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ABSTRACT: We study various models of random non-crossing configurations consisting of diago-
nals of convex polygons, and focus in particular on uniform dissections and non-crossing trees. For
both these models, we prove convergence in distribution towards Aldous’ Brownian triangulation
of the disk. In the case of dissections, we also refine the study of the maximal vertex degree and
validate a conjecture of Bernasconi, Panagiotou and Steger. Our main tool is the use of an underlying
Galton-Watson tree structure. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 45, 236–260, 2014

Keywords: non-crossing plane configurations; dissections; conditioned Galton-Watson trees; Brown-
ian triangulation; probability on graphs

1. INTRODUCTION

Various models of non-crossing geometric configurations involving diagonals of a convex
polygon in the plane have been studied both in geometry, probability theory and espe-
cially in enumerative combinatorics (see e.g. [10]). Three specific models of non-crossing
configurations—-triangulations, dissections and non-crossing trees—have drawn particular
attention. Let us first recall the definition of these models.

Let Pn be the convex polygon inscribed in the unit disk of the complex plane whose
vertices are the n-th roots of unity. By definition, a dissection of Pn is the union of the
sides of Pn and of a collection of diagonals that may intersect only at their endpoints. A
triangulation is a dissection whose inner faces are all triangles. Finally, a non-crossing tree
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RANDOM NON-CROSSING PLANE CONFIGURATIONS 237

Fig. 1. A dissection, a triangulation and a non-crossing tree of the octogon.

of Pn is a tree drawn on the plane whose vertices are all vertices of Pn and whose edges are
non-crossing line segments. See Fig. 1 for examples.

Graph theoretical properties of uniformly distributed triangulations have been recently
investigated in combinatorics. For instance, the study of the asymptotic behavior of the
maximal vertex degree has been initiated in [7] and pursued in [12]. Afterwards, the same
random variable has been studied in the case of dissections [4].

We shall continue the study of graph-theoretical properties of large uniform dissections
and in particular focus on the maximal vertex degree. Our method is based on finding and
exploiting an underlying Galton-Watson tree structure. More precisely, we show that the
dual tree associated with a uniformly distributed dissection of Pn is a critical Galton-Watson
tree conditioned on having exactly n − 1 leaves. This new conditioning of Galton-Watson
trees has been studied recently in [14] (see also [22]) and is well adapted to the study of
dissections, see [15]. In particular we are able to validate a conjecture contained in [4]
concerning the asymptotic behavior of the maximal vertex degree in a uniform dissection
(Theorem 4.7). Using the critical Galton-Watson tree conditioned to survive introduced in
[13], we also give a simple probabilistic explanation of the fact that the inner degree of
a given vertex in a large uniform dissection converges in distribution to the sum of two
independent geometric variables (Proposition 4.6). We finally obtain new results about the
asymptotic behavior of the maximal face degree in a uniformly distributed dissection.

As a by-product of our techniques, we give a very simple probabilistic approach to the
following enumeration problem. Let A be a non-empty subset of {3, 4, 5, . . .} and D(A)

n

the set of all dissections of Pn+1 whose face degrees all belong to the set A. Theorem 3.7
gives an explicit asymptotic formula for #D(A)

n as n → ∞ (for those values of n for which
D(A)

n �= ∅). In particular when A0 = {3, 4, 5, . . .}, then Dn−1 := D(A0)

n−1 is the set of all
dissections of Pn and

#Dn−1 ∼
n→∞

1

4

√
99

√
2 − 140

π
n−3/2(3 + 2

√
2)n.

This formula (Corollary 2.5) was originally derived by Flajolet & Noy [10] using very
different techniques.

From a geometrical perspective, Aldous [2,3] proposed to consider triangulations of Pn

as closed subsets of the unit disk D := {z ∈ C : |z| ≤ 1} rather than viewing them as
graphs. He proved that large uniform triangulations of Pn converge in distribution (for the
Hausdorff distance on compact subsets of the unit disk) towards a random compact subset.
This limiting object is called the Brownian triangulation (see Fig. 2). This name comes from
the fact that the Brownian triangulation can be constructed from the Brownian excursion
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238 CURIEN AND KORTCHEMSKI

Fig. 2. A sample of the Brownian triangulation B. [Color figure can be viewed in the online issue,
which available at wileyonlinelibrary.com.]

as follows: Let e : [0, 1] → R be a normalized excursion of linear Brownian motion. For
every s, t ∈ [0, 1], we set s ∼ t if we have e(s) = e(t) = min[s∧t,s∨t] e. The Brownian
triangulation is then defined as:

B :=
⋃
s∼t

[
e−2iπs, e−2iπ t

]
, (1)

where [x, y] stands for the Euclidean line segment joining two complex numbers x and y.
It turns out that B is almost surely a closed set which is a continuous triangulation of the
unit disk (in the sense that the complement of B in D is a disjoint union of open Euclidean
triangles whose vertices belong to the unit circle). Aldous also observed that the Hausdorff
dimension of B is almost surely equal to 3/2 (see [17]). Later, in the context of random
maps, the Brownian triangulation has been studied by Le Gall & Paulin in [17] where it
serves as a tool in the proof of the homeomorphism theorem for the Brownian map. See
also [6, 15] for analogs of the Brownian triangulation.

However, neither large random uniform dissections, nor large uniform non-crossing trees
have yet been studied from this geometrical point of view (Fig. 3).

In this work, we extend Aldous’ theorem by showing that both large uniform dissections
and large uniform non-crossing trees converge in distribution towards the Brownian triangu-
lation (Theorem 3.1). The maybe surprising fact that large uniform dissections (which may
have non-triangular faces) converge to a continuous triangulation stems from the fact that
many diagonals degenerate in the limit. For both models, the key is to use a Galton-Watson
tree structure, which was already described above in the case of dissections. In the case

Fig. 3. Uniform dissection, triangulation and non-crossing tree of size 50. The same continuous
model? [Color figure can be viewed in the online issue, which available at wileyonlinelibrary.com.]
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RANDOM NON-CROSSING PLANE CONFIGURATIONS 239

Fig. 4. The dual tree of a dissection of P8, note that the tree has 7 leaves.

of non-crossing trees this structure has been identified by Marckert & Panholzer [20] who
established that the shape of a uniform non-crossing tree of Pn is almost a Galton-Watson
tree conditioned on having n vertices (see Theorem 2.7 below for a precise statement).

We also consider other random configurations of non-crossing diagonals of Pn such as
non-crossing graphs, non-crossing partitions and non-crossing pair partitions, and prove the
convergence towards the Brownian triangulation, again by using an appropriate underlying
tree structure. We also show that a uniformly distributed dissection over D(A)

n converges
towards B as n → ∞. The Brownian triangulation thus appears as a universal limit for
random non-crossing configurations. This has interesting applications: For instance, let χn

be a random non-crossing configuration on the vertices of Pn that converges in distribution
towards B in the sense of the Hausdorff metric. Then the corresponding angle of the longest
diagonal of χn, suitably normalized, converges in distribution towards the length of the
longest chord of the Brownian triangulation with law

1

π

3x − 1

x2(1 − x)2
√

1 − 2x
1 1

3 ≤x≤ 1
2
dx.

This has been shown in the particular case of triangulations in [3] (see also [7]).
The paper is organized as follows. In the second section we introduce the discrete models

and explain the underlying Galton-Watson tree structures. The third section is devoted to
the convergence of different random non-crossing configurations towards the Brownian
triangulation and to applications. The final section contains the analysis of graph-theoretical
properties of large uniform dissections, such as the maximal vertex or face degree.

2. DISSECTIONS, NON-CROSSING TREES AND GALTON-WATSON TREES

2.1. Dissections and Plane Trees

Throughout this work, for every integer n ≥ 3, Pn stands for the regular polygon of the
plane with n sides whose vertices are the n-th roots of unity.

