independent sequence of i.i.d. exponential random variables of parameter λ.
Denote by T the genealogical tree of this branching walk, set Zn = #{u ∈ T ; |u| = n
and V (v) ≥ 0 for every v ∈ �∅, u�} and Z = ∑

n≥0 Zn. Then Zn has the same
distribution as the number of individuals at generation n in T that have been infected
until the chase–escape process C(T , {∅}, x) has reached its absorbing state, and Z
has the same distribution as the total number of individuals that have been infected
in C(T , {∅}, x).

This easily follows from Theorem 1 by observing that the displacement V (u) is the
difference between the time when the parent of u recovers and the time when u gets
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infected (without the presence of the recovered vertices). Note that Corollary 2 only
covers the case of Galton–Watson trees, but its extension to any tree is straightforward.
In future work, we hope to use similar couplings to study the chase–escape process
on different kind of graphs such as other trees and Z

2.

1.4 Chase–Escape Processes on Galton–Watson Trees

Our results concern the asymptotic behavior of the chase–escape process on super-
critical Galton–Watson trees. Let ν be a probability measure on Z+ = {0, 1, 2, . . .}.
Recall that a Galton–Watson tree with offspring distribution ν is a random rooted tree
starting from one individual by supposing that each individual has an i.i.d. number of
offspring distributed according to ν (see e.g., [16, Section1] for a formal definition).
If d ≥ 2 is an integer such that ν(d) = 1, T is the infinite deterministic d-ary tree.

We henceforth assume that T is a Galton–Watson tree with offspring distribution
ν, and are interested in the properties of the chase–escape process on T . Let d =∑

i≥0 iν(i) be the expected number of offspring of an individual and suppose that
d ∈ (1,∞), which implies that #T = ∞ with positive probability.

If d ≥ 2 is an integer, Kordzakhia [13] identified

λc := 2d − 1− 2
√

d(d − 1)

as the critical value of λ by showing that for λ > λc, the probability that the chase–
escape process C(T , {∅}, 0) gets extinct on the infinite d-ary tree is less than one and
that for λ ∈ (0, λc) the latter probability is equal to one. Bordenave [7, Theorem1.1]
extended this result to more general trees, such as supercritical Galton–Watson trees.
By using heavy analytic tools, Bordenave treats the case λ = λc for Galton–Watson
trees:

Proposition 3 (Bordenave, Corollary 1.5 in [7]) For λ = λc, for almost every T ,
almost surely, the chase–escape process C(T , {∅}, 0) gets extinct.

We give a very short probabilistic proof of Proposition 3 based on Corollary 2 and
on the almost sure convergence toward 0 of the Biggins’ martingale associated with
our branching random walk (see Sect. 2.1).

Our first main result gives the asymptotic behavior of the tail of the number of
infected individuals in the chase–escape process.

Theorem 4 Denote by Z the total number of vertices that have been infected until
the chase–escape process C(T , {∅}, 0) has reached its absorbing state. Let U denote
a random variable distributed according to ν.

(i) Suppose that λ = λc (critical case). Assume that there exists α > 2 such that
E [Uα] <∞. Then

P(Z > n) ∼
n→∞

(
1+

√
d

d − 1

)
· 1

n(ln(n))2
.
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(ii) Suppose that λ ∈ (0, λc) (subcritical case). Assume that there exists α >

(1−λ+
√
λ2−2λ(2d−1)+1)2

2(d−1)λ such that E [Uα] <∞. There exists a constant C1 > 0,
depending only on λ and d, such that

P(Z > n) ∼
n→∞ C1 · n−

(1−λ+
√
λ2−2λ(2d−1)+1)2

4(d−1)λ .

Theorem 4 is a consequence of analogous results obtained by Aïdékon, Hu and
Zindy [2, Theorem 1] for killed branching random walks. In particular, in the critical
case, note that E [Z ] < ∞ while E [Z ln(Z)] = ∞. Let us mention that Theorem 4
(ii) is consistent with a result of Bordenave [7, Theorem 1.3], which states that, for
every supercritical offspring distribution ν,

sup{u ≥ 1; E
[
Zu] <∞}

= min

(
(1− λ+√

λ2 − 2λ(2d − 1)+ 1)2

4(d − 1)λ
, sup{u ≥ 1; E

[
U u] <∞}

)
.

The fact that the tail of number of infected individuals in the chase–escape process
C(T , {∅}, 0) is regularly varying allows us to obtain analogous results for more general
initial conditions, where we start the chase–escape process with any finite number of
infected individuals. To state these results, we denote by ∂A the vertices belonging to
T \A and at distance 1 from A. Recall also that |u| denotes the generation of a vertex
u ∈ A.

