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Abstract

The goal of this note is to study the geometry of large size-conditioned Bienaymé trees
whose offspring distribution is subcritical, belongs to the domain of attraction of a
stable law of index α = 1 and satisfies a local regularity assumption. We show that a
condensation phenomenon occurs: one unique vertex of macroscopic degree emerges,
and its height converges in distribution to a geometric random variable. Furthermore,
the height of such trees grows logarithmically in their size. Interestingly, the behavior
of subcritical Bienaymée trees with α = 1 is quite similar to the case α ∈ (1, 2], in
contrast with the critical case. This completes the study of the height of heavy-tailed
size-conditioned Bienaymé trees.

Our approach is to check that a random-walk one-big-jump principle due to Ar-
mendáriz & Loulakis holds, by using local estimates due to Berger, combined with the
previous approach to study subcritical Bienaymé trees with α > 1.
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1 Introduction

The main purpose of this work is to complete the study of the height of heavy-
tailed size-conditioned Bienaymé trees (sometimes also called Bienaymé–Galton–Watson
trees, or Galton–Watson trees in the literature) by considering an offspring distribution
µ = (µj : j ≥ 0) such that

m :=
∑
k≥0

kµk < 1 and µn ∼
n→∞

L(n)

n2
, (H loc

µ )

where L : R+ → R∗
+ is a slowly varying function, meaning that limx→∞ L(ax)/L(x) = 1

for all a > 0. The first condition amounts to saying that µ is subcritical, while the second
condition implies that the offspring distribution is in the domain of attraction of a stable
law of index α = 1 (i.e. a Cauchy distribution).

We denote by Tn a µ-Bienaymé tree conditioned to have n vertices (we always
implicitly restrict to those values of n for which this event has non-zero probability). We
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Condensation in subcritical Cauchy Bienaymé trees

Figure 1: A simulation of a subcritical Cauchy Bienaymé tree with 20000 vertices.

let ∆(Tn) be its maximum outdegree, ∆2(Tn) be its second maximal outdegree, H∆(Tn)
be the height of the vertex with maximal outdegree (first in lexicographical order if many,
see below for details) and finally we let H(Tn) be the height of Tn, i.e. the maximal graph
distance of the root to any of its vertices.

Theorem 1.1. The following assertions hold.

(i) [condensation] We have
∆(Tn)

n(1−m)

(P)−−−−→
n→∞

1 and
∆2(Tn)

n

(P)−−−−→
n→∞

0.

(ii) [height of condensation vertex] For every j ≥ 0 we have

P(H∆(Tn) = j) −−−−→
n→∞

(1−m)mj .

(iii) [height of the tree]

(a) The following convergence holds in probability

H(Tn)
log(n)

(P)−−−−→
n→∞

1

log(1/m)
.

(b) The sequence
(
H(Tn)− log(n)

log(1/m)

)
n≥1

is tight if and only if
∑

n≥1(n log n)µn <

∞.

This shows in particular that a condensation phenomenon occurs, in the sense that
the maximal degree of Tn is comparable to the total size of the tree while the second
largest degree is negligible compared to the total size of the tree. See Corollary 4.1 for
the fluctuations of ∆(Tn). We discuss some aspects of Theorem 1.1 after describing the
context.

1.1 Context

The condensation phenomenon was discovered by Jonsson and Stefánsson [20] for
subcritical offspring distributions satisfying µn ∼ c/n1+α as n → ∞ with α > 1 and c > 0

(see also [18, Sec. 19.6]). This was extended in [22] to subcritical offspring distributions
satisfying µn ∼ L(n)/n1+α with L slowly varying and α > 1, where the same conclusions
as those of Theorem 1.1 were established.
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In the critical case, when α > 1 there is no condensation phenomenon occurring.
Indeed, for critical offspring distributions, when µ has finite variance (which requires
α ≥ 2), the scaling limit of Tn is Aldous’ Brownian Continuum Random Tree [5], and
when µ has infinite variance (which requires α ∈ (1, 2]), the scaling limit of Tn is the
so-called the α-stable tree [13].

There is no condensation phenomenon neither for supercritical offspring distribu-
tions. Indeed, the study of size-conditioned Bienaymé trees with supercritical offspring
distribution is equivalent to the study of size-conditioned Bienamyé trees with critical
finite variance offsprings by exponential tilting (see Sec. 2.2 below), which are covered
by Aldous’ previously mentioned result.