Definition 2.1. A dissection D of the polygon Pn is the union of the sides of the polygon
and of a collection of diagonals that may intersect only at their endpoints. A face f of D is
a connected component of the complement of D inside Pn; its degree, denoted by deg(f ),
is the number of sides surrounding f . See Fig. 4 for an example.

Random Structures and Algorithms DOI 10.1002/rsa



240 CURIEN AND KORTCHEMSKI

Let Dn be the set of all dissections of Pn+1. Given a dissection D ∈ Dn, we construct a
(rooted ordered) tree φ(D) as follows: Consider the dual graph of D, obtained by placing a
vertex inside each face of D and outside each side of the polygon Pn+1 and by joining two
vertices if the corresponding faces share a common edge, thus giving a connected graph
without cycles. Then remove the dual edge intersecting the side of Pn+1 which connects 1

to e
2iπ
n+1 . Finally, root the tree at the corner adjacent to the latter side (see Fig. 4).

The dual tree of a dissection is a plane tree (also known as rooted ordered tree in the
literature). We briefly recall the formalism of plane trees which can be found in [16] for
example. Let N = {0, 1, . . .} be the set of nonnegative integers, N

∗ = {1, . . .} and let U be
the set of labels

U =
∞⋃

n=0

(N∗)n,

where by convention (N∗)0 = {∅}. An element of U is a sequence u = u1 · · · um of positive
integers, and we set |u| = m, which represents the “generation” of u. If u = u1 · · · um and
v = v1 · · · vn belong to U , we write uv = u1 · · · umv1 · · · vm for the concatenation of u and v.
Finally, a plane tree τ is a finite or infinite subset of U such that:

1. ∅ ∈ τ ,
2. if v ∈ τ and v = uj for some j ∈ N

∗, then u ∈ τ ,
3. for every u ∈ τ , there exists an integer ku(τ ) ≥ 0 (the number of children of u) such

that, for every j ∈ N
∗, uj ∈ τ if and only if 1 ≤ j ≤ ku(τ ).

In the following, by tree we will always mean plane tree. We denote the set of all trees by
T. We will often view each vertex of a tree τ as an individual of a population whose
τ is the genealogical tree. If τ is a tree and u ∈ τ , we define the shift of τ at u by
σuτ = {v ∈ U : uv ∈ τ }, which is itself a tree. If u, v ∈ τ we denote by [[u, v]] the
discrete geodesic path between u and v in τ . The total progeny of τ , which is the total
number of vertices of τ , will be denoted by ζ(τ ). The number of leaves (vertices u of τ

such that ku(τ ) = 0) of the tree τ is denoted by λ(τ). Finally, we let T(	)
n denote the set of

all plane trees with n leaves such that there is no vertex with exactly one child.
The following proposition is an easy combinatorial property, whose proof is omitted.

Proposition 2.2. The duality application φ is a bijection between Dn and T(	)
n .

The dissection is conversely easily obtained from the tree as shown in Fig. 4.
Finally, we briefly recall the standard definition of Galton-Watson trees. Let ρ be a

probability measure on N such that ρ(1) < 1. The law of the Galton-Watson tree with
offspring distribution ρ is the unique probability measure Pρ on T such that:

1. Pρ(k∅ = j) = ρ(j) for j ≥ 0,
2. for every j ≥ 1 with ρ(j) > 0, conditionally on {k∅ = j}, the subtrees σ1τ , . . . , σjτ

are i.i.d. with distribution Pρ .

It is well-known that if ρ has mean less than or equal to 1 then a ρ-Galton-Watson tree is
almost surely finite. In the sequel, for every integer j ≥ 1, Pρ,j will stand for the probability
measure on Tj which is the distribution of j independent trees of law Pρ . The canonical
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RANDOM NON-CROSSING PLANE CONFIGURATIONS 241

element of Tj will be denoted by f. For f = (τ1, . . . , τj) ∈ Tj, let λ(f) = λ(τ1) + · · · + λ(τj)

be the total number of leaves of f.

2.2. Uniform Dissections Are Conditioned Galton-Watson Trees

In the rest of this work, Dn is a random dissection uniformly distributed over Dn. We also
set T n = φ(Dn) to simplify notation. Remark that T n is a random tree which belongs to
T(	)

n .
Fix c ∈ (0, 1/2) and define a probability distribution μ(c) on N as follows:

μ
(c)
0 = 1 − 2c

1 − c
, μ

(c)
1 = 0, μ

(c)
i = ci−1 for i ≥ 2.

It is straightforward to check that μ(c) is a probability measure, which moreover has mean
equal to 1 when c = 1−2−1/2. In the latter case, we drop the exponent (c) in the notation, so
that μ := μ(1−1/

√
2). The following theorem gives a connection between uniform dissections

of Pn and Galton-Watson trees conditioned on their number of leaves. This connection has
been obtained independently of the present work in [21].

Proposition 2.3. The conditional probability distribution Pμ(c) ( · | λ(τ) = n) does not
depend on the choice of c ∈ (0, 1/2) and coincides with the distribution of the dual tree T n
of a uniformly distributed dissection of Pn+1.

Proof. We adapt the proof of [15, Proposition 1.8] in our context. By Proposition 2.2, it is
sufficient to show that for every c ∈ (0, 1/2) the probability distribution Pμ(c) (· | λ(τ) = n)

is the uniform probability distribution over T(	)
n . If τ is a tree, we denote by u0, . . . , uζ(τ )−1

the vertices of τ listed in lexicographical order and recall that kui stands for the number of
children of ui. Let τ0 ∈ T(	)

n . By the definition of Pμ(c) , we have

Pμ(c) (τ = τ0 | λ(τ) = n) = 1

Pμ(c) (λ(τ ) = n)

ζ(τ0)−1∏
i=0

μ
(c)
kui

.

Using the definition of μ(c), the product appearing in the last expression can be written as

ζ(τ0)−1∏
i=0

μ
(c)
kui

=
(

1 − 2c

1 − c

)λ(τ0)

cζ(τ0)−1−(ζ(τ0)−λ(τ0)) = c−1

(
c(1 − 2c)

1 − c

)λ(τ0)

.

Thus Pμ(c) (τ = τ0 | λ(τ) = n) depends only on λ(τ0). We conclude that Pμ(c) ( · | λ(τ) = n)

is the uniform distribution over T(	)
n .

In the following, we will always choose c = 1 − 2−1/2 for μ(c) = μ to be critical.
Hence, the random tree T n has law Pμ(· | λ(τ) = n). A general study of Galton-Watson
trees conditioned by their number of leaves is made in [14]. In particular, we will make an
extensive use of the following asymptotic estimate which is a particular case of [14, Theorem
3.1]:

Random Structures and Algorithms DOI 10.1002/rsa
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Lemma 2.4. We have

Pμ (λ(τ) = n) ∼
n→∞

n−3/2

2
√

π
√

2
. (2)

Let us give an application of Proposition 2.3 and Lemma 2.4 to the enumeration of
dissections. There exists no easy closed formula for the number #Dn of dissections of Pn+1.
However, a recursive decomposition easily shows that the generating function

D(z) :=
∑
n≥3

zn#Dn−1,

is equal to z
4 (1 + z − √

z2 − 6z + 1), see e.g. [4, Section 3] and [10]. Using classical
techniques of analytic combinatorics [11], it is then possible to get the asymptotic behavior
of #Dn, see [10]. Here, we present a very short “probabilistic” proof of this result.

Corollary 2.5 (Flajolet & Noy, [10]). We have

#Dn−1 ∼
n→∞

1

4

√
99

√
2 − 140

π
n−3/2(3 + 2

√
2)n.

Proof. Let n ≥ 3 and let τ0 = {∅, 1, 2, . . . , n − 1} be the tree consisting of the root and
its n − 1 children. By Proposition 2.3, we have

1

#Dn−1
= Pμ(τ = τ0 | λ(τ) = n − 1) = Pμ(τ = τ0)

Pμ(λ(τ) = n − 1)
= μn−1μ

n−1
0

Pμ(λ(τ) = n − 1)
.

