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In the classical model of random recursive trees, trees are recursively
built by attaching new vertices to old ones. What happens if vertices are al-
lowed to freeze, in the sense that new vertices cannot be attached to already
frozen ones? We are interested in the impact of freezing on the height of such
trees.

1. Introduction. Random graphs are instrumental in the study of real-world networks.
Uniform recursive trees (sometimes also called uniform attachment trees) are one of such
models. They are constructed recursively by starting with one single vertex, and successively
attaching new vertices to a previous existing vertex, chosen uniformly at random. This model
has been introduced in [33] in the context of system generation, and has received considerable
interest since, starting with graph-theoretical properties such as the height, number of leaves,
etc. (see, e.g., [37] and references therein, as well as the survey [39]). Recursive trees have
been proposed as models for the spread of epidemics [32], the family trees of preserved
copies of ancient or medieval texts [34], pyramid schemes [21], internet interface maps [25]
and appear in the study of Hopf algebras [23]. Very interesting connections have been made
with other probabilistic objects such as the Bolthausen-Sznitman coalescent [22] and elephant
random walks [29]. Uniform recursive trees have also been extended in several directions,
for instance by introducing deterministic weights [28] or random weights with a random
environment [10].

In the present work, we introduce and study a modification of this model by introducing
freezing, in that existing vertices can freeze and new vertices cannot be attached to frozen
vertices (see Figure 1 for an illustration).

Our motivation is twofold. First, in the context of real-world networks such mechanisms
are natural: for instance, on the social network Twitter a user can choose to set their account
to “private” which prevents strangers from “following” them; also performing an infection-
tracing of an SIR epidemics falls within this framework (see Section 6). Second, it is natural
to investigate from a mathematical point of view the impact of freezing in dynamically-built
random graph models. In particular, in a companion paper [7], we investigate the regime
where the number of active vertices roughly evolves as the total number of vertices to the
power α, for fixed α ∈ (0,1], we describe a phase transition where the macroscopic geometry
of our model drastically changes according to the value of α. Let us also mention the work
[5], which considers a growth-fragmentation-isolation process on random recursive trees in
the context of contact tracing, see also [8].

1.1. Uniform attachment with freezing. Let us first define our model. In order to incorpo-
rate freezing in the model of uniform attachment trees and to obtain results in a rather general
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FIG. 1. Simulation of a tree of size 10,000 built by uniform attachment with freezing, when the number of active
(i.e., nonfrozen) vertices roughly evolves as a positive fraction of the total number of vertices. Frozen vertices are
blue; active vertices are red.

setup, we shall fix beforehand the steps where an attachment takes place and the steps where
freezing takes place. Specifically, our input is a deterministic sequence x = (xi )i≥1 of ele-
ments of {−1,+1}. Starting from a sole active vertex, we recursively build random trees by
reading the elements of the sequence one after the other, by applying a “freezing” step when
reading −1 (which amounts to freezing an active vertex chosen uniformly at random) and a
“uniform attachment” step when reading +1 (which amounts to attaching a new vertex to an
active vertex chosen uniformly at random).

More precisely, given a sequence x = (xi )i≥1 ∈ {−1,+1}ℕ, we set S0(x) := 1 and for
every n ≥ 1

(1.1) Sn(x) := 1 +
n∑︂

i=1

xi then τ(x) := inf
{︁
n ≥ 1 : Sn(x) = 0

}︁
.

Observe that τ(x), if it is finite, is the first time when all the vertices are frozen, so that
afterwards the tree does not evolve any more. For every 0 ≤ n ≤ τ(x), let 𝒯n(x) be the random
tree recursively built in this fashion after reading the first n elements of x (see Algorithm 1 in
Section 2.1 for a precise definition and Figure 3 for an example).

Let us comment on our choice of parametrization. It would have been possible to define the
model starting with a random sequence x, but the choice of a deterministic sequence defines
a more general model, for which our results can then be applied.
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1.2. Local limits. When τ(x) = ∞, the next result allows to give a meaning to 𝒯∞(x) as
a local limit of finite trees (see Section 3 for background on the local topology).