The so-called Cauchy case where α = 1 has only been considered quite recently in
the critical case [23], motivated by applications to random planar maps: a condensation
phenomenon occurs, although on a slightly different scale (the unique vertex of maximal
degree is of order o(n), yet dominates the degrees of the other vertices). Limit theorems
for the height of such trees have been established in [2].

In the recent years, it has been realized that Bienaymé trees in which a condensation
phenomenon occurs code a variety of random combinatorial structures such as random
planar maps [1, 19, 25, 4, 3], outerplanar maps [26], supercritical percolation clusters
of random triangulations [11], random permutations [9], parking on random trees [10]
or minimal factorizations [15]. See [27] for a combinatorial framework and further
examples. These applications are one of the motivations for the study of the fine
structure of such large conditioned Bienaymé trees.

1.2 Comments on Theorem 1.1

The goal of this paper is to cover the case where µ is subcritical and α = 1, which
is the last missing case for heavy-tailed offspring distributions satisfying a local reg-
ularity assumption (see Sec. 2.2 below). The results of Theorem 1.1 (i), (ii) and (iii)
(a) are the same as for subcritical offspring distributions with α > 1 [22]. However,
an interesting new phenomenon appears in the case α = 1: indeed, the sequence(
H(Tn)− log(n)/log(1/m)

)
n≥1

is not always tight (in contrast with the case α > 1 where it

is always tight). The reason is that when α > 1 we always have
∑

n≥1(n log n)µn < ∞, but
in the case α = 1 we may have

∑
n≥1(n log n)µn = ∞; take for example µn ∼ c

(logn)1+βn2

with β ∈ (0, 1]. See Proposition 4.5 for the second order term for the magnitude of H(Tn)
in this particular case.

It is also interesting to note that for subcritical offspring distributions, the behavior
of large size-conditioned Bienaymé trees turns out to be similar for α = 1 and α ∈ (1, 2],
while for critical offspring distributions, the behavior of large size-conditioned Bienaymé
trees for α = 1 and α ∈ (1, 2] is quite different (there are no non-trivial scaling limits in
the case α = 1).

1.3 Main ideas

Using [7], we show that the one-big jump principle of [6] used in the case α > 1 in
[22] holds when α = 1 as well. Theorem 1.1 (i) and (ii) then follow as in [22] from this
one-big jump principle. However the proof of Theorem 1.1 (iii) concerning the height
of Tn requires different estimates. Indeed, the estimate P(H(T ) ≥ n) ∼ c ·mn, where T
is an unconditioned µ-Bienaymé tree, used in [22] for α > 1, is not true in general for
α = 1.

ECP 30 (2025), paper 79.
Page 3/13

https://www.imstat.org/ecp

https://doi.org/10.1214/25-ECP726
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Condensation in subcritical Cauchy Bienaymé trees

1.4 Outline

We first introduce Bienaymé trees and their associated random walks in Section 2.
The main one big jump principle for conditioned random walks is presented in Section 3,
and limit theorems for subcritical Cauchy Bienaymé trees are proved in Section 4.

2 Bienaymé trees and random walks

2.1 Bienaymé trees

We consider plane trees, which are also sometimes called rooted ordered trees
(see [16, Sec. 1] for definitions and background). For every plane tree τ and every
vertex v ∈ τ , we denote by kv(τ) the outdegree (or number of children) of v, so that
∆(τ) = maxv∈τ kv(τ) is the maximal outdegree of τ .

Given a probability distribution µ = (µn)n≥0, on the nonnegative integers Z+, we
denote by Pµ the law of a Bienaymé tree with offspring distribution µ. It satisfies for
every finite tree τ the identity

Pµ(τ) =
∏
u∈τ

µku(τ).

For every n ≥ 1, we denote by T µ
n a Bienaymé tree with offspring distribution µ

conditioned to have n vertices (we always implicitly restrict to those values of n for
which this event has non-zero probability).

2.2 Exponential tilting

Exponential tilting is a useful tool which allows to tune the mean of a Bienaymé
tree without changing the law of the associated size-conditioned Bienaymé tree. It is
essentially due to Kennedy [21] (in the context of branching processes).

Proposition 2.1 (Kennedy). Let µ and ν be two probability distributions on Z+ such
that for certain a, λ > 0 we have µk = aλkνk for every k ≥ 0. Then T µ

n and T ν
n have the

same distribution.