Theorem 5 Assume that ν(d) = 1 where d ≥ 1 is an integer, so that T is the infinite
d-ary tree. Let A ⊂ T be a finite connected subset of T containing ∅. Denote by ZA
the total number of vertices that have been infected until the chase–escape process
C(T ,A, 0) has reached its absorbing state.

(i) Suppose that λ = λc. Then

P(ZA > n) ∼
n→∞

(
1+

√
d

d − 1

)
·
(

∑

u∈∂A

|u|
d · (d −√d(d − 1))|u|−1

)

· 1

n(ln(n))2
.

(ii) Suppose that λ ∈ (0, λc). Then

P(ZA > n) ∼
n→∞ C1 · λ

∑
u∈∂A((ρ− + λ)−|u| − (ρ+ + λ)−|u|)√

λ2 − 2λ(2d − 1)+ 1

·n− (1−λ+
√
λ2−2λ(2d−1)+1)2

4(d−1)λ ,

where ρ− and ρ+ are defined in (2).
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Theorem 5 also relies on results of [2], but its proof uses estimates for killed branch-
ing random walks starting from a random point. In particular, the main difficulty to
obtain Theorem 5 is to establish uniform estimates in the starting point (see Proposi-
tion 10, which may be of independent interest). Many constants are explicit in Theo-
rem 5: This stems from the remarkable fact that the renewal function of the random
walk associated with the branching random walk V may be calculated explicitly.

Observe finally that if ∅ ∈ A and A is not a connected subset of T , then
P (ZA = ∞) > 0. Indeed, if u ∈ A is such that ←−u �∈ A, then ←−u has a positive
probability of never becoming infected and thus of never recovering, so that all the
descendants of u will be infected with positive probability. Also, in the statement of
Theorem 5, we assume that ν(d) = 1, but the proof we give is actually valid when T
is more generally a ν-Galton–Watson tree (under the same integrability assumption
as in Theorem 4) and when A is chosen in such a way that the trees (Tu ; u ∈ ∂A) are
independent ν- Galton–Watson trees, where Tu denotes the tree formed by a vertex u
and its descendants.

1.5 Birth-and-Assassination Process

We now turn our attention to the birth-and-assassination process, which we first for-
mally define following Aldous and Krebs [3]. Let N be the set of all the positive integers
and let U be the set of all labels defined by U = ⋃∞

n=0(N)
n , where by convention

(N)0 = {∅}. An element of U is a sequence u = u1 · · · uk of positive integers and we
set |u| = k, which represents the generation of u. If u = u1 · · · ui and v = v1 · · · v j

belong to U , we write uv = u1 · · · uiv1 · · · v j for the concatenation of u and v, and we
set u � v if there existsw ∈ U such that v = uw. In particular, we have u∅ = ∅u = u.
Let (Pu ; u ∈ U) be a family of i.i.d. Poisson processes on R+ with common arrival
rate λ > 0, and let (Ku ; u ∈ U) be an independent collection of i.i.d. strictly positive
random variables.

The process starts at time 0 with one individual, with label ∅, producing offspring
at arrival times of P∅, which enter the system with labels 1, 2, . . . according to their
birth order. Each new individual u entering the system immediately begins to produce
offspring at the arrival times of Pu , which enter the system with labels u1, u2, . . .
according to their birth order. In addition, the ancestor ∅ is at risk at time 0, and it
only produces offspring until time T∅ := K∅, when it is removed from the system.
In addition, if an individual u is removed from the system at time Tu , then, for every
k ≥ 0, such that the individual uk has been born, uk becomes at risk and continues to
produce offspring until time Tuk := Tu +Kuk when it is removed from the system.

The birth-and-assassination process can be equivalently seen as a Markov process
on {S, I, R}U , where an individual at state R (resp. I and S) is a removed (resp. alive
and not yet born) individual.

We will couple the birth-and-assassination process with a branching random walk
where individuals have infinitely many offspring. Let (D0(u); u ∈ U) be a collection
of independent random variables distributed as K∅ and, for every u ∈ U , set D(u) =∑

0�v�u D0(v). Let also (B(u); u ∈ U) be the branching random walk on U with
displacement distribution given by the point process
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δ{Exp1(λ)} + δ{Exp1(λ)+Exp2(λ)} + δ{Exp1(λ)+Exp2(λ)+Exp3(λ)} + · · · ,

where (Expi (λ))i≥1 is an i.i.d. collection of exponential random variables of parameter
λ, with starting point 0 (the children are indexed by increasing new displacement).

Finally, set V ′(u) = D(←−u )− B(u) for u ∈ T , with the convention D(
←−∅ ) = 0.