THEOREM 1. Let (xn)n≥0 be a sequence of elements of {−1,1}ℕ. Suppose that there
exists x such that τ(x) = ∞ and such that, for all i ≥ 1, xn

i = xi for all n large enough. Then
the following assertions are equivalent:

(I) The sequence of trees (𝒯n(xn))n≥0 converges locally, in distribution.
(II) The sequence of trees (𝒯n(x))n≥0 converges locally, almost surely, towards a tree

𝒯∞(x).
(III) The sum

∑︁
i≥1

1
Si(x)

1{xi=−1} diverges.

In this case 𝒯∞(x) is the local limit of (𝒯n(xn))n≥0.

1.3. Examples. It is interesting to note that this model encompasses the two classical
models of random recursive trees and random uniform plane trees:

– when xi = 1 for every i ≥ 1, then 𝒯n(x) is a random recursive tree on n vertices built by
uniform attachment;

– when X = (Xi)i≥1 is a sequence of nonconstant i.i.d. uniform random variables on
{−1,+1}, then for every n ≥ 1, conditionally given τ(X) = n, 𝒯n(X) is a uniform plane
tree when the plane order among the vertices of 𝒯n(X) is chosen uniformly at random.

More generally we have the following result, in which we consider the case of random se-
quences. In this case we will write X in upper case rather than x to emphasize the fact that
the sequence is random. And, the law of (𝒯n(X))n≥0 given the random sequence X follows
the description above where X is considered to be fixed. In other words, we first choose X
randomly, then, conditionally on X, we construct 𝒯n(X) following Algorithm 1 where we
consider the sequence X to be deterministic.

THEOREM 2. Let p ∈ [0,1) and let X = (Xi)i≥1 be a sequence of i.i.d. random variables
such that ℙ(X1 = +1) = p and ℙ(X1 = −1) = 1−p. Then 𝒯∞(X) has the law of a Bienaymé
tree with offspring distribution μ given by μ(k) = (1 − p)pk for k ≥ 0.

Roughly speaking, this comes from the fact that the subtrees grafted on the initial vertex
evolve in an i.i.d. fashion.

1.4. Height of uniform attachment trees with freezing. Since we consider large trees, let
us consider for n ≥ 1, a sequence xn ∈ {−1,1}ℕ such that τ(xn) > n, and let 𝒯n := 𝒯n(xn).
Also, to simplify notation, let Sn

k := Sk(xn) for 0 ≤ k ≤ n.
Our next main theorem is that the height of 𝒯n is of order

h+
n =

n∑︂
i=1

1

Sn
i

1{xn
i =1}.

THEOREM 3. The following results hold.

(I) Let Un be an active vertex of 𝒯n chosen uniformly at random, and denote by H(Un)

its height. Then for all p ≥ 1:

H(Un)

h+
n

𝕃
p−→

n→∞ 1.
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(II) For all ε ∈ (0,1):

ℙ

(︃
1 − ε ≤ Height(𝒯n)

h+
n

≤ e + ε

)︃
−→
n→∞ 1.

(III) Assume that ln(n)/h+
n → 0 as n → ∞. Then for all p ≥ 1:

Height(𝒯n)

h+
n

𝕃
p−→

n→∞ 1.

The proof of Theorem 3 is based on an alternative construction of 𝒯n, based on time-
reversal, through a growth-coalescent process of rooted forests. This construction can be
roughly described as follows (see Algorithm 2 for a precise definition): start with a forest
made of Sn

n rooted one-vertex trees. Read successively xn
n,xn

n−1, . . . ,xn
1; when reading +1

add a new one-vertex tree to the forest; when reading −1, choose successively two different
forests uniformly at random, connect their roots by an edge, and root this new tree at the root
of the first forest. It turns out that, in the end, one gets a tree having the same distribution
as 𝒯 n (see Theorem 8 for a precise statement). This is a generalization of the connection
between random recursive trees and Kingman’s coalescent which first appeared in [19] (see
[17], Section 6, [37], Section 3, [1], Section 2.2, [3] for applications), in the context of union-
find data structures (which are data structures that store a collection of disjoint sets where
merging sets and finding a representative member of a set), see, for example, [27]. The main
difference is that a growth feature must be added when freezing is introduced.