If µ and ν are related as in Proposition 2.1, we say that they are equivalent. It
is a simple matter to characterize the class of offspring distributions µ which are
equivalent to a critical offspring distribution. Indeed, let Fµ(x) =

∑∞
k=0 µkx

k be the
generating function of µ and denote by ρ its radius of convergence. Then for every
λ ∈ (0, ρ), the offspring distribution µλ with generating function Fµλ

(x) = Fµ(λx)/Fµ(λ)

is equivalent to µ and has expectation λF ′
µ(λ)/Fµ(λ). Thus µ is equivalent to a critical

offspring distribution if and only if limλ→ρ λF
′
µ(λ)/Fµ(λ) ≥ 1. In particular, observe

that a supercritical offspring distribution (i.e. that has mean greater than 1) is always
equivalent to a critical offspring distribution.

As a consequence, if ν is a heavy-tailed offspring distribution of the form νn ∼
L(n)/n1+α with α ≥ 0 and L slowly varying then ν is equivalent to one of the following:

(a) a critical offspring distribution µ with finite variance. In this case the asymptotic
behavior of T µ

n is known [5].

(b) a critical offspring distribution µ with infinite variance and α ∈ (1, 2]. In this case
the asymptotic behavior of T µ

n is known [13].

(c) a critical offspring distribution µ with α = 1. In this case the asymptotic behavior
of T µ

n is known [2].

(d) a subcritical offspring distribution with α > 1. In this case the asymptotic behavior
of T µ

n is known [22].

(e) a subcritical offspring distribution µ with α = 1. This case is last missing case
considered in this note.
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Observe that when ν is supercritical (which includes the case α < 1 since ν has then
infinite mean) we are in case (a).

2.3 Random walks

An important tool to study Bienaymé trees is the use of random walks. Given an
offspring distribution µ, let X be a random variable with law given by P(X = i) = µi+1

for i ∈ Z≥−1. Let (Xi)i≥1 be i.i.d. random variables distributed as X and let (Wk)k≥0 be

the random walk defined by W0 = 0 and Wk =
∑k

i=1 Xi for k ≥ 1.
The key connection between Bienaymé trees and random walks is that is it possible

to bijectively code plane trees by the so-called Łukasiewicz path, in such a way that
the Łukasiewicz path of a Bienaymé tree has the law of (Wk)k≥0 stopped at the first
hitting time of the negative integers. As a consequence, studying T µ

n is equivalent to
studying the random walk (Wk)k≥0 conditioned on hitting the negative integers at time
n (“excursion”-type conditioning). In turn, this is equivalent to studying the random
walk (Wk)k≥0 conditioned on hitting −1 at time n (“bridge”-type conditioning) using the
Vervaat transform. One of the key implications is that the collection of outdegrees minus
1 of Tn has the same law as the jumps of (Wk)0≤k≤n under the conditional probability
P( · | Wn = −1), see [24, Sec. 6.1] for background.

From now on, assume that µ satisfies (H loc
µ ). We need to introduce two sequences

related to the asymptotic behavior of (Wn)n≥1. Observe that E[X] = m − 1 < 0. Let
(an : n ≥ 1) and (bn : n ≥ 1) be sequences such that

nP(X ≥ an) −−−−→
n→∞

1, bn = nE[X1|X|≤an
], (2.1)

Then the following convergence holds in distribution

X1 + · · ·+Xn − bn
an

(d)−−−−→
n→∞

C1, (2.2)

where C1 is a random variable, with Laplace transform given by E[e−λC1 ] = eλ log λ for
λ > 0, see [14, Chap. IX.8 and Eq. (8.15) p.315]. For this reason, we often call (an : n ≥ 1)

the scaling sequence and (bn : n ≥ 1) the centering sequence. The random variable C1 is
an asymmetric Cauchy random variable with skewness 1. In addition (an) and (bn) are
regularly varying sequences of index 1.

We will also need to introduce an auxiliary slowly varying function. For every n ≥ 1

set `?(n) :=
∑∞

k=n L(k)/k for n ≥ 1, which is a finite quantity since µ has finite mean.

Lemma 2.2. The following assertions hold as n → ∞.

(i) The function `? is slowly varying, satisfies `?(n) → 0 and L(n) = o(`?(n)).

(ii) We have bn + n(1−m) ∼ −n`?(an) and bn ∼ −n(1−m).

(iii) We have an = o(n).

Proof. For the first assertion, by definition we clearly have `?(n) → 0 as n → ∞. The two
other properties follow from [8, Proposition 1.5.9b].