Theorem 6 (Coupling for the birth-and-assassination process) For every t ≥ 0 and
u ∈ U , we set:0

Yt (u) =

⎧
⎪⎨

⎪⎩

I if B(u) ≤ t < D(u) and V ′(v) ≥ 0 for every v ∈ �∅, u�

R if D(u) ≤ t and V ′(v) ≥ 0 for every v ∈ �∅, u�

S otherwise.

Then (Yt )t≥0 has the same distribution as the birth-and-assassination process.

This is a just a simple, yet useful, reformulation of the definition of the birth-
and-assassination process. Without further notice, we will assume that the birth-and-
assassination process is the process (Yt )t≥0 appearing in Theorem 6. In particular, as
for the chase–escape process, by letting t →∞, we see that the total progeny of this
process is related to the total progeny of a certain killed branching walk:

Corollary 7 There exists a (random) time such that no individuals remain in the birth-
and-assassination process if and only if there is a finite number of individuals in the
branching random walk produced with the point process

δ{K∅−Exp1(λ)} + δ{K∅−(Exp1(λ)+Exp2(λ))} + δ{K∅−(Exp1(λ)+Exp2(λ)+Exp3(λ))} + . . . ,

starting from 0 and killed at 0.

Following Aldous and Krebs, we say the process is stable if almost surely there
exists a (random) time when no individuals remain in the system, and unstable oth-
erwise. Let φ(u) = E

[
euK∅] be the moment-generating function of K∅ for u ∈ R.

Under the assumption that φ is finite on a neighborhood of the origin, Aldous and
Krebs [3] proved that if minu>0 λu−1φ(u) < 1 then the process is stable, and if
minu>0 λu−1φ(u) > 1 then the process is unstable. Later, in the particular case where
K∅ is an exponential random variable of parameter 1, Bordenave [6, Corollary 2]
proved that the process is stable if minu>0 λu−1φ(u) = 1 (which corresponds to the
case λ = 1/4). Our last contribution is to establish that this fact holds more generally.

Theorem 8 Assume that φ is finite on a neighborhood of the origin and that
minu>0 λu−1φ(u) = 1. Then the birth-and-assassination process is stable.

The proof is very similar to the one we give to Proposition 3 and is also based on
the almost sure convergence toward 0 of the Biggins’ martingale associated with our
branching random walk.
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1.6 Structure of the Paper

We prove our results concerning the chase–escape process in Sect. 2, and the results
concerning the birth-and-assassination process in Sect. 3. Finally, technical uniform
estimates on branching random walks are established in Sect. 4.

The main goal of this paper is thus to present new couplings between branching
random walks and the two models under consideration and to illustrate the strength
of the couplings by showing how known results on branching random walks yield
interesting new results on the chase–escape and birth-and-assassination models. In
Sect. 2.4 and at the end of Sect. 3, we suggest other applications which would require
new results on branching random walks that we hope to investigate in future work.

2 The Chase–Escape Process

In this section, we study the chase–escape process and prove in particular Proposition 3
and Theorems 4 and 5 by using branching random walks.

2.1 Branching Random Walks

We start by introducing some relevant quantities of the branching random walk
involved in the coupling with the chase–escape process. For x ≥ 0, let Px be a
probability measure such that under Px , (V (u); u ∈ T ) is the law of a branching
random walk produced with the point process

L =
U∑

i=1

δ{E−Expi (λ)},

starting from x , where U is a nonnegative integer valued random variable distributed
according to ν. We denote by Ex the corresponding expectation. Recall that d > 1 is
the mean value of ν. A straightforward computation yields the logarithmic generation
function for the branching random walk:

ψ(t) := ln E0

⎡

⎣
∑

|u|=1

etV (u)

⎤

⎦ = ln

⎛

⎝
∑

k≥0

E0

[
1{U=k}

k∑

i=1

et (E−Expi (λ))

]⎞

⎠

= ln

⎛

⎝
∑

k≥0

P (U = k)E0

[
k∑

i=1

et (E−Expi (λ))

]⎞

⎠

= ln

⎛

⎝
∑

k≥0

P (U = k) k
λ

(1− t)(λ+ t)

⎞

⎠

= ln(d)+ ln

(
1

1− t
· λ

λ+ t

)
, t ∈ (−λ, 1).
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In addition, there exists ρ� ∈ (0, 1) such that ψ(ρ�) = ρ�ψ
′(ρ�). Recalling that

λc = 2d − 1− 2
√

d(d − 1), notice that

ψ ′(ρ�)

⎧
⎪⎨

⎪⎩

<0 if λ ∈ (0, λc)

=0 if λ = λc

>0 if λ > λc.

In the terminology of branching random walks, this means that the branching random
walk V is critical for λ = λc, subcritical for λ ∈ (0, λc) and supercritical for λ > λc.
For λ = λc, note that ρ� = 1+√d(d − 1)− d = (1− λc)/2.