We are next interested in the specific regime where roughly speaking the number of active
vertices increases linearly compared to the size of the tree.

THEOREM 4. Let c ∈ (0,1]. Let (An)n∈ℕ be a sequence of positive numbers such that
An → ∞ and An = o(logn) as n → ∞. Assume that

(1.2) lim
ε→0

lim sup
n→∞

max
An≤i≤εn

⃓⃓⃓⃓
Sn

i

i
− c

⃓⃓⃓⃓
= 0 and ∀ε∈ (0,1), lim inf

n→∞ min
εn≤i≤n

Sn
i

n
> 0.

The following assertions hold:

(I) We have h+
n

lnn
−−−→
n→∞

c+1
2c

.

(II) For all n ≥ 1, conditionally given 𝒯n, let V n
1 and V n

2 be independent uniform vertices
of 𝒯n. Then for every p ≥ 1

(1.3)
H(V n

1 )

lnn

𝕃
p−→

n→∞
c + 1

2c
and

dn(V n
1 ,V n

2 )

lnn

𝕃
p−→

n→∞
c + 1

c
,

where H(V n
1 ) is the height of V n

1 in 𝒯n and dn denotes the graph distance in 𝒯n.
(III) We have

Height(𝒯n)

ln(n)

ℙ−→
n→∞

c + 1

2c
f (c),

where f (c) is the unique solution with f (c) > 1 to f (c)(lnf (c) − 1) = (c − 1)/(c + 1).

Let us make some comments on these results. Roughly speaking, 𝒯n looks like a “ten-
tacular bush” in the sense that two typical vertices are always at the same distance of order
2h+

n ∼ c+1
c

· ln(n), but the total height is of order f (c) ·h+
n (see Figure 2 for a plot of the func-

tion f ). A typical example where the assumptions (1.2) are satisfied is, for example, when
maxAn≤i≤n |Sn

i /i − c| → 0. This is for instance the case when p ∈ (1/2,1), X = (Xi)i≥1 is
a sequence of i.i.d. random variables such that ℙ(X1 = +1) = p and ℙ(X1 = −1) = 1 − p,
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FIG. 2. Plot of the function ( c+1
2c

f (c) : 0 < c ≤ 1).

setting Sn
i = Si(X), conditionally given τ(X) > n, Theorem 4 applies almost surely with

c = 2p − 1 thanks to the laws of large numbers. The reason we rather use (1.2) is for appli-
cations to contact-tracing in the SIR model (see Section 6).

Theorem 4(III) gives a more precise result than Theorem 3(II) under an additional assump-
tion. It generalizes the well known result that when 𝒯n is a random recursive tree (which is
obtained by taking xn = 1 for every n ≥ 1), we have [17], Theorem 10: Height(𝒯n)/ ln(n) → e

in probability (see also [37], Theorem 1, for a different approach based on continuous-time
branching processes).

The proof of Theorem 4(III) is rather delicate: the main difficulty is that the presence
of freezing impedes the direct use of branching process techniques. The alternative growth-
coalescent process construction previously mentioned lies at the heart of our proof, which is
different from how corresponding results would be proved for the random recursive tree.

Let us mention that it is possible to check that (𝒯n/ ln(n))n≥1 is not tight for the so-called
Gromov–Hausdorff–Prokhorov topology. However, for the topology considered in [20, 26],
𝒯n/ ln(n) converges to the so-called long dendron Υν (we use the notation of [26], Exam-
ple 3.12) with ν being the Dirac mass ν = δ(c+1)/2c.