For (ii), write bn = n(E[X]−E[X1|X|>an
]) = n(m−1)−nE[X1|X|>an

] and observe that
by assumption (H loc

µ ) we have nE[X1|X|>an
] ∼ n`?(an), which gives the first asymptotic

estimate. The second one follows from the fact that `?(an) → 0 because an → ∞.
Finally, for the last assertion, we combine the fact that an ∼ nL(an) (by definition of

an) with the fact that `?(n) → 0 and write for n sufficiently large

an
n

≤ nL(an)

n`?(an)
,

which converges to 0 since L(n) = o(`?(n)).
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In particular, (2.2) and Lemma 2.2 imply that

X1 + · · ·+Xn

n(m− 1)

(P)−−−−→
n→∞

1. (2.3)

Also observe that by Lemma 2.2 (i) and (ii), it is not true that (Wn−E[Wn])/an) converges
in distribution as n → ∞: in contrast with the case α > 1 some care is needed in handling
the centering term.

Example 2.3. In some particular cases we can explicitly determine the asymptotic
behavior of an and `?:

(i) If L(n) ∼ c/ log(n)1+β with c, β > 0, then `?(n) ∼ c/(β log(n)β) and an ∼ nL(n) since
log(an) ∼ log(n).

(ii) Set log(1)(x) = log(x) and for every k ≥ 1 define recursively log(k+1)(x) =

log(log(k)(x)). For

L(n) ∼ c

(log(k)(n))
2

k−1∏
i=1

1

log(i)(n)

with k ≥ 2 and c > 0, we have `?(n) ∼ c/ log(k)(n) and an ∼ nL(n) since log(an) ∼
log(n).

(iii) For L(n) ∼ c exp(− log(n)β) with β ∈ (0, 1) and c > 0, we have `?(n) ∼ c/β ·
log(n)1−β exp(− log(n)β). The asymptotic behavior of an depends on the value of β,
for example when β < 1/2 we have an ∼ cn exp(− log(n)β) and when 1/2 ≤ β < 2/3

we have an ∼ cn exp(− log(n)β + β log(n)2β−1).

3 A one big jump principle for conditioned random walks

Here we consider an offspring distribution µ satisfying (H loc
µ ) and denote by (Wk)k≥0

the random walk defined in Sec. 2.3. The key ingredient that enables us to use the
results of [22] is a one-big jump principle for the random walk under the conditional
probability P(· | Wn = −1).

In the case α > 1, this was obtained in [22] thanks to a general result due to
Armendáriz & Loulakis [6], using local estimates for random walks obtained in [12]. In
the case α = 1, we show that we can still use the result of Armendáriz & Loulakis [6],
using instead local estimates for random walks obtained by Berger [7].

For every integer n ≥ 1, let Vn be the index of the first maximal jump of (Wk)0≤k≤n

defined by

Vn := inf
{
1 ≤ j ≤ n : Xj = max{Xi : 1 ≤ i ≤ n}

}
.

Then we define (X
(n)
1 , ..., X

(n)
n−1) to be the random variable distributed as the law of

(X1, ..., XVn−1, XVn+1, ..., Xn) under P(· | Wn = −1). The following theorem states that
once the first maximal jump of (Wk)0≤k≤n under P(· | Wn = −1) is removed, the
remaining increments behave asymptotically like i.i.d. random variables.

Theorem 3.1. We have

dTV

(
(X

(n)
i : 1 ≤ i ≤ n− 1), (Xi : 1 ≤ i ≤ n− 1)

)
−−−−→
n→∞

0

where dTV denotes the total variation distance on Rn−1.

Proof. To simplify notation, set γ = 1−m. For every n ≥ 1, set Xn = Xn + γ and Wn =

Wn + γn, so that (Wn)n≥0 is a centered random walk. Similarly, set (X
(n)

1 , . . . , X
(n)

n−1) =

(X
(n)
1 + γ, . . . ,X

(n)
n−1 + γ). Fix ε ∈ (0, γ). We check that we can apply Theorem 1 in [6],
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with µ being the law of X1, ∆ = (0, 1], qn = εn and x = γn − 1. This will indeed imply
that

dTV

(
(X

(n)

i : 1 ≤ i ≤ n− 1), (Xi : 1 ≤ i ≤ n− 1)

)
−−−−→
n→∞

0,

giving the desired result.
In order to apply Theorem 1 in [6], we check that condition (2.6) there holds with

dn = εn and that condition (3.3) there holds also with `n = εn. Recall the definition of `?