Thus

#Dn−1 = Pμ(λ(τ) = n − 1)

(2 − √
2)n−1

(
2−√

2
2

)n−2 = (2 − √
2)3

4

Pμ(λ(τ) = n − 1)

(3 − 2
√

2)n
. (3)

The statement of the corollary now follows from (2) and (3).

2.3. Non-Crossing Trees Are Almost Conditioned Galton-Watson Trees

Definition 2.6. A non-crossing tree C of Pn is a tree drawn in the plane whose vertices
are all the vertices of Pn and whose edges are Euclidean line segments that do not intersect
except possibly at their endpoints.

Every non-crossing tree C inherits a plane tree structure by rooting C at the vertex 1 of
Pn and keeping the planar ordering induced on C . The children of the root vertex are ordered
by going in clockwise order around the point 1 of Pn, starting from the edge connecting 1
to e−2iπ/n, which may or may not be in C . As in [20], we call this plane tree the shape of C
and denote it by S(C ). Obviously ζ(S(C )) = n. Note that the mapping C 
→ S(C ) is not
one-to-one. However, we will later see that large scale properties of uniform non-crossing
trees are governed by their shapes.

In the following, we let Cn be uniformly distributed over the set of all non-crossing trees
of Pn. We also set Tn = S(Cn) to simplify notation. We start by recalling a result of Marckert
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RANDOM NON-CROSSING PLANE CONFIGURATIONS 243

and Panholzer stating that Tn is almost a Galton-Watson tree. Consider the two offspring
distributions:

ν∅(k) = 2 · 3−k , for k = 1, 2, 3, . . .
ν(k) = 4(k + 1)3−k−2, for k = 0, 1, 2, . . .

Following [20], we introduce a modified version of the ν-Galton-Watson tree where the
root vertex has a number of children distributed according to ν∅ and all other individuals
have offspring distribution ν. We denote the resulting probability measure on plane trees
obtained by P̃ν . The following theorem is the main result of [20] and will be useful for our
purposes:

Theorem 2.7 (Marckert & Panholzer, [20]). The random plane tree Tn is distributed
according to P̃ν(· | ζ(τ ) = n).

3. THE BROWNIAN TRIANGULATION: A UNIVERSAL LIMIT FOR RANDOM
NON-CROSSING CONFIGURATIONS

Recall that Dn is a uniform dissection of Pn+1 and that Tn stands for its dual plane tree.
Recall also that Cn is a uniform non-crossing tree of Pn and that Tn stands for its shape. In
the following, we will view both Dn and Cn as random closed subsets of D as suggested by
Fig. 1. Recall that the Hausdorff distance between two closed subsets of A, B ⊂ D is

dHaus(A, B) = inf
{
ε > 0 : A ⊂ B(ε) and B ⊂ A(ε)

}
,

where X (ε) is the ε-enlargement of a set X ⊂ D. The set of all closed subsets of D endowed
with the Hausdorff distance is a compact metric space. Recall that the Brownian triangulation
B is defined by (1). The main result of this section is:

Theorem 3.1. The following two convergences in distribution hold for the Hausdorff
metric on closed subsets of D:

(i) Dn
(d)−−→

n→∞ B, (ii) Cn
(d)−−→

n→∞ B.

The main ingredient in the proof of Theorem 3.1 is a scaling limit theorem for functions
coding the trees Tn and Tn. In order to state this result, let us introduce the contour function
associated to a plane tree.

Fix a tree τ and consider a particle that starts from the root and visits continuously all the
edges of τ at unit speed (assuming that every edge has unit length). When leaving a vertex,
the particle moves towards the first non visited child of this vertex if there is such a child,
or returns to the parent of this vertex. Since all the edges will be crossed twice, the total
time needed to explore the tree is 2(ζ(τ ) − 1). For 0 ≤ t ≤ 2(ζ(τ ) − 1), Cτ (t) is defined as
the distance to the root of the position of the particle at time t. For technical reasons, we set
Cτ (t) = 0 for t ∈ [2(ζ(τ ) − 1), 2ζ(τ )]. The function Cτ (·) is called the contour function
of the tree τ . See [16] for a rigorous definition. For t ∈ [0, 2(ζ(τ ) − 1)] and u ∈ τ , we say
that the contour process visits the vertex u at time t if the particle is at u at time t. Similarly,
if we say that the contour process visits an edge e if the particle belongs to e at time t.
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244 CURIEN AND KORTCHEMSKI

Let e bet the normalized excursion of linear Brownian motion. The following conver-
gences in distribution will be useful for our purposes:(

CTn(2ζ(Tn)t)√
n

)
0≤t≤1

(d)−−→
n→∞

(
(3

√
2 − 4)−1/2e(t)

)
0≤t≤1

, (4)(
CTn(2nt)√

n

)
0≤t≤1

(d)−−→
n→∞

(
2

√
2

3
e(t)

)
0≤t≤1

. (5)

The convergence (4) has been proved by Kortchemski [14, Theorem 5.9, Remark 5.10],
and (5) has been obtained by Marckert and Panholzer [20, Proposition 4]. Although not
relevant for our purposes, let us mention that it follows from [14, Corollary 3.3] that ζ(Tn)

is concentrated around μ−1
0 n as n → ∞ and thus (4) means that the global shape of Tn is

the same as that of a μ-Galton-Watson tree conditioned on having �μ−1
0 n� vertices in total.

The proof of Theorem 3.1 will be different for dissections and non-crossing trees,
although the main ideas are the same in both cases. Notice for example that in the case
of non-crossing trees, there is no need to consider a dual structure since the shape of the
non-crossing tree already furnishes a plane tree.

3.1. Large Uniform Dissections

3.1.1. The Brownian Triangulation is the Limit of Large Uniform Dissections. In
[15], a general convergence result is proved for dissections whose dual tree is a conditioned
Galton-Watson tree whose offspring distribution belongs to the domain of attraction of
a stable law. Since our approach to the convergence of large uniform non-crossing trees
towards the Brownian triangulation will be similar in spirit, we reproduce the main steps of
the proof in our particular case.

The following lemma, which is an easy consequence of [14, Corollary 3.3], roughly
says that leaves are distributed uniformly in a conditioned Galton-Watson tree. Formally,
if τ is a plane tree, for 0 ≤ t ≤ 2ζ(τ ) − 2, we let 
τ(t) be the number of leaves among
the vertices of τ visited by the contour process up to time t, and we set 
τ(t) = λ(τ) for
2ζ(τ ) − 2 ≤ t ≤ 2ζ(τ ).

Lemma 3.2. We have

sup
0≤t≤1

∣∣∣∣
T n (2ζ(T n)t)

n
− t

∣∣∣∣ (P)−−→
n→∞ 0, (6)

where (P) stands for the convergence in probability.

Proof of Theorem 3.1 part (i). We can apply Skorokhod’s representation theorem (see e.g.
[5, Theorem 6.7]) and assume, without loss of generality, that the convergences (4) and (6)
hold almost surely and we aim at showing that Dn converges almost surely towards the
Brownian triangulation B defined by (1). Since the space of compact subsets of D equipped
with the Hausdorff metric is compact, it is sufficient to show that the sequence (Dn)n≥1 has
a unique accumulation point which is B. We fix ω such that both convergences (4) and (6)
hold for this value of ω. Up to extraction, we thus suppose that (Dn)n≥1 converges towards
a certain compact subset D∞ of D and we aim at showing that D∞ = B.

Random Structures and Algorithms DOI 10.1002/rsa
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Fig. 5. The arrows show the first visit time sn and last visit time tn of an edge of Tn. [Color figure can
be viewed in the online issue, which available at wileyonlinelibrary.com.]