1.5. Application to contact-tracing in a stochastic SIR dynamics. Our results may be
applied to analyze the geometry of the so-called “infection tree” of a stochastic SIR dynamics,
in which the vertices are individuals and where edges connect two individuals if one has
infected the other. To keep this introduction at a reasonable length, we refer to Section 6 for
details and to Theorem 24 for a precise statement.

1.6. Plan of the paper. The rest of the paper is organized as follows: In Section 2, we
present our alternative construction, and describe a few of its properties. In Section 3, we
show Theorem 1 and 2 about local limits. In Sections 4 and 5, we prove respectively The-
orems 3 and 4 about the height of our trees. We then apply our results in Section 6 to a
stochastic SIR dynamics. Finally, in Section 7 we give a few open problems.

2. Trees constructed by uniform attachment with freezing. We start by defining our
model. We also provide for future use a table of notation below (Table 1).

2.1. Uniform attachment with freezing: Recursive construction. Let x = (xi )i≥1 ∈
{−1,+1}ℕ. In what follows, we formally construct the random trees (𝒯n(x))n≥0. These trees
will be rooted, edge-labelled, and vertex-labelled. The label of an edge is the time it appears.
The label of a vertex in 𝒯n(x) is either the time it froze, or the label “a” if it is still active at
time n. See Figure 3 for an illustration of this construction.
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TABLE 1
Table of the main notation and symbols introduced in Section 2 and used later

ℕ = {1,2,3, . . . } positive integers
⟦i, j⟧ = {i, i + 1, . . . , j − 1, j} all integers between i and j

#A cardinality of a finite set A

x = (xn)n∈ℕ a sequence of elements of {−1,1}
Sn(x) = 1 +∑︁n

i=1 xi

τ (x) = inf{n ≥ 1 : Sn(x) = 0}
𝒯n(x) tree built at time n by Algorithm 1; Sn(x) is its number of active vertices
Nn(x) total number of vertices in 𝒯n(x); Nn(x) = (Sn(x) + n + 1)/2 when n ≤ τ (x)

ℱn
n (x),ℱn

n−1(x), . . . ,ℱn
0 (x) the forest of trees built by Algorithm 2

𝒯 n(x) =ℱn
0 (x) the output of Algorithm 2

𝔽n(x) = {i ∈ ⟦1, n⟧ : xi = −1} the set of labels of frozen vertices of 𝒯 n(x)

𝔸n(x) = {a1, . . . , aSn(x)} the set of labels of active vertices of 𝒯 n(x)

𝕍n(x) = 𝔽n(x) ∪𝔸n(x) the set of labels of all vertices of 𝒯 n(x)

bn(u) the birth time of u ∈𝕍n(x) in the construction of 𝒯 n(x) by Algorithm 2
cn(u, v) the coalescence time between u,v ∈𝕍n(x) in the construction of 𝒯 n(x) by

Algorithm 2

Hn
i (u) the height of vertex u in ℱn

i (x)

2.1.1. Algorithm 1.

• Start with the tree 𝒯0(x) made of a single root vertex labelled a.
• For every n ≥ 1, if 𝒯n−1(x) has no vertices labelled a, then set 𝒯n(x) = 𝒯n−1(x). Other-

wise let Vn be a random uniform active vertex of 𝒯n−1(x), chosen independently from the
previous ones. Then:
– if xn = −1, build 𝒯n(x) from 𝒯n−1(x) simply by replacing the label a of Vn with the

label n;
– if xn = 1, build 𝒯n(x) from 𝒯n−1(x) by adding an edge labelled n between Vn and a new

vertex labelled a.

For n ≥ 0, we view 𝒯n(x) as a rooted, double-labelled tree (that is edge-labelled and vertex-
labelled). If Nn(x) represents the total number of vertices of 𝒯n(x), observe that by construc-
tion Nn(x) = (Sn(x) + n + 1)/2 for 0 ≤ n ≤ τ(x).