We are now ready to give an effortless proof of Proposition 3.

Proof of Proposition 3 Assume that λ = λc, so thatψ ′(ρ�) = 0. By [5, Lemma 5] (see
also [17] for a probabilistic proof), under P0, the martingale Wn := ∑

|u|=n eρ�V (u)

converges almost surely toward 0 as n→∞. This implies that, under P0,

max|u|=n
V (u)→−∞ a.s.

(See [11, Theorem 1.2] for a more precise rate of convergence under additional assump-
tions on the moments of ν.) This implies that the number of surviving individuals in the
branching random walk V killed at the barrier 0 is almost surely finite. Proposition 3
then simply follows from Corollary 2. ��

We finally introduce some notation in the subcritical case. When λ < λc, we let
ρ−, ρ+ be such that 0 < ρ− < ρ� < ρ+ < 1 and ψ(ρ−) = ψ(ρ+) = 0. Setting
� = λ2 − 2λ(2d − 1)+ 1, one checks that

ρ− = 1

2
· (1− λ−√�), ρ+ = 1

2
· (1− λ+√�). (2)

2.2 Total Progeny of a Killed Branching Random Walk

In this section, we assume that λ ≤ λc and shall prove Theorem 4. To this end, we
begin by presenting results concerning the total progeny of branching random walks
killed at the barrier 0 starting from a fixed initial point. We first need to introduce an
auxiliary random walk (Sn)n≥0 defined as follows. Set ρ = ρ� if λ = λc (critical case)
and ρ = ρ+ if λ ∈ (0, λc) (subcritical case). Then, for every x ≥ 0, let (Sn)n≥0 be a
random walk such that, under the probability measure Qx , we have S0 = x and such
that its step distribution is characterized by the fact that

Qx [ f (S1 − S0)]

= E0

⎡

⎣
∑

|u|=1

f (V (u))eρV (u)

⎤

⎦ for every measurable function f : R→ R+.
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Next, let R be the renewal function associated with (Sn)n≥0 defined by

R(x) = Q0

⎡

⎣
τ∗−1∑

j=0

1{S j≥−x}

⎤

⎦ , where τ ∗ = inf{ j ≥ 1; S j ≥ 0},

and set τ−0 = inf{k ≥ 0; Sk < 0}.
We are now able to state a result obtained by Aïdékon et al. [2], which describes

the asymptotic behavior of the total progeny Z of the branching random walk killed
at the barrier 0 starting from a fixed initial point which is not necessarily the origin
(this will be needed for the proof of Theorem 5).

Theorem 9 (Theorem 1 in [2])

(i) Suppose that λ = λc. Then for every fixed x ≥ 0 ,

Px (Z > n) ∼
n→∞

Q0

[
e
−ρ�S

τ
−
0

]
− 1

d − 1
· R(x)eρ�x · 1

n(ln(n))2
.

(ii) Suppose that λ ∈ (0, λc). There exists a constant C1 > 0, depending only on d
and λ, such that for every x ≥ 0 and n ≥ 1,

Px (Z > n) ∼
n→∞ C1 · R(x)eρ+x · n−

ρ+
ρ− .

Proof of Theorem 4 (i) Suppose that λ = λc. We start by finding the step distribution
of (Sn)n≥0 under Qx . If f : R→ R+ is a measurable function, as for the calculation
of the logarithmic generating function of V , write

Q0 [ f (S1)] =
∑

k≥0

P (U = k)
k∑

i=1

E0

[
f (E − Expi (λc))e

ρ(E−Expi (λc))
]

= λcd
∫

dxdy 1{x,y≥0} f (x − y)eρ�(x−y)e−x−λc y

= λcd

λc + 1
·
∫

R

f (u)e−(λc+1)|u|/2du, (3)

where we have used the fact that ρ� = (1− λc)/2 in the last equality (note that Q0 is
a probability distribution by definition of λc). Hence, the step distribution of (Sn)n≥1
is a symmetric two-sided exponential distribution. This implies that for x ≥ 0, under
Qx , the random variable −Sτ−0

is distributed according to Exp((1+ λc)/2) (see e.g.,
Example (b) in [9, Sect.VI.8]). In particular,

Q

[
e
−ρ�S

τ
−
0

]
= 1+ λc

2
·
∫ ∞

0
dx e(1−λc)x/2e−(1+λc)x/2

= 1+ λc

2
·
∫ ∞

0
dx e−λcx = 1+ λc

2λc
. (4)
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Hence, by Theorem 9 (i),

Px (Z > n) ∼
n→∞

1

d − 1
·
(

1+ λc

2λc
− 1

)
· R(x)eρ�x · 1

n(ln(n))2
. (5)

Assertion (i) then follows by taking x = 0 in (5) and noting that R(0) = 1. For the
second assertion, it suffices to take x = 0 in Theorem 9 (ii). ��

In the subcritical case λ ∈ (0, λc), the expression of the constant C1 appearing in
Theorem 9 (ii) is much more complicated than in the critical case: See in particular
Lemma 1 in [2] and the expression of the constant cρ− in Eq. (8.18) in [2], which arises
in the asymptotic tail behavior of the almost sure limit of the martingale

∑
|u|=n eρ−V (u)

as n → ∞. Unfortunately, we have not managed to find a simple expression for C1
in our particular case.