We first show that B ⊂ D∞. Fix 0 < s < t < 1 such that e(s) = e(t) = min[s∧t,s∨t] e.
We first consider the case when we have also e(r) > e(s) for every r ∈ (s, t). Let us prove
that [e−2iπs, e−2iπ t] ⊂ D∞. Using the convergence (4), one can find an edge of T n such that
if sn is the time of the first visit of this edge by the contour process and if tn is the time of
its last visit, then sn/(2ζ(Tn)) → s and tn/(2ζ(Tn)) → t as n → ∞, see Fig. 5.

Since the sides of Pn+1, excepting the side connecting 1 to e2iπ/(n+1), are in one-to-one
correspondence with the leaves of Tn we have (see Fig. 5):[

e−2iπ

T n(sn)

n+1 , e−2iπ

T n(tn)

n+1

]
∈ Dn.

We refer to [15] for a more complete proof. From Lemma 3.2, we can pass to the limit and
obtain [e−2iπs, e−2iπ t] ⊂ D∞.

Let us now suppose that e(s) = e(t) = min[s∧t,s∨t] e and, moreover, there exists r ∈ (s, t)
such that e(r) = e(s). Since local minima of Brownian motion are distinct, there exist two
sequences of real numbers (αn)n≥1 and (βn)n≥1 taking values in [0, 1] such that αn → s,
βn → t as n → ∞ and such that for every n ≥ 1 and r ∈ (αn, βn) we have e(r) > e(αn) =
e(βn). The preceding argument yields [e−2iπαn , e−2iπβn ] ⊂ D∞ for every n ≥ 1. Since D∞
is closed, we conclude that B ⊂ D∞.

The reverse inclusion is obtained by making use of a maximality argument. More pre-
cisely, it is easy to show that D∞ is a lamination, that is a closed subset of D which can
be written as a union of chords that do not intersect each other inside D. However, the
Brownian triangulation B, which is also a lamination, is almost surely maximal for the
inclusion relation among the set of all laminations of D, see [17]. It follows that D∞ = B.
This completes the proof of the theorem.

3.1.2. Application to the Study of the Number of Intersections with a Given Chord.
We now explain how the ingredients of the previous proof can be used to study the number
of intersections of a large dissection with a given chord. For α, β ∈ [0, 1], we denote by
Iα,β

n the number of intersections of Dn with the chord [e−2iπα , e−2iπβ], with the convention
Iα,β

n = 0 if [e−2iπα , e−2iπβ] ⊂ Dn.
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Proposition 3.3. For 0 < α < β < 1 we have

Iα,β
n√

n
(d)−−→

n→∞
e(β − α)√

3
√

2 − 4
,

where e is the normalized excursion of linear Brownian motion.

Proof. For 1 ≤ i ≤ n, denote by ln(i) the i-th leaf of T n in the lexicographical order. Then,
for 1 ≤ i < j ≤ n, the construction of the dual tree shows that for every s ∈ (

i−1
n+1 , i

n+1

)
and

t ∈ ( j−1
n+1 , j

n+1

)
, Is,t

n is equal to the graph distance in the tree T n between the leaves ln(i) and
ln(j). Indeed, the edges of Dn that intersect the chord [e−2iπα , e−2iπβ] correspond exactly to
the edges composing the shortest path between ln(i) and ln(j) in Tn. However, the situation
is more complicated when e−2iπs or e−2iπ t coincides with a vertex of Pn+1. To avoid these
particular cases, we note that for ε, ε′ ∈ (− 1

n+1 , 1
n+1 ) we have∣∣∣Is+ε,t+ε′

n − Is,t
n

∣∣∣ ≤ 2�(n),

where �(n) is the maximal number of diagonals of Dn adjacent to a vertex of Pn+1. We claim
that

�(n)

√
n

(P)−−→
n→∞ 0. (7)

We leave the proof of the claim to the reader since a (much) stronger result will be given
in Theorem 4.7. Let 0 < α < β < 1. Set in = �(n + 1)α� + 1 and jn = �(n + 1)β� + 1.
Choose n sufficiently large so that jn < n. The preceding discussion shows that∣∣Iα,β

n − dgr(l
n(in), ln(jn))

∣∣ ≤ 2�(n), (8)

where dgr stands for the graph distance between two vertices in T n. Now note that the graph
metric of the tree T n can be recovered from the contour function of T n, see [9]: If un, vn

are two vertices of T n such that the contour process reaches un (resp. vn) at the instant sn

(resp. tn), then

dgr(un, vn) = CT n(sn) + CT n(tn) − 2 inf
u∈[sn∧tn ,sn∨tn]

CT n(u). (9)

If we choose un = ln(in) and vn = ln(jn) with respective first visit times sn and tn, Lemma 3.2
shows that sn/2ζ(T n) → α and tn/2ζ(T n) → β in probability as n → ∞. Consequently,
using (7), (8), together with (4), and (9) we finally obtain

Iα,β
n√

n
(d)−−→

n→∞ (3
√

2 − 4)−1/2

(
e(α) + e(β) − 2 inf

[α∧β,α∨β]
e

)
.

To conclude, observe that by the re-rooting property of the Brownian excursion (see [19,
Proposition 4.9]), the variable e(α) + e(β) − 2 inf [α∧β,α∨β] e has the same distribution as
e(β − α).

Remark 3.4. The preceding proof can be adapted easily to show the following functional
convergence in distribution(

Iα,β
n√

n

)
0≤α≤1
0≤β≤1

(d)−−→
n→∞ (3

√
2 − 4)−1/2 ·

(
e(α) + e(β) − 2 inf

[α∧β,α∨β]
e

)
0≤α≤1
0≤β≤1

.
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Fig. 6. Illustration of the proof of Lemma 3.5. We represent the non-crossing tree C with curved
chords for better visibility. The left-hand side of L is in gray whereas its right-hand side is in white.

3.2. Large Uniform Non-Crossing Trees

In order to study large uniform non-crossing trees, the following lemma will be useful. It
roughly implies that the location of a leaf in a non-crossing tree C can be deduced from its
location in the shape of C up to an error that is bounded by its height. Recall that if τ is a
tree and u ∈ τ , ku denotes the number of children of u.

Lemma 3.5. Let C be a non-crossing tree with n vertices and shape S(C ) = τ . Fix a
vertex u ∈ τ and let a ∈ {0, 1, . . . , n − 1} be such that the vertex in C corresponding to u
is exp(−2iπa/n). Then there exists i0 ∈ {1, . . . , ku + 1} such that

|a − #{v ∈ τ : v ≺ ui0}| ≤ |u|,

where ≺ stands for the strict lexicographical order on U .

Proof. Let u ∈ τ\{∅}. Consider the discrete geodesic path from ∅ to u in τ and its image
L in C . There exists 1 ≤ i0 ≤ ku + 1 such that, in C , the first i0 − 1 children of u as
well as their descendants are folded on the left of L (oriented from the root) and the rest
of the descendants of u are folded on the right of L, see Fig. 6. Now, consider the set
E = {1, exp(−2iπ/n), . . . , exp(−2iπa/n)} of all the vertices of Pn that are between 1 and
exp(−2iπa/n) in clockwise order. A geometric argument (see Fig. 6) shows that if a vertex
x of C belongs to E, then its corresponding vertex in the tree τ must belong to the set
{v ∈ τ : v ≺ ui0}. On the other hand, if w ∈ {v ∈ τ : v ≺ ui0} and if, moreover, w is not a
strict ancestor of u in τ then its corresponding vertex in C belongs to E. Consequently, we
have

#{v ∈ τ : v ≺ ui0} − |u| + 1 ≤ #E = a + 1 ≤ #{v ∈ τ : v ≺ ui0}.