2.2. Uniform attachment with freezing: Growth-coalescent construction. As before, let
x = (xn)n≥1 ∈ {−1,1}ℕ. We introduce in this section an alternative time-reversed construc-
tion of uniform attachment trees with freezing. It may be seen as a growth coalescence pro-

FIG. 3. On the left is represented the walk (Sn(x))n≥0 up to time n = 5 associated with the sequence
x = +1,−1,+1,+1,−1, . . . . On the right, a possible realisation of the trees 𝒯0(x) to 𝒯5(x) given this sequence.
Frozen vertices have been colored in blue.
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FIG. 4. An illustration of Algorithm 2 with n = 5 and (x5,x4,x3,x2,x1) = (−1,1,1,−1,1) (this is the same
sequence as in Figure 3). For example, since x2 = −1, ℱ5

1 is obtained from ℱ5
2 by adding a new tree made of a

vertex labeled 2. Since x4 = 1, to build ℱ5
3 from ℱ5

4 we have chosen in ℱ5
3 two trees (T1, T2) with T1 being the

vertex a1 and T2 being the vertex a2, and we have added an edge labelled 4 between the roots r(T1) = a1 and
r(T2) = a2 of T1 and T2, and rooted the tree thus obtained at r(T1) = a1.

cess of forests, and as previously mentioned, is a generalization of the connection between
random recursive trees and Kingman’s coalescent introduced in [19]. Most of our proofs are
based on this construction.

2.2.1. Algorithm 2. Fix 0 ≤ n ≤ τ(x). We construct a sequence of (possibly empty)
forests of rooted, edge-labelled, vertex-labelled unoriented trees (ℱn

n (x),ℱn
n−1(x), . . . ,

ℱn
0 (x)) by induction as follows.

• Let ℱn
n (x) be a forest made of Sn(x) one-vertex trees labelled a1, . . . , aSn(x).

• For every 1 ≤ i ≤ n, if ℱn
i (x) has been constructed, define ℱn

i−1(x) as follows:
– if xi = −1, ℱn

i−1(x) is obtained by adding to ℱn
i (x) a new one-vertex tree labelled i;

– if xi = 1, let (T1, T2) be a pair of different random trees in ℱn
i (x) chosen uniformly at

random, independently of the previous choices; then ℱn
i−1(x) is obtained from ℱn

i (x) by
adding an edge labelled i between the roots r(T1) and r(T2) of respectively T1 and T2,
and rooting the tree thus obtained at r(T1);

• Let 𝒯 n(x) be the only tree of ℱn
0 (x).

See Figure 4 for an illustration of this construction. We shall soon see in Section 2.4
the equivalence between Algorithm 1 and Algorithm 2, but before that, we introduce some
important notation and consequences which will be useful in the analysis of the height of
trees built by uniform attachment with freezing.

Important convention. Throughout this article, when the context is clear, we will sometimes
drop the parameter x to lighten notation: in particular, we shall write τ , Sn, 𝒯n, ℱn

i instead of
τ(x), Sn(x), 𝒯n(x), ℱn

i (x), etc.

2.3. Laws of the birth and coalescence times. Let x = (xn)n≥1 ∈ {−1,1}ℕ. First, define

(2.1)
𝔽n(x) = {︁

i ∈ ⟦1, n⟧ : xi = −1
}︁
, 𝔸n(x) = {a1, . . . , aSn(x)},

𝕍n(x) = 𝔽n(x) ∪𝔸n(x).

It is crucial to observe that while 𝒯 n is a random tree, the labels of its vertices are determin-
istic quantities that only depend on x: 𝔸n are the labels of the active vertices of 𝒯 n and 𝔽n

are the labels of the frozen vertices of 𝒯 n. In particular, the elements of 𝕍n will be called
vertices of 𝒯 n.