2.3 Total Progeny of a Killed Branching Random Walk with a Random Starting Point

We keep here the notation introduced in the previous section. The proof of Theorem 5
requires the following uniform bounds on Px (Z > n), which may be of independent
interest.

Proposition 10 There exists a constant C2(λ, d) > 0 such that the following asser-
tions hold.

(i) Suppose that λ = λc. For every x ≥ 0 and n ≥ 1, Px (Z > n) ≤ C2(λc, d) ·
(x + 1)eρ�x · 1

n(ln(n))2
.

(ii) Suppose that λ ∈ (0, λc). For every x ≥ 0 and n ≥ 1, Px (Z > n) ≤ C2(λ, d) ·
eρ+x · n−

ρ+
ρ− .

We postpone the proof of Proposition 10 to Sect. 4.

Proof of Theorem 5 Recall that A ⊂ T is a finite connected subset of T containing
∅. To simplify notation, denote by Z(T ,A, x) the total number of infected indi-
viduals in the chase–escape process C(T ,A, x). For u ∈ ∂A, let Ru be the first
time when ←−u recovers in the chase–escape process C(T ,A, 0). In particular, Ru

has the same distribution as the sum of |u| independent exponential random vari-
ables of parameter 1. Let also (Eu ; u ∈ ∂A) be a collection of independent expo-
nential random variables of parameter λ, independent of (Ru ; u ∈ ∂A). If u ∈ ∂A,
without the presence of recovered vertices, ←−u would infect u after a time distrib-
uted as Eu . Hence, if Tu denotes the tree of descendants of u (including u), then
the number of individuals of Tu that will be infected in the chase–escape process
C(T ,A, 0) has the same distribution as Z(Tu, {∅}, Ru − Eu)1{Ru>Eu}, where the ran-
dom variables (Z(Tu, {∅}, Ru − Eu)1{Ru>Eu}; u ∈ ∂A) are independent conditionally
on (Ru ; u ∈ ∂A), and in addition this equality holds jointly in distribution for all
u ∈ ∂A. Now let u1, . . . , uK be an enumeration of the vertices of ∂A. By the previous
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discussion, we have

P
(
ZA > n

∣∣ Ru1 , . . . , RuK

)

= P

(
|A| +

K∑

i=1

Z(Tui , {∅}, Rui − Eui )1{Rui>Eui } > n
∣∣ Ru1 , . . . , RuK

)
(6)

where we denote by |A| the cardinal of the set A. Moreover, by Corollary 2,

P

(
Z(Tui , {∅}, Rui − Eui )1{Rui>Eui } > n

∣∣ Ru1 , . . . , RuK

)

= E

[
PRui−Eui

(Z > n)1{Rui>Eui }
∣∣ Rui

]

for every 1 ≤ i ≤ K .
We start by proving (i), where λ = λc. Recall from (3) that under Qx , (Sn)n≥0 is

a random walk with step distribution a symmetric two-sided exponential distribution.
The renewal function R is thus explicit: R(x) = 1+ (1+ λc)x/2 for x ≥ 0 (see e.g.,
Eq. (4.3) of Chapter XII.4 in [9]). Hence, by Theorem 9 (i) and (4),

n(ln(n))2 · PRui−Eui
(Z > n)1{Rui>Eui }

−→
n→∞

1− λc

2λc(d − 1)
·
(

1+ (1+ λc)(Rui − Eui )

2

)

eρ�(Rui−Eui ) · 1{Rui>Eui }.

Proposition 10 (i) allows us to use the conditioned dominated convergence theorem
to deduce that

E

[
PRui−Eui

(Z > n)1{Rui>Eui }
∣∣ Rui

]
∼

n→∞ G(Rui ) ·
1

n(ln(n))2
,

where G(x) is defined by

G(x)= 1−λc

2λc(d − 1)
· E

[(
1+ (1+ λc)(x − Eui )

2

)
eρ�(x−Eui )1{x>Eui }

]
, x ≥ 0.