The lemma follows (the case u = ∅ being trivial).
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For our purpose, it will be convenient to reinterpret this lemma using the contour function.
Fix a tree τ , and define Zτ (j) as the number of distinct vertices of τ visited by the contour
process of τ up to time j, for 0 ≤ j ≤ 2ζ(τ )−2. For technical reasons, we set Zτ (j) = ζ(τ )

for j = 2ζ(τ ) − 1 and j = 2ζ(τ ), and then extend Zτ (·) to the whole segment [0, 2ζ(τ )]
by linear interpolation. Note that a vertex u ∈ τ with ku children is visited exactly ku + 1
times by the contour function of τ , and that if t(1), . . . , t(ku+1) are these times, then for every
i0 ∈ {1, . . . , ku + 1} we have

#{v ∈ τ : v ≺ ui0} = Zτ

(
t(i0)

)
. (10)

The idea of the proof of Theorem 3.1 part (ii) is the following. Let C be a large
non-crossing tree with shape S(C ). Pick a vertex u ∈ S(C ) corresponding to the point
exp(−2ia/n) in C . The goal is to recover a (with error at most o(n)) from the knowledge
of S(C ) and u. Assume that u is a leaf of S(C ). Then u is visited only once by the contour
process, say at time tu. By Lemma 3.5 the quantity |a − ZS(C )(tu)| is less than the height
of the tree S(C ) which is small in comparison with n by (5). Hence a in is known up to an
error o(n). We will see that the control by the leaves of S(C ) is sufficient for proving the
convergence towards the Brownian triangulation.

The next lemma is an analogous to Lemma 3.2.

Lemma 3.6. We have

sup
0≤t≤1

∣∣∣∣ZTn(2nt)

n
− t

∣∣∣∣ (P)−−→
n→∞ 0. (11)

Proof. This is a consequence of (5). Indeed, by [16, Eq. (13) in Section 1.6] (see also [8]):

sup
0≤t≤1

∣∣∣∣ZTn(2nt)

n
− t

∣∣∣∣ ≤ 1

2n
sup

0≤t≤1
CTn(2nt) + 1

n
= 1

2
√

n
sup

0≤t≤1

CTn(2nt)√
n

+ 1

n
(P)−−→

n→∞ 0.

Proof of Theorem 3.1 part (ii). Similarly to the proof of part (i) of the theorem, we can
apply Skorokhod’s theorem and assume that the convergences (5) and (11) hold almost
surely. We fix ω such that both convergences (5) and (11) hold for this value of ω. Up to
extraction, we thus suppose that (Cn)n≥1 converges towards a compact subset C∞ of D and
we aim at showing that C∞ = B.

We first show that B ⊂ C∞. Fix 0 < s < t < 1 such that e(s) = e(t) = min[s∧t,s∨t] e and
assume furthermore that e(r) > e(s) for r ∈ (s, t). Let us show that [e−2iπs, e−2iπ t] ⊂ C∞.
To this end, we fix ε > 0 and show that [e−2iπs, e−2iπ t] ⊂ C (6ε)

n for n sufficiently large (recall
that X (ε) is the ε-enlargement of a closed subset X ⊂ D). Using the convergence (5), for
every n large enough, one can find integers 0 ≤ sn < tn ≤ 2n − 2 such that if un (resp. vn)
denotes the vertex of Tn visited at time sn (resp. tn) by the contour process, the following
three properties are satisfied:

• sn/2n → s, tn/2n → t,
• un and vn are leaves in Tn,
• for every vertex wn in [[un, vn]] (the discrete geodesic path between un and vn in Tn)

and every visit time rn of wn by the contour process, we have

min
(∣∣∣ rn

2n
− s

∣∣∣ ,
∣∣∣ rn

2n
− t

∣∣∣) ≤ ε. (12)
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For the second property, we can for instance use the fact that local maxima of e are dense
in [0, 1]. We now claim that under these assumptions, for n large enough, the image Ln in
Cn of the discrete geodesic path [[un, vn]] in Tn lies within Hausdorff distance 6ε from the
line segment [e−2iπs, e−2iπ t].

Indeed, let wn ∈ [[un, vn]] and let an ∈ {0, 1, . . . , n − 1} such that the vertex of Cn

corresponding to wn is zn = exp(−2iπan/n). Applying Lemma 3.5 to u = wn and using
(10) we can find a time rn at which the contour process is at wn and such that

|an − ZTn(rn)| ≤ |wn|.
By the convergence (11) and the bound (12), there exists an integer N ≥ 1, independent of
the choice of wn, such that for n ≥ N

min

(∣∣∣∣ZTn(rn)

n
− s

∣∣∣∣ ,

∣∣∣∣ZTn(rn)

n
− t

∣∣∣∣) ≤ 2ε.

On the other hand, thanks to the convergence (5) we have

1

n
sup
u∈Tn

|u| = 1√
n

1√
n

sup
0≤t≤1

CTn(2nt) −−→
n→∞ 0.

We conclude that there exists an integer N ′ ≥ 1, independent of the choice of wn, such that for
n ≥ N ′, we have min(| an

n −s|, | an
n −t|) ≤ 3ε and thus that min

(∣∣zn − e−2iπs|, |zn − e−2iπ t
∣∣) ≤

6ε. It follows that for large n, we have

Ln ⊂ [e−2iπs, e−2iπ t](6ε). (13)

On the other hand, un and vn are leaves, so they are visited at a unique time by the contour
process. By the same arguments, for every n sufficiently large, we deduce that their images
αn and βn in Cn satisfy |αn − e−2iπs| ≤ 6ε and |βn − e−2iπ t| ≤ 6ε. Consequently, since Ln

is a finite union of line segments connecting αn to βn, we deduce from (13) that for every n
sufficiently large enough

[e−2iπs, e−2iπ t] ⊂ L(6ε)
n ⊂ C (6ε)

n . (14)

The case when there exists r ∈ (s, t) such that e(s) = e(r) = e(t) (this r is then a.s. unique
by standard properties of the Brownian excursion) is treated exactly as in the proof of the
first assertion of this theorem. We conclude that B ⊂ C∞. The reverse inclusion is obtained
by making use of a maximality argument, see part (i).

3.3. Universality of the Brownian Triangulation and Applications

The convergence in distribution of random compact subsets towards the Brownian trian-
gulation yields information on their asymptotic geometrical properties that are preserved
under the Hausdorff convergence. Let us give an example of application of this fact.

Let χn be a random configuration on the vertices of Pn, that is a random closed subset
made of line segments connecting some of the vertices of the polygon. Assume that χn

converges in distribution towards B in the sense of the Hausdorff metric. Let diag(χn)

be the angle of the longest diagonal of χn (by definition, the angle of [e−2iπs, e−2iπ t] with
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0 ≤ s ≤ t ≤ 1 is min(t − s, 1 − t + s)). Then, as n → ∞, the law of diag(χn) converges in
distribution towards the angle of the longest diagonal of χn, given by:

1

π

3x − 1

x2(1 − x)2
√

1 − 2x
1 1

3 ≤x≤ 1
2
dx.

This distribution has been computed in [3] (see also [7]). The preceding convergence follows
from the fact that the length of the longest chord is a continuous function of configurations
for the Hausdorff metric. Similar limit theorems hold for a large variety of other functionals,
such as the area of the face with largest area, etc.

It is plausible that many other uniformly distributed non-crossing configurations (see
[10]) converge towards the Brownian triangulation in the Hausdorff sense. We give here a
few instances of this phenomenon.

3.3.1. Dissections With Constrained Face Degrees

Theorem 3.7. Let A be a non-empty subset of {3, 4, 5, . . .}. Let D(A)
n be the set of all

dissections of Pn+1 whose face degrees all belong to the set A. We restrict our attention to
the values of n for which D(A)

n �= ∅.

1. There exists a probability distribution νA on N such that if σ 2
A denotes the variance

of νA, we have

#D(A)

n−1 ∼
n→∞

√
νA(2)4νA(0)3

2πσ 2
A

· n−3/2

(νA(2)νA(0))n .