Next, for every u ∈ 𝕍n, let bn(u) be the largest i ∈ {0,1, . . . , n} such that u belongs to the
forest ℱn

i . Explicitly, if u ∈ 𝔸n is an active vertex then bn(u) = n, and if u ∈ 𝔽n (note that
u is then an integer) then bn(u) = u − 1 (see Figure 4 for an example). We say that bn(u) is
the birth time of u, since it encodes the first time when vertex u appears in Algorithm 2. For
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0 ≤ i ≤ bn(u), let Hn
i (u) be the height of vertex u in ℱn

i (i.e., the graph distance between u

and the root of whichever tree of ℱn
i contains u).

Finally, for u, v ∈ 𝕍n, let cn(u, v) be the largest i ∈ {0,1, . . . , n} such that u and v belong
to the same tree in the forest ℱn

i obtained when building 𝒯 n in Algorithm 2. We say that
cn(u, v) is the coalescence time between u and v, since it encodes the first time u and v

belong to the same tree in Algorithm 2 (observe that while bn(u) is deterministic, cn(u, v) is
random).

We now state several simple consequences of Algorithm 2, which will be useful to study
the geometry of 𝒯 n.

LEMMA 5. Fix 1 ≤ n ≤ τ and u ∈ 𝕍n. For every 1 ≤ i ≤ bn(v):

ℙ
(︁
Hn

i−1(v) − Hn
i (v) = 1|ℱn

n , . . . ,ℱn
i

)︁= 1

Si

1{xi=1}.

This is clear from the definition of Algorithm 2. In particular, if (Yi)1≤i≤n are independent
Bernoulli random variables of respective parameters (1/Si)1≤i≤n, we have for every u ∈ 𝕍n

(2.2) Hn
0(u)

(d)=
bn(u)∑︂
i=1

Yi1{xi=1}.

The next result identifies the law of the birth time of a vertex of 𝒯 n chosen uniformly at
random.

LEMMA 6. Fix 1 ≤ n ≤ τ . Let V be an element of 𝕍n chosen uniformly at random. For
every 1 ≤ m ≤ n,

ℙ
(︁
bn(V ) < m

)︁= m + 1 − Sm

n + 1 + Sn

.

PROOF. Observe that bn(u) = n if u ∈ 𝔸n and bn(u) = u − 1 if u ∈ 𝔽n. Also, condi-
tionally given the fact that V ∈ 𝔽n, bn(V ) is uniform on 𝔽n. Since #𝔸n = Sn and #𝔽n =∑︁n

i=1 1{xi=−1}, it follows by definition of 𝔽n that

ℙ
(︁
bn(V ) < m

)︁= ∑︁m
i=1 1{xi=−1}

Sn +∑︁n
i=1 1{xi=−1}

= m + 1 − Sm

n + 1 + Sn

,

where for the last equality we have used the fact that
∑︁k

i=1 1{xi=−1} = (k − Sk + 1)/2 for
every 1 ≤ k ≤ n. □

The last useful result identifies the law of the coalescence times between two vertices.

LEMMA 7. Fix 1 ≤ n ≤ τ and consider u, v ∈ 𝕍n. Then for every 0 ≤ c < bn(u) ∧ bn(v)

with xc+1 = 1:

ℙ
(︁
cn(u, v) = c

)︁= 1(︁Sc+1
2

)︁ bn(u)∧bn(v)∏︂
i=c+2

s.t. xi=1

(︃
1 − 1(︁Si

2

)︁)︃.

PROOF. When running Algorithm 2, the factors in the product correspond to the prob-
ability that the two vertices born at times bn(u) and bn(v) do not coalesce until time c and
the factor 1/

(︁Sc+1
2

)︁
corresponds to the conditional probability that the two vertices coalesce at

time c, given that they have not previously done so. □
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TABLE 2
Table of the main notation and symbols introduced in Section 2.4

𝒯 n(x) the tree obtained from 𝒯 n(x) by relabelling all its active vertices by “a”