But if X1, . . . , X K are independent random variables such that P (Xi > n) ∼
κi/(n ln(n)2) as n → ∞, since 1/ ln(n)2 is regularly varying, then
P (X)1 + · · · + X K > n ∼ (κ1 + κ2 + · · · κK )/(n ln(n)2) (see e.g., [9, Proposition in
Sect. VIII.8]). Thus

P

(
|A| +

K∑

i=1

Z(Tui , {∅}, Rui − Eui )1{Rui>Eui } > n
∣∣ Ru1 , . . . , RuK

)
∼

n→∞
(

K∑

i=1

G(Rui )

)
· 1

n ln(n)2
.
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Observing that

P

(
|A| +

K∑

i=1

Z(Tui , {∅}, Rui − Eui )1{Rui>Eui } > n
∣∣ Ru1 , . . . , RuK

)

≤
K∑

i=1

P

(
Z(Tui , {∅}, Rui−Eui )1{Rui>Eui }>(n − |A|)/K

∣∣ Ru1 , . . . , RuK

)

=
K∑

i=1

E

[
PRui−Eui

(Z > (n − |A|)/K )1{Rui>Eui }
∣∣ Rui

]
,

noting that rn ln2(rn)/(n ln2(n))) is bounded as n→∞ when rn = (n− |A|)/K , we
combine once again Proposition 10 (i) with the dominated convergence theorem, to
get, using (6), that

P (ZA > n)= E
[
P
(
ZA > n

∣∣Ru1 , . . . , RuK

)] ∼
n→∞

(
K∑

i=1

E
[
G(Rui )

]
)
· 1

n ln(n)2
.

It hence remains to compute E
[
G(Rui )

]
. Recall that Rui has the same distribution

as the sum of |ui | independent exponential random variables of parameter 1, and to
simplify notation set k = |ui |. Then using a change of variables and Fubini’s theorem,
write for every measurable function F : R→ R+:

E

[
F(Rui − Eui )1{Rui>Eui }

]
=

∫
dxdy F(x − y)

xk−1e−x

�(k)
λe−λy1{x>y≥0}

=
∫ ∞

0
du

λuk−1e−u(1+λ)

�(k)

∫ u

0
F(v)eλvdv. (7)

Recall that ρ� = (1 − λc)/2. Since
∫ u

0 (1 + (1 + λc)v/2)e(1−λc)v/2eλcvdv = u ·
e(1+λc)u/2, a straightforward calculation yields

E
[
G(Rui )

] = E

[
F(Rui − Eui )1{Rui>Eui }

]

= 1− λc

2λc(d − 1)
·
∫ ∞

0
du

λcuk−1e−u(1+λc)

�(k)
u · e(1+λc)u/2.

Hence,

E
[
G(Rui )

] =
(

1+
√

d

d − 1

)
· λc|ui |
((1+ λc)/2)1+|ui |

=
(

1+
√

d

d − 1

)
·
( |ui |

d · (d −√d(d − 1))|ui |−1

)
.
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This completes the proof of (i).
The proof of the second assertion, where λ ∈ (0, λc) is very similar, so we only

sketch the main calculations. Under Qx , (Sn)n≥0 is still a random walk with step distrib-
ution a (nonsymmetric) two-sided exponential distribution, with density λd

d+1 e−(1−ρ+)u

on R+ and density λd
d+1 e(λ+ρ+)u on R−. By [9, Example (a) (ii) in XII.4], the renewal

function R is equal to

R(x) = ρ+ + λ
2ρ+ + λ− 1

+ ρ+ − 1

2ρ+ + λ− 1
e−(2ρ++λ−1)x .

(In our case, the value of κ defined in [9, Example (a) (ii) in XII.4] is κ = 2ρ++λ−1.)
Hence,

P (ZA > n) ∼
n→∞

(
K∑

i=1

E
[
H(Rui )

]
)
· n−

ρ+
ρ−

where H(x) is defined by

H(x)

= C1 · E
[(

ρ++λ
2ρ++λ− 1

+ ρ+−1

2ρ++λ− 1
e−(2ρ++λ−1)(x−Eui )

)
eρ+(x−Eui )1{x>Eui }

]
,

x ≥ 0.

We compute E
[
H(Rui )

]
by using (7): Since

∫ u
0 R(v)eρ+v · eλvdv = (e(λ+ρ+)u −

eu(1−ρ+))/(2ρ+ + λ− 1), we get

E
[
H(Rui )

] = C1
λ
(
(1− ρ+)−k − (λ+ ρ+)−k

)

2ρ+ + λ− 1

= C1 · λ√
λ2 − 2λ(2d − 1)+ 1

((ρ− + λ)−|u| − (ρ+ + λ)−|u|).

This completes the proof. ��
Observe that this proof shows that Theorem 5 holds when T is a ν-Galton–Watson

tree (under the same integrability assumption as in Theorem 4) and when A is chosen
in such a way that the trees (Tu ; u ∈ ∂A) are independent ν- Galton–Watson trees.