2. Let D(A)
n be uniformly distributed over D(A)

n . Then D(A)
n converges towards the

Brownian triangulation.

Note that the case A = {3} corresponds to uniform triangulations and the case A =
{3, 4, 5, . . .} corresponds to uniform dissections.

Proof. The proof of this statement goes along the very same lines as the proofs of Corollary
2.5 and Theorem 3.1 (i) by noticing that the dual tree φ(D(A)

n ) is a Galton-Watson tree
conditioned on having n leaves for a certain finite variance offspring distribution νA. More
precisely, if we denote the set {a − 1 : a ∈ A} by A − 1, let cA ∈ (0, 1) be the unique real
number in (0, 1) such that ∑

i∈A−1

ici−1
A = 1.

Then νA is defined by

νA(0) = 1 −
∑

i∈A−1

ci−1
A , νA(i) = ci−1

A for i ∈ A − 1.

Note that νA(2) = cA and that νA automatically has a finite variance σ 2
A > 0.
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Fig. 7. A non-crossing partition of P8 and a non-crossing pair-partition of P16 together with its dual
tree.

3.3.2. Non-Crossing Graphs. A non-crossing graph of Pn is a graph drawn on the plane,
whose vertices are the vertices of Pn and whose edges are non-crossing line segments. Let
Gn be uniformly distributed over the set of all non-crossing graphs of Pn. Note that Gn can
be seen as a compact subset of D. Then Gn converges in distribution towards the Brownian
triangulation.

This fact easily follows from the convergence of uniform dissections towards the Brown-
ian triangulation. Indeed, if G is a non-crossing graph of Pn, let ψ(G) be the compact subset
of D obtained from G by adding the sides of Pn. As noticed at the end of Section 3.1 in
[10], ψ(G) is a dissection, and every dissection has 2n pre-images by ψ . It follows that the
random dissection ψ(Gn) is a uniform dissection of Pn. The conclusion follows, since the
Hausdorff distance between ψ(Gn) and Gn tends to 0.

3.3.3. Non-Crossing Partitions and Non-Crossing Pair Partitions. A non-crossing par-
tition of Pn is a partition of the vertices of Pn (labeled by the set {1, 2, . . . , n}) such
that the convex hulls of its blocks are pairwise disjoint (see Fig. 7 where the partition
{{1, 2, 4, 8}, {3}, {5}, {6, 7}} is represented). A non-crossing pair-partition of Pn is a non-
crossing partition of Pn whose blocks are all of size 2 (see Fig. 7 where the pair-partition
{{1, 16}, {2, 3}, {4, 7}, {5, 6}, {8, 15}, {9, 10}, {11, 14}, {12, 13}} is represented).

Let P (2)
n be a uniformly distributed random variable on the set of all non-crossing pair-

partitions of P2n, seen as a compact subset of D. Then P (2)
n converges towards the Brownian

triangulation.
To establish this fact, we rely once again on a coding of P (2)

n by a critical Galton-Watson
tree. One easily sees that the dual tree of P (2)

n (see Fig. 7) is a uniform tree with n edges,
which is also well-known to be a Galton-Watson tree with geometric offspring distribution,
conditioned on having n edges. One can then show the convergence of Pn towards the
Brownian triangulation using the same methods as in the case of uniform dissections.
Details are left to the reader.

Let us now discuss non-crossing partitions. Let Pn be a uniformly distributed random
variable on the set of all non-crossing partitions of Pn, and view Pn as a random compact
subset of D. Then Pn converges towards the Brownian triangulation.

This follows from the convergence of non-crossing pair-partitions. Indeed, given a non-
crossing pair-partition of P2n, we get a non-crossing partition of Pn by identifying the n pairs
of vertices of the form (2i−1, 2i) for 1 ≤ i ≤ n (see Fig. 7 where the non-crossing partition
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Fig. 8. Uniform non-crossing partition and pair-partition of P100. [Color figure can be viewed in the
online issue, which available at wileyonlinelibrary.com.]

of P8 is obtained by contraction of vertices from the non-crossing pair-partition of P16).
This identification gives a bijection between non-crossing partitions of Pn and non-crossing
pair partitions of P2n and the desired result easily follows (Fig. 8).

Let us state the previously discussed results in a global statement:

Theorem 3.8. The following convergences hold in distribution for the Hausdorff metric
on closed subsets of D:

Gn
(d)−−→

n→∞ B, P (2)
n

(d)−−→
n→∞ B, Pn

(d)−−→
n→∞ B.

At first sight, it may seem mysterious that Galton-Watson trees appear behind many
different models of uniform non-crossing configurations. In [10], using suitable parameter-
izations, Flajolet and Noy manage to find a Lagrange inversion-type implicit equation for
the generating functions of these configurations. Generating functions verifying a Lagrange
inversion-type implicit equation are those of simply-generated trees, which are very closely
related to Galton-Watson trees (see [1, Section 2.1]). This explains why Galton-Watson trees
are hidden behind various models of uniformly distributed non-crossing configurations.

4. GRAPH-THEORETICAL PROPERTIES OF LARGE UNIFORM DISSECTIONS

In this section, we study graph-theoretical properties of large dissections using the Galton-
Watson tree structure identified in Proposition 2.3. Let us stress that as in Proposition 3.7, all
the results contained in this section can be adapted easily to uniform dissections constrained
on having all face degrees in a fixed non-empty subset of {3, 4, . . .} (and in particular to
uniform triangulations).

As previously, Dn is a uniformly distributed dissection of Pn+1 and Tn denotes its dual
tree with n leaves. We start by recalling the definition and the construction of the so-called
critical Galton-Watson tree conditioned to survive.

4.1. The Critical Galton-Watson Tree Conditioned to Survive

If τ is a tree and k is a nonnegative integer, we let [τ ]k = {u ∈ τ : |u| ≤ k} denote the
tree obtained from τ by keeping the vertices in the first k generations. Let ξ = (ξi)i≥0 be an
offspring distribution with ξ1 �= 1 and

∑
iξi = 1. We denote by Tn a Galton-Watson tree
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Fig. 9. An illustration of T∞ under P̂ξ .

with offspring distribution ξ conditioned on having height at least n ≥ 0. Kesten [13, Lemma
1.14] showed that for every k ≥ 0, we have the following convergence in distribution

[Tn]k
(d)−−→

n→∞ [T∞]k ,

where T∞ is a random infinite plane tree called the critical ξ -Galton-Watson tree conditioned
to survive.

We denote the law of the ξ -Galton-Watson tree conditioned to survive by P̂ξ and by T∞ a
random tree distributed according to P̂ξ . Let us describe this tree (see [13,18]). We let ξ be
the size-biased distribution of ξ defined by ξ k = kξk for k ≥ 0. Let (Di)i≥0 be a sequence of
i.i.d. random variables distributed according to ξ . Let also (Ui)i≥1 be a sequence of random
variables such that, conditionally on (Di)i≥0, (Ui)i≥1 are independent and Uk+1 is uniformly
distributed over {1, 2, . . . , Dk} for every k ≥ 0. The tree T∞ has a unique spine, that is a
unique infinite path (∅, U1, U1U2, U1U2U3, . . .) ∈ N

∗N
∗

and the degree of U1U2 . . . Uk is
Dk . Finally, conditionally on (Ui)i≥1 and (Di)i≥0 all the remaining subtrees are independent
ξ -Galton-Watson trees, see Fig. 9.

The critical Galton-Watson tree conditioned to survive also arises in other conditionings
of Galton-Watson trees. Recall that T n is a μ-Galton-Watson tree conditioned on having n
leaves.

Theorem 4.1. For every k ≥ 0, we have the convergence in distribution

[T n]k
(d)−−→

n→∞ [T∞]k ,

where T∞ is the critical Galton-Watson tree with offspring distribution μ conditioned to
survive.