𝔗k,n(A), n ≥ 1
0 ≤ k ≤ n, A ⊂ ℕ

#A = 2n − k − 1

set of rooted trees with n vertices, such that all the n − 1 edges and n − k of the vertices
are labelled in a one-to-one manner with the integers of A, while the other k vertices
are labelled with the letter “a”

𝔗+
k,n(A) set of all trees in 𝔗k,n(A) such that edge-labels increase along paths directed away

from the root, and all vertices labelled with an integer (i.e., not “a”) have a label which
is larger than the labels of their adjacent edges

𝔗+
k,n 𝔗+

k,n(A) with A = ⟦1,2n − k − 1⟧

2.4. Equivalence between the two constructions. Observe that the active vertices of 𝒯n

are all labelled a while the active vertices of 𝒯 n are labelled a1, . . . , aSn . It turns out that 𝒯n

is equal in law to 𝒯 n when its active vertices are all relabelled a. More precisely, let 𝒯 n be
the tree obtained from 𝒯 n by relabeling its Sn active vertices by a (see the right-most part of
Figure 4 for an illustration). We also provide a table of notation (Table 2).

THEOREM 8. The two trees 𝒯n and 𝒯 n have the same distribution.

To prove this result, we first identify the law of 𝒯n. Let us determine the range of 𝒯n. For
n ∈ℕ, 0 ≤ k ≤ n and A ⊂ ℕ with #A = 2n− k −1, let 𝔗k,n(A) be the set of rooted trees with
n vertices, such that all the n − 1 edges and n − k of the vertices are labelled in a one-to-one
manner with the integers of A, while the other k vertices are labelled with the letter a. We
then define 𝔗+

k,n(A) to be the set of all trees in 𝔗k,n(A) such that edge labels increase along
paths directed from the root, and all vertices labelled with an integer (i.e., not a) have a label
which is larger than the labels of their adjacent edges. We set 𝔗+

k,n = 𝔗+
k,n(⟦1,2n − k − 1⟧).

Note that 𝒯n is an element of 𝔗+
Sn,Nn

for 0 ≤ n ≤ τ (see the left-most tree in Figure 6 for an
example) where Nn = (Sn + n+ 1)/2 is the total number of vertices in 𝒯n. In particular, 𝔗+

k,n

is the set of all possible trees with k active vertices and n − k frozen vertices which can be
obtained by Algorithm 1.

LEMMA 9. Fix 0 ≤ n ≤ τ and Tn ∈ 𝔗+
Sn,Nn

. Then

ℙ(𝒯n = Tn) = ∏︂
1≤i≤n

1

Si−1
.

PROOF. For two trees T , T ′ with T ∈ 𝔗+
k,n, we write T ⇝ T ′ if either T ′ ∈ 𝔗+

k+1,n and
T ′ is obtained by replacing in T the label of a vertex labeled a by 2n − k, or T ′ ∈ 𝔗+

k,n+1 and
T ′ is obtained from T by adding an edge labelled by 2n − k between a new vertex labeled a

and an existing a-labeled vertex.
Since Tn ∈ 𝔗+

Sn,Nn
, observe that there is a unique sequence (T0, . . . , Tn−1) such that Ti ∈

𝔗+
Si,Ni

for every 0 ≤ i ≤ n − 1 and such that Ti ⇝ Ti+1 for every 0 ≤ i ≤ n − 1. In particular,

ℙ(𝒯n = Tn) = ℙ
(︁
(𝒯0,𝒯1 . . . ,𝒯n) = (T0, T1, . . . , Tn)

)︁
=

n∏︂
i=1

ℙ(𝒯i = Ti |𝒯i−1 = Ti−1).
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Then observe that ℙ(𝒯i = Ti |𝒯i−1 = Ti−1) = 1
Si−1

. Indeed, Ti−1 has Si−1 active vertices.
Thus, if xi = 1, then the probability of attaching a new vertex to a given active vertex is
1/Si−1; if xi = −1, then the probability of freezing a given active vertex is 1/Si−1. □

PROOF OF THEOREM 8. First of all, by Lemma 9, for every Tn ∈