2.4 Reaching High Generations

In this section, we state a conjecture concerning the asymptotic behavior of the prob-
ability that the infection reaches high levels of the tree. Assume that ν(d) = 1 where
d ≥ 2 is an integer, so that T is the infinite d-ary tree. Recall that Zn denotes the
number of individuals of the n-th level of the tree T that have been infected in the
chase–escape process C(T , {∅}, 0). Finally, set γ = 4λ/(1+ λ)2.

We believe that the following results hold:
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(i) If λ ∈ (0, λc), there exists a constant C3 > 0, depending only on λ and d, such
that P (Zn > 0) ∼ C3 · (γ d)nn−3/2 as n→∞.

(ii) If λ = λc, we have ln P (Zn > 0) ∼ − (
3 (1− 1/d) π2

)1/3 · n1/3 as n→∞.

Aïdékon and Jaffuel [1] proved this result for branching random walks on T with
i.i.d. displacements. However, we believe that even if in our case the displacements
are not independent, an analog result should hold and that their proof could be adapted
(see in particular [12], where the displacements are not supposed to be independent).
We also believe that this should hold more generally for Galton–Watson trees under
adequate integrability conditions.

3 Birth-and-Assassination Process

We are now interested in the asymptotic behavior of the birth-and-assassination process
at criticality. Denote by P̃ the law of the branching random walk (Ṽ (u); u ∈ U) on
U = ∪n≥0N

n produced with the point process

L̃ = δ{K∅−Exp1(λ)} + δ{K∅−(Exp1(λ)+Exp2(λ))} + δ{K∅−(Exp1(λ)+Exp2(λ)+Exp3(λ))} + . . . ,

where (Expi (λ))i≥1 is an i.i.d. collection of exponential random variables of parameter
λ, with starting point 0 and independent of K∅.

Introduce the logarithmic generation function ψ̃(t) = ln E0

[∑
|u|=1 et Ṽ (u)

]
of this

branching random walk. Recalling that φ(t) = E
[
etK∅] is the moment-generating

function of K∅, a straightforward calculation yields

ψ̃(t) = ln

( ∞∑

i=1

E

[
etK∅

]
E

[
e−tExp1(λ)

]i
)
= ln

(
φ(t)

∞∑

i=1

(
λ

λ+ t

)i
)

= ln

(
λφ(t)

t

)
, t ≥ 0.

Proof of Theorem 8 The proof is very similar to the one we gave for Proposition 3:
Assuming that minu>0 λu−1φ(u) = 1 and that this minimum is attained at u� > 0,
we have ψ̃ ′(u�) = 0, so that by [5, Lemma 5] (see also [17]), the martingale Wn :=∑
|u|=n eu� Ṽ (u) converges almost surely toward 0 as n→∞. This implies that under

P̃,

max|u|=n
Ṽ (u)→−∞ a.s.

Hence, the number of surviving individuals in the branching random walk Ṽ killed at
the barrier 0 is almost surely finite. Theorem 8 then simply follows from Corollary 7.

��
Now assume that K∅ is an exponential random variable of parameter 1, which

implies that ψ̃(t) = ln (λ/(t (1− t))), so that the critical parameter is λ = 1/4. In this
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case, if N denotes the total number of born individuals in the birth-and-assassination
process, using analytical methods Bordenave [6, Theorem2] showed that for every
λ ∈ (0, 1/4),

sup{u ≥ 0; E
[
N u] <∞} = 1+√1− 4λ

1−√1− 4λ
(8)

and that E [N ] = 2 for λ = 1/4. In this case, and also when K∅ is any positive
random variable, it would be interesting to find whether similar phenomena as in
the chase–escape process occur for the tail of the total progeny and the probability
of having individuals born at large generations occur in the birth-and-assassination
process. Unfortunately, we may not apply known results on killed branching random
walks since here on the one hand each individual has an infinite number of offspring
(the branching is infinite) and on the other hand the logarithmic generation function ψ̃
is not finite on a neighborhood of the origin. However, it seems likely that this is not
an obstacle to have an analog of Theorem 9 to hold in this case as well. It is plausible
that, in general, if minu>0 λu−1φ(u) = 1, then P (N > n) ∼ C/(n ln(n)2) as n→∞
for a certain C > 0, and if minu>0 λu−1φ(u) < 1, then P (N > n) ∼ C · n−ρ̃+/ρ̃− for
a certain C > 0, where 0 < ρ̃− < ρ̃+ are such that

λ
φ(ρ̃−)
ρ̃−

= λφ(ρ̃+)
ρ̃+

= 1.

In this case, notice that by convexity of t �→ E
[
etK∅] /t , there exist exactly two values

of t > 0 such that λt−1φ(t) = 1. In addition, when K∅ is an exponential random
variable of parameter 1, we have ρ̃± = (1 ± √1− 4λ)/2, so that this prediction is
consistent with (8).