introduced just before Lemma 2.2.
Condition (2.6). We need to check that

lim
n→∞

sup
x≥εn

∣∣∣∣∣ P(Wn ∈ (x, x+ 1])

nP(X1 ∈ (x, x+ 1])
− 1

∣∣∣∣∣ = 0,

or, equivalently, setting mn = bn + γn,

lim
n→∞

sup
x≥εn

∣∣∣∣P(Wn − bn ∈ (x−mn, x−mn + 1])

nP(X1 ∈ (x− γ, x− γ + 1])
− 1

∣∣∣∣ = 0. (3.1)

We claim that |x − mn|/an → ∞ uniformly in x ≥ εn. Indeed, by Lemma 2.2 (ii), we
have mn ∼ −n`?(an), so that |mn| = o(n) since `?(n) → 0 as n → ∞. It follows that
|x−mn| ∼ x uniformly in x ≥ εn, and we get our claim since an = o(n) (Lemma 2.2 (iii)).
This puts us in position to use Theorem 2.4 in [7] (in the reference we take α = 1 and
x = −bbnc − 1), which gives that

lim
n→∞

sup
x≥εn

∣∣∣∣P(Wn − bn ∈ (x−mn, x−mn + 1])

nP(X1 ∈ (x−mn, x−mn + 1])
− 1

∣∣∣∣ = 0. (3.2)

Now observe that since L is slowly varying at infinity, for any sequence δn → 0 of
positive real numbers and any sequence of integers zn → ∞ we have the convergence
sup(1−δn)zn≤y≤(1+δn)zn L(y)/L(zn) → 1 (this follows e.g. from the representation theorem
for slowly varying functions). Using (H loc

µ ) and |x−mn| ∼ x uniformly in x ≥ εn together
with the assumption that L(·) is slowly varying at infinity, we get

lim
n→∞

sup
x≥εn

∣∣∣∣P(X1 ∈ (x−mn, x−mn + 1])

P(X1 ∈ (x− γ, x− γ + 1])
− 1

∣∣∣∣ = 0.

Combined with (3.2) we get (3.1).
Condition (3.3). Set b̂n = n`?(an). We check that (Wn/b̂n)n≥1 is tight and that for

every L > 0 we have

sup
x≥εn

sup
|y|≤Lb̂n

∣∣∣∣∣1− P(X1 ∈ (x− y, x− y + 1])

P(X1 ∈ (x, x+ 1])

∣∣∣∣∣ −−−−→n→∞
0. (3.3)

To check tightness, write

Wn

b̂n
=

X1 + · · ·+Xn − bn
an

· an
b̂n

+
bn + γn

b̂n
,

which implies tightness since an/b̂n ∼ L(an)/`
?(an) → 0 and (bn + γn)/b̂n → −1 by

Lemma 2.2 (ii). The convergence (3.3) readily follows from the fact that b̂n = o(n) and
the fact that for every δ > 0 and for every positive sequence (ηn) of real numbers such
that ηn = o(n) we have

sup
x≥εn

sup
|u|≤ηn

∣∣∣∣L(x+ u)

L(x)
− 1

∣∣∣∣ −−−−→n→∞
0.

This can e.g. be seen using the representation theorem for slowly varying functions [8,
Theorem 1.3.1]. This completes the proof.
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This establishes the same one-big jump principle as when µ is subcritical and µ(n) ∼
L(n)/n1+α with α > 1, which is Theorem 2.1 in [22].

4 Condensation in subcritical Cauchy Bienaymé trees

We are now ready to establish our results for subcritical Cauchy Bienaymé trees. As
before, we consider an offspring distribution µ satisfying (H loc

µ ) and denote by (Wk)k≥0

the random walk defined in Sec. 2.3. Recall that Tn denotes a Bienaymé tree with
offspring distribution µ conditioned to have n vertices.

4.1 Condensation phenomenon

Theorem 1.1 (i) and (ii) are proved in the same way as Theorem 1 and Theorem 2
are proved in [22] in the case where µ is subcritical and µ(n) ∼ L(n)/n1+α with α > 1.
Indeed, for Theorem 1.1 (i), by combining the one big jump principle (Theorem 3.1) with
the fact that the collection of outdegrees minus 1 of Tn has the same law as the collection
of jumps of (Wk)0≤k≤n under the conditional probability P( · | Wn = −1), we get

dTV

(
∆(Tn),−(X1 + · · ·+Xn−1)

)
−−−−→
n→∞

0, (4.1)

which by (2.3) yields the first convergence of Theorem 1.1 (i). Also,

dTV

(
∆2(Tn)− 1,max(X1, . . . , Xn−1)

)
−−−−→
n→∞

0,

which using the fact that P(X1 ≥ u) ∼ L(u)/u as u → ∞ implies that max(X1, . . . , Xn−1)/

an converges in distribution to a random variable Y with law given by P(Y ≤ u) =

exp(−1/u) for u > 0. Since an = o(n) this implies the second convergence of Theorem
1.1 (i).