Remark 4.2. Theorem 4.1 is true when μ is replaced by any finite variance offspring
distribution ν such that Pν (λ(τ ) = n) > 0 for every n large enough.
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Proof. This follows from another description of the law P̂μ: If τ0 is a plane tree and k ≥ 0
is an integer, we denote by Lk(τ0) the number of individuals of τ0 at height exactly k. Then,
if τ0 has height k, we have from [13, Lemma 1.14]:

P̂μ([τ ]k = τ0) = Lk(τ0)Pμ([τ ]k = τ0).

Fix an integer k ≥ 1 as well as a tree τ0 ∈ T of height k. In order to prove the theorem, it is
thus sufficient to show that

Pμ([τ ]k = τ0 | λ(τ) = n) −→
n→∞ Lk(τ0)Pμ([τ ]k = τ0).

Denote by q the number of leaves of τ0 that have a height strictly smaller than k. By the
branching property of Galton-Watson trees, we have

Pμ([τ ]k = τ0 | λ(τ) = n) = Pμ([τ ]k = τ0)
Pμ,Lk (τ0)(λ(f) = n − q)

Pμ(λ(τ) = n)
,

where we recall that Pμ,i denotes the probability distribution of a forest of i independent
Galton-Watson trees with law Pμ. Since q and Lk(τ0) are fixed, it is thus sufficient to show
that for a fixed integer i ≥ 1, as n → ∞

Pμ,i(λ(f) = n) ∼
n→∞ i × Pμ(λ(τ) = n).

This follows from the next lemma, which we state in a more general form than needed here
in view of further applications.

Lemma 4.3. There exists ε > 0 such that if (in)n≥1 is a sequence of positive integers such
that in ≤ nε for every n ≥ 1, we have

Pμ,in(λ(f) = n) ∼
n→∞ in · Pμ(λ(τ) = n).

Proof. We show that the conclusion of the lemma holds for any ε ∈ (0, 1/9). To simplify
notation, we set pk := Pμ(λ(τ) = k) for every integer k ≥ 1 and write i = in in the proof.
By the definition of Pμ,i, we have

Pμ,i(λ(f) = n) =
∑

k1+...+ki=n

i∏
j=1

pkj .

We will show that when n is large, the main contribution in the previous sum is obtained
when the indices k1, . . . , ki are such that only one of them is of order n and the others are
small in comparison. Let A ≥ 1. Firstly, notice that at least one of the indices k1, . . . , ki is
larger than n/i. Secondly, let us evaluate the contribution of the sum when k1 ≥ n/i and k2

is larger than A. By Lemma 2.4,

∑
k1+···+ki=n

k1≥n/i
k2≥A

i∏
j=1

pkj ≤ sup
k1≥n/i

pk1 ·
⎛⎝∑

k2≥A

pk2

⎞⎠ ·
i∏

j=3

⎛⎝ ∞∑
kj=1

pkj

⎞⎠ ≤ C(n/i)−3/2A−1/2,
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for some constant C > 0 which is independent of n and i. Hence, provided that A < n1−ε,∣∣∣∣∣∣
⎛⎝ ∑

k1+···+ki=n

i∏
j=1

pkj

⎞⎠ − i

⎛⎝ ∑
1≤k1,...,ki−1≤A

pn−∑
j kj

i−1∏
j=1

pkj

⎞⎠∣∣∣∣∣∣ ≤ Ci7/2n−3/2A−1/2. (15)

We apply this to A = A(n) = n8ε in such a way that the right-hand side of the above
inequality is negligible in comparison with ipn. Then note that for 1 ≤ k1, . . . , ki−1 ≤ A, we
have

n − n9ε ≤ n −
i−1∑
j=1

kj ≤ n.

Moreover, since 9ε < 1, Lemma 2.4 gives pj/pn → 1 uniformly in n − n9ε ≤ j ≤ n as
n → ∞. Thus, using Lemma 2.4 again

i

⎛⎝ ∑
1≤k1,...,ki−1≤A

pn−∑
j kj

i−1∏
j=1

pkj

⎞⎠ ∼ ipn

⎛⎝ n8ε∑
k=1

pk

⎞⎠i−1

∼ ipn

(
1 − n−4ε√

π
√

2

)i

∼ ipn,

which completes the proof of the lemma.

4.2. Applications

The “local convergence” given in Theorem 4.1 allows us to study “local” properties of large
uniform dissections by reading them directly on the critical Galton-Watson tree conditioned
to survive. We will focus our attention on the following two local properties of random
uniform dissections: Vertex degrees and face degrees.

Let us introduce some notation. Recall that Dn stands for a uniformly distributed dissec-
tion of Pn+1. Denote by δ(n) the degree of the face adjacent to the side [1, e2iπ/(n+1)] in the
random dissection Dn and by D(n) the maximal degree of a face of Dn. Similarly, denote by
∂(n) the number of diagonals adjacent to the vertex corresponding to the complex number
1 in Dn and by �(n) the maximal number of diagonals adjacent to some vertex of Pn+1.
Finally, for b > 0, we write logb(·) for ln(·)/ ln(b).

We shall establish that δ(n) and ∂(n) converge in distribution, and read their limiting
distributions on the random infinite tree T∞. We also provide sharp concentration estimates
on D(n) and �(n), confirming in particular a conjecture of [4] concerning �(n).

4.2.1. Face Degrees

Proposition 4.4. As n goes to infinity, δ(n) converges in distribution to the random variable
X with distribution

P(X = k) = (k − 1)μk−1 = (k − 1)

(
2 − √

2

2

)k−2

, k ≥ 3.

Proof. This is an immediate consequence of Theorem 4.1 and the construction of the
critical Galton-Watson tree conditioned to survive, after taking into account the fact that
δ(n) − 1 is the number of children of ∅ in the dual tree of Dn.
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Proposition 4.5. Set β = 1/μ2 = 2 + √
2. For every c > 0, we have

P
(
logβ(n) − c logβ logβ(n) ≤ D(n) ≤ logβ(n) + c logβ logβ(n)

) −−→
n→∞ 1.

Proof. By construction of the dual tree Tn of Dn, we have D(n) − 1 = maxu∈T n ku. Thus,
by Proposition 2.3, for every measurable function F : R+ → R+ we have

E
[
F(D(n) − 1)

] = Eμ

[
F

(
max
u∈τ

ku

)
| λ(τ) = n

]
.

The result now follows from [14, Remark 7.3].

4.2.2. Vertex Degrees. We are now interested in another graph-theoretical property of
large uniform dissections, namely vertex degrees. Since these vertex degrees are read on
the dual tree in a more complicated fashion than face degrees, the arguments are slightly
more involved.

Recall that ∂(n) stands for the number of diagonals adjacent to the vertex corresponding
to the complex number 1 in the uniform dissection Dn.

Proposition 4.6. As n goes to infinity, ∂(n) converges in distribution to the sum of two
independent geometric random variables of parameter 1−μ0 = √

2−1, i.e. for any k ≥ 0
we have

P(∂(n) = k) −−→
n→∞ (k + 1)μ2

0(1 − μ0)
k .

See also [4] for a closely related result.

Proof. If τ is a plane tree, we introduce the length 	(τ ) of the left-most path in τ starting
at ∅ (that is following left-most children until we reach a leaf),

	(τ ) = max{i ≥ 0 : 1i ∈ τ }, where 1i = 1 . . . 1 (i times) with 10 = ∅.