4 Proof of the Technical Estimate

We first introduce some notation which appears in [2]. We shall refer the reader very
often to [2] to stay as concise as possible.

Let L[0] be the set of all the individuals (i.e., vertices of the associated genealogical
tree) of the (nonkilled) branching random walk which lie below 0 for its first time,
see [2, Eq. (1.8) and Fig. 1]. For L > 0, let H(L) be the number of individuals of
the branching random walk on [0, L] with two killing barrier which were absorbed at
level L (see [2, Eq. (1.10) and Fig. 2]). Then let Z [0, L] be the number of individuals
of L[0] which have not crossed level L (see [2, Eq. (1.12)]). These individuals are
partitioned into good and bad individuals, whose number is denoted, respectively, by
Zg[0, L] and Zb[0, L] (and taking the parameter λ = 1 appearing in their definition,
see [2, Eq. (7.2)] for the critical case and [2, Eq. (8.5)] for the subcritical case—roughly
speaking, individuals are good if their children do not make extraordinary jumps, and
the number of their children is not too big). Finally, for a random walk (Sn)n≥0 set
τ+a = inf{k ≥ 0; Sk > a} and τ−a = inf{k ≥ 0; Sk < a} for a ∈ R.

Proof of Proposition 10 The following proof is due to Elie Aïdékon. A close inspec-
tion of the proof of Lemma 2 of [2] shows that it is sufficient to establish Proposition 10
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when Px (Z > n) is replaced by Px (#L[0] > n). In the sequel C denotes a positive
constant which may change from line to line.

We first concentrate on the critical case λ = λc. By a linear transformation on V ,
we may assume that ρ� = 1. We first claim that there exists a constant C > 0 such
that for every L > 0 and x ≥ 0, Ex [H(L)] ≤ Cex (1+ x)e−L/L . It is enough to
check this inequality for 0 < x < L . In this case, using Proposition 3 in [2] (applied
with t = L , λ = 1 and h(u) = eV (u) with Qx defined by [2, Eq. (5.16)]), we have

Ex [H(L)] = ex
Qx

[
e−τ

+
L 1{τ+L <τ−0 }

]
≤ ex−L

Qx (τ
+
L < τ−0 ) ≤ ex−L x + C

L
,

where we have used [2, Eq. (4.12)] for the last inequality. This yields our claim. In
particular, taking L = Ln = ln n + ln ln n, we get

Px (H(Ln)) ≥ 1) ≤ C(1+ x)ex 1

n(ln(n))2
. (9)

Next, by Lemma 13 in [2] we have Ex [Zb[0, Ln]] ≤ C(1+ x)ex · (ln(n))−2 and by
Lemma 14 in [2] we have Ex

[
Zg[0, Ln]2

] ≤ C(1+ x)ex · n(ln(n))−2. Hence, using
Markov’s inequality we get

Px (Zb[0, Ln] ≥ n/2) ≤ C(1+ x)ex · 1

n(ln(n))2
,

Px
(
Zg[0, Ln] ≥ n/2

) ≤ C(1+ x)ex · 1

n(ln(n))2
. (10)

The conclusion then follows by observing that Px (#L[0] > n) ≤ Px (H(Ln) ≥ 1)+
Px (Z [0, Ln] > n) and using (9) and (10).

We now turn to the subcritical case. Using Proposition 3 in [2] (applied with t =
L , λ = 1 and h(u) = eρ−V (u) with Q

(ρ−)
x defined in the beginning of Sec. 8 in [2])

and Eq. (8.1) in [2], one similarly shows that

Ex [H(L)]=eρ−x
Q
(ρ−)
x

[
e−ρ−τ

+
L 1{τ+L <τ−0 }

]
≤eρ−x−ρ−L

Q
(ρ−)
x (τ+L < τ−0 )≤eρ−x−ρ+L .

Hence, taking L = Ln = ln(n)/ρ− we get Px (H(Ln) ≥ 1) ≤ eρ−x n−ρ+/ρ− . By
Lemma 19 in [2], Ex

[
Zg[0, Ln]k�

] ≤ Ceρ+x · nk�−ρ+/ρ− with k� = �ρ+/ρ−� + 1,
and by Lemma 20 (i) in [2], Ex [Zb[0, Ln]] ≤ Ceρ+x · n1−ρ+/ρ− . Markov’s inequality
then entails

Px (Zb[0, Ln] ≥ n/2) ≤ Ceρ+x · n−ρ+/ρ− ,
Px

(
Zg[0, Ln] ≥ n/2

) ≤ Ceρ+x · n−ρ+/ρ− .

We conclude as in the critical case. ��
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