Theorem 1.1 (ii) is established in the exact same way Theorem 2 in [22] is proved,
taking as input the one big jump principle (Theorem 3.1 in our case α = 1).

Also, by combining (2.2) with (4.1) we immediately get the following fluctuations for
∆(Tn):
Corollary 4.1. We have

∆(Tn) + bn
an

(d)−−−−→
n→∞

−C1.

As suggested by an anonymous referee, it would be very interesting to extend this
central limit theorem to a local limit theorem, motivated by Stufler’s result [28, Lemma
2.2] for α > 1 (the proof of [28, Lemma 2.2] strongly relies on the fact that α > 1, so new
input is needed).

4.2 Height of Tn
In [22], the proof of the fact that H(Tn)/ log(n) → 1/ log(1/m) in probability when µ

is subcritical and µ(n) ∼ L(n)/n1+α with α > 1 uses the asymptotic estimate P(H(T ) ≥
n) ∼ c ·mn, where T is an unconditioned µ-Bienaymé tree. However, this estimate is not
true in general when α = 1. Indeed, by [17, Theorem 2], this asymptotic estimate holds if
and only if

∑
n≥1(n log n)µn < ∞; when this sum is infinite we have P(H(T ) ≥ n)/mn → 0

as n → ∞. Observe that in the case α = 1, as was already mentioned we can have∑
n≥1(n log n)µn = ∞.
In the case α = 1, we use the same idea as in [22], which consists in using the fact

that, roughly speaking, the trees grafted on the vertex of maximal degree of Tn are
asymptotically independent µ-Bienaymé trees, combined with a bound on P(H(T ) ≥ n).

We need to introduce some notation. For every finite plane tree τ , denote by u?(τ)

the vertex of maximal degree (first in lexicographical order if not unique) and for every
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1 ≤ i ≤ ∆(τ), let τi be the tree of descendants of the i-th child of u?(τ). For i > ∆(τ) we
set τi = ∅. For 1 ≤ j ≤ k, we let [τ ]j,k be the forest defined by [τ ]j,k = {τi : j ≤ i ≤ k}.
Finally for every i ≥ 1, denote by F i the forest of i independent µ-Bienaymé trees.

Proposition 4.2. For every δ ∈ [0, 1−m), we have dTV

(
[Tn]1,bδnc ,Fbδnc

)
→ 0 as n → ∞.

This is established in the exact same way Corollary 2.7 is proved in [22], again taking
as input the the one big jump principle (Theorem 3.1 in our case α = 1).

For every n ≥ 0 set Qn = P(H(T ) ≥ n), where T is an (unconditioned) µ-Bienaymé
tree.

Proposition 4.3. Let (hn) be a sequence of positive real numbers such that hn → ∞.
The following assertions hold.

(i) If nQhn
→ ∞ then P(H(Tn) ≥ hn) → 1 as n → ∞.

(ii) If nQhn → 0 then P(H(Tn) < hn) → 1 as n → ∞.

Proof. We mimic the proof of Theorem 4 in [22]. For every tree τ , denote by H?(τ) the
height of the forest [τ ]1,∆(τ). To simplify notation, we set ∆n = ∆(Tn). By Theorem 1.1
(ii), it is enough to show (i) and (ii) with H(Tn) replaced by H?(Tn).

We start with (i). Observe that by Theorem 1.1 (i), setting δ = (1 −m)/2, we have
P(∆n ≥ bδnc) → 1 as n → ∞. Thus, using Proposition 4.2,

P(H?(Tn) < hn) ≤ P(H([Tn]1,bδnc) < hn) + o(1) = P(H(Fbδnc) < hn) + o(1).

But P(H(Fbδnc) < hn) = (1−Qhn
)bδnc → 0 since nQhn

→ ∞.
For (ii), write

P(H?(Tn) ≥ hn) ≤ P(H?([Tn]1,b∆n/2c) ≥ hn) + P(H?([Tn]d∆n/2e,∆n
) ≥ hn).