Using the bijection between a dissection and its dual tree, it is easy to see that the number
of diagonals adjacent to the vertex 1 of the random dissection Dn is 	(Tn)− 1. By Theorem
4.1, for every k ≥ 1, [T n]k → [T∞]k as n → ∞. It follows that ∂(n) = 	(Tn) − 1 converges
in distribution towards 	(T∞) − 1. Let us identify the distribution of this variable using the
first description of the law P̂μ: The length 	(T∞) − 1 can be decomposed into

	(T∞) − 1 = (	1 − 1) + 	2,

where 	1 is the smallest integer i ≥ 1 such that the element 1i = 1 . . . 1 (i times) is not on
the spine of T∞ and 	2 = 	(T∞) − (	1 − 1) is the length of the left-most path in the critical
μ-Galton-Watson tree grafted on the left of 1i. By the description in Section 4.1, the two
variables 	1 −1 and 	2 are independent. It is straightforward that 	2 is distributed according
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to a geometric variable of parameter
√

2 − 1. Let us now turn to 	1 − 1. Recall the notation
introduced in Section 4.1. For k ≥ 0, we have:

P(	1 ≥ k + 1) = P(U1 = 1, U2 = 1, . . . , Uk = 1)

=
k−1∏
i=0

( ∞∑
j=1

P(Di = j)P(Ui+1 = 1 | Di = j)

)

=
( ∞∑

j=2

(1 − 2−1/2)j−1

)k

= (1 − μ0)
k .

We thus see that 	1 − 1 is also geometric with parameter
√

2 − 1 and the desired result
follows.

Recall that �(n) stands for the maximal number of diagonals adjacent to a vertex of Pn+1.
The following theorem proves a conjecture of [4].

Theorem 4.7. Set b = 1/(1 − μ0) = √
2 + 1. For every c > 0, we have

P
(
�(n) ≥ logb(n) + (1 + c) logb logb(n)

) −−→
n→∞ 0.

Proof. Let p, n ≥ 1 be integers. By rotational invariance, the degrees of the vertices of Dn

are identically distributed random variables. It follows that

P
(
�(n) ≥ p

) ≤ (n + 1)P
(
∂(n) ≥ p

)
.

We have already noticed that the number of diagonals adjacent to the vertex 1 of the random
dissection Dn corresponds to 	(Tn) − 1, where 	(T n) denotes the length of the left-most
path in Tn starting at ∅. Thus, by Proposition 2.3,

(n + 1)P
(
∂

(n)

0 ≥ p
)

= (n + 1)Pμ (	(τ ) ≥ p + 1 | λ(τ) = n)

We now estimate the right-hand side and show that it tends to 0 when n → ∞ and p = pn =
logb(n) + (1 + c) logb logb(n) for c > 0. If 	(τ ) = p, define θ(τ ) = k∅ + k1 + k12 + . . . +
k1p−1 − p (θ(τ ) can be interpreted as the total number of those children of vertices in the
left-most path that are not in that path). Note that under Pμ, 	(τ ) is distributed according to
a geometric random variable of parameter

√
2 − 1. In particular, for α = |4/ log(1 − μ0)|,

n3
Pμ (	(τ ) ≥ α log(n)) −→

n→∞ 0. (16)

Note also that for positive integers j, k we have Pμ (θ(τ ) = j | 	(τ ) = k) = P(Y ∗k = j),
where Y ∗k is distributed as the sum of n independent random variables distributed according
to γ (j) = μj+1/μ([1, ∞]).
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Choose ε > 0 such that the conclusion of Lemma 4.3 holds. We first claim that if
An = {θ(τ ) ≤ nε}, then Pμ (An) ≥ 1 − n−3 for n large enough. To this end, write

n3
Pμ (θ(τ ) > nε) ≤ n3

Pμ (	(τ ) > α log(n))

+ n3
�α log(n)�∑

j=1

Pμ (θ(τ ) > nε ‖ 	(τ ) = j) Pμ (	(τ ) = j)

≤ n3
Pμ (	(τ ) > α log(n))

+ n3α log(n)Pμ (θ(τ ) > nε ‖ 	(τ ) = �α log(n)�) .

The first term tends to zero by (16), and the second one as well by the previous description
of the law of θ(τ ) under the conditional probability distribution Pμ(· | 	(τ ) = k) and a
standard large deviation inequality. Thus our claim holds and it follows that, for n large
enough,

(n + 1)Pμ(Ac
n | λ(τ) = n) ≤ (n + 1)n−3/Pμ(λ(τ) = n) −−→

n→∞ 0 (17)

by Lemma 2.4. We now consider the event An. We have

Pμ ({	(τ ) = p} ∩ An | λ(τ) = n)

≤ μ0

∑
r0,...,rp−1≥0∑

rj≤nε

μr0+1 · · · μrp−1+1

Pμ,r0+r1+···+rp−1 (λ(τ ) = n − 1)

Pμ(λ(τ) = n)
.

We can then apply Lemma 4.3 to get that the quotient in the last display is bounded above
by some constant C2 times θ(τ ) = r0 + . . . + rp, so that

Pμ (	(τ ) = p, θ(τ ) ≤ nε | λ(τ) = n) ≤ C2μ0

∑
r0,...,rp−1≥0

μr0+1 · · · μrp−1+1(r0 + . . . + rp−1)

= C2pμ2
0(1 − μ0)

p−1,

where we have successively calculated these sums by using

∞∑
k=1

μk+1 = 1 − μ0,
∞∑

k=1

kμk+1 = μ0.

Consequently, setting pn = logb(n)+(1+c) logb logb(n)we deduce from the above estimates
that

(n + 1)Pμ (	(τ ) ≥ pn, θ(τ ) ≤ nε | λ(τ) = n) −−→
n→∞ 0,

which together with (17) completes the proof of the theorem.

4.2.3. On log log Concentration. In [4], it is shown that for every c > 0

P
(
�(n) ≤ logb(n) − (2 + c) logb logb(n)

) −−→
n→∞ 0.
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Using the connection between uniform dissections and Galton-Watson trees conditioned on
their number of leaves, it is possible to refine the above lower bound and to replace (2 + c)
by c. However, we believe that the optimal concentration result is given by the following
conjecture:

Conjecture 4.8. For every c > 0 we have

P
(∣∣�(n) − (logb(n) + logb logb(n))

∣∣ > c logb logb(n)
) −−→

n→∞ 0.

If the degrees of vertices in Dn were independent, this concentration result would hold.
However, the difficulty comes from the fact that this independence property does not exactly
hold. Let us mention that this conjecture (for a different value of b) has been proved in the
particular case of triangulations using generating function methods [12].

It is worth pointing out that although δn and ∂(n) have a similar limiting distribution
(roughly speaking a size-biased geometric distribution), the maximal degree of a face and the
maximal degree of a vertex in a random uniform dissection possess a different concentration
behavior: D(n) is strongly concentrated around logβ(n) + o(log log(n)), whereas �(n) is
(conjecturally) strongly concentrated around logb(n) + logb logb(n) + o(log log(n)). This
comes from the heuristic observation that a “typical” vertex has a limiting distribution
which is given by a sized-biased geometric distribution, whereas a “typical” face of Dn has
a limiting distribution which is a geometric distribution (which is not size-biased). Let us
give some details.

We start with the vertex degree. By Proposition 4.6 and by rotational invariance, a “typi-
cal” vertex has a limiting distribution which is given by a sized-biased geometric distribution.
This is why �(n) should have the same concentration behavior as n independent random
variables distributed as size-biased geometric laws, that is, �(n) should be concentrated
around logb(n) + logb logb(n) + o(log log(n)).

The situation is however different is the case of face degrees. Choosing the face adjacent
to [1, e2iπ/(n+1)] introduces a size-biasing in the distribution of a "typical" face (indeed, the
face containing a given side of Pn is not a typical face but a size-biased one; a typical face
would be a face chosen "uniformly" among all faces of the dissection). In other words,
a typical face of Dn follows a geometric distribution, but δ(n) is a size-biased distribution
of a typical face of Dn. This is why D(n) follows the same concentration behavior as n
independent geometric variables (which are not size-biased), and hence explains why D(n)

is concentrated around logβ(n) + o(log log n).
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