Since [Tn]d∆n/2e,∆n
and [Tn]1,∆n−b∆n/2c have the same distribution, it suffices to show

that P(H?([Tn]1,b∆n/2c) ≥ hn) → 0 as n → ∞. Set δ = 2(1−m)/3. By Theorem 1.1 (i), we
have P(b∆n/2c ≤ bδnc) → 1 as n → ∞. Thus, using Proposition 4.2,

P(H?([Tn]1,b∆n/2c) ≥ hn) ≤ P(H([Tn]1,bδnc ≥ hn) + o(1) = P(H(Fbδnc) ≥ hn) + o(1).

But P(H(Fbδnc) ≥ hn) = 1− P(H(Fbδnc) < hn) = 1− (1−Qhn
)bδnc → 0 since nQhn

→ 0.
This completes the proof.

In order to apply Proposition 4.3 we will use the following bounds on Qn.

Lemma 4.4. The following assertions hold.

(i) There is a function ` : (0, 1] → R∗
+ slowly varying at 0 such that `(x) → 0 as x → 0

and Qn+1 = Qn

(
m− `(Qn)

)
for every n ≥ 0.

(ii) For every η ∈ (0,m), for every n sufficiently large we have (m− η)n ≤ Qn ≤ mn.

Proof. Let Gµ(t) =
∑

k≥0 t
kµk be the probability generating function of µ. Since µ

satisfies (H loc
µ ), we may apply Karamata’s Abelian theorem [8, Theorem 8.1.6] (in the

reference we take n = α = 1, β = 0, f1(s) = Gµ(e
−s) − 1 +ms, substitute s by − log(s)

and Taylor expand the logarithm) to write for s ∈ (0, 1]

Gµ(s) = 1−m(1− s) + (1− s)`(1− s) (4.2)

for a function ` : (0, 1] → R with `(x) ∼ `?(1/x) as x → 0. We claim that for s ∈ (0, 1] we
have

`(s) = m−
∑
k≥0

µ([k + 1,∞))(1− s)k. (4.3)
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This follows from (4.2) by writing `(1− s) as

m+
Gµ(s)− 1

1− s
= m+

1

1− s

∑
k≥0

µk(s
k − 1) = m− 1

1− s

∑
k≥1

µk(1− s)(sk−1 + · · ·+ 1)

= m−
∑
k≥1

k−1∑
j=0

µjs
k = m−

∑
k≥0

µ([k + 1,∞))sk.

From (4.3) it follows that `(0) := lims↓0 = 0, `(1) = m− 1 + µ0 < m and `(s) is increasing.
Thus, 0 < `(s) < m for every s ∈ (0, 1].

Now, by decomposing T into the forest of subtrees rooted at children of the root we
get

Qn+1 =
∑
k≥1

µk

(
1− P(H(T ) < n)k

)
=
∑
k≥1

µk

(
1− (1−Qn)

k
)
= 1−Gµ(1−Qn).

By substituting the expression of Gµ given by (4.2), we get (i).
We turn to (ii). The upper bound simply comes from the fact that ` is positive, implying

that Qn+1 ≤ mQn for every n ≥ 0. For the lower bound, fix η ∈ (0,m). Since `(x) → 0 as
x → 0, we may choose n0 such that `(Qn) ≤ η/2 for n ≥ n0. Then

Qn+1 = Qn0

n∏
k=n0

(m− `(Qk)) ≥ Qn0

(
m− η/2

)n−n0+1

which is at least (m− η)n+1 for n sufficiently large. This completes the proof.

We are now ready to finish the proof of Theorem 1.1.

Proof of Theorem 1.1 (iii). We start with (a). Fix ε ∈ (0, 1). Take hn = (1 + ε) log(n)
log(1/m) . By

Lemma 4.4 (ii), nQhn
≤ n−ε → 0. Now take hn = (1− ε) log(n)

log(1/m) . Fix η ∈ (0,m) such that

1− (1− ε)
log(m− η)

logm
≥ ε

2
.

Then by Lemma 4.4 (ii), for n sufficiently large we have nQhn
≥ nε/2 → ∞. By applying

Proposition 4.3, the claim of (a) follows.
Now we turn to (b). Let un > 0 be such that Qn = unm

n. By [17, Theorem 2], un

converges to a positive constant if
∑

n≥1(n log n)µn < ∞, and converges to 0 otherwise.
If
∑

n≥1(n log n)µn < ∞, it follows that Qn ∼ cmn as n → ∞ for some c > 0, which by
Proposition 4.3 implies that for every sequence λn → ∞ we have

P

(∣∣∣∣H(Tn)− log(n)

log(1/m)

∣∣∣∣ ≥ λn

)
−−−−→
n→∞

0,

implying that the sequence
(
H(Tn)− log(n)/log(1/m)

)
n≥1

is tight.

Now assume that
∑

n≥1(n log n)µn = ∞, so that un → 0. We build a sequence rn → ∞
such that

P

(
H(Tn) ≤

log(n)

log(1/m)
− rn

)
−−−−→
n→∞

1, (4.4)

which will imply that the sequence
(
H(Tn)− log(n)/log(1/m)

)
n≥1

is not tight. To this

end, let (ap)p≥1 be an increasing sequence of integers such that for every p ≥ 1, for
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every n ≥ ap we have cn ≤ 1/p. Then, let (pn)n≥1 be the weakly increasing sequence of
integers such that for every n ≥ 1 we have

apn ≤ 1

2

log(n)

log(1/m)
< apn+1.

Observe that pn → ∞. Then set

rn =
1

2 log(1/m)min
(
log(n), log(pn)

) and hn =
log(n)

log(1/m)
− rn.

Observe that rn → ∞ and that hn ≥ 1
2

log(n)
log(1/m) ≥ apn

. Thus uhn
≤ 1/pn. As a consequence,

nQhn
≤ nuhn

mhn ≤ n · 1

pn
· e− log(n)+log(1/m)rn ≤ n · 1

pn
·
√
pn

n
=

1
√
pn

−−−−→
n→∞

0.

The convergence (4.4) then follows from Proposition 4.3 (ii) and this completes the
proof.

When
∑

n≥1(n log n)µn = ∞, in some particular cases it is possible to find the second
order term in the magnitude of H(Tn) by analysing the asymptotic behavior of un =

Qn/m
n as n → ∞, as seen in the following result.

Proposition 4.5. Assume that L(n) ∼ c/ log(n)1+β with β ∈ (0, 1].

(i) For β = 1, for every ε > 0 we have

P

(∣∣∣∣H(Tn)− log(n)

log(1/m)
+

c

m log(1/m)2
log log n

∣∣∣∣ ≥ ε log log n

)
−−−−→
n→∞

0.

(ii) For β ∈ (0, 1), for every ε > 0 we have

P

(∣∣∣∣H(Tn)− log(n)

log(1/m)
+

c

(1− β)βm log(1/m)1+β
log(n)1−β

∣∣∣∣ ≥ ε log(n)1−β

)
−−−−→
n→∞

0.

Proof. Assume that L(n) ∼ c/ log(n)1+β with β ∈ (0, 1]. By Example 2.3 (i), and using the
fact `(x) ∼ `?(1/x) as x → 0 (this was seen in the proof of Lemma 4.4), the recurrence
relation Qn+1 = Qn(m− `(Qn)) can be rewritten as

un+1 = un

1− c/(βm)(
log(1/un) + n log(1/m)

)β (1 + εn)

 (4.5)

where εn is a sequence going to 0. Now we claim that log(1/un) = o(n). Indeed, by
Lemma 4.4 for every η ∈ (0, 1) we have lim sup(log(1/un)/n) ≤ log(m/(m − η)) and by
taking η → 0 we get our claim. Thus the recurrence relation (4.5) can be rewritten as

un+1 = un

1− c/(βm)(
n log(1/m)

)β (1 + ε′n)

 (4.6)

where ε′n is a sequence going to 0.
Now assume that β = 1. The recurrence relation (4.6) readily implies that log(un) ∼

− c
m log(1/m) log(n). Set

h±
n =

log(n)

log(1/m)
− c

m log(1/m)2
log log n± ε log log n

ECP 30 (2025), paper 79.
Page 11/13

https://www.imstat.org/ecp

https://doi.org/10.1214/25-ECP726
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Condensation in subcritical Cauchy Bienaymé trees

and observe that log(uh±
n
) ∼ − c

m log(1/m) log log n as n → ∞. As a consequence,

log
(
nQh±

n

)
= log(uh±

n
) +

c

m log(1/m)
log log n− (±ε log(1/m) log log n),

which is asymptotic to ∓ε log(1/m) log log n as n → ∞. The conclusion then follows from
Proposition 4.3.

When β ∈ (0, 1), the recurrence relation (4.6) now implies that we have log(un) ∼
− c

(1−β)βm log(1/m)β
n1−β and the desired result follows as in the case β = 1.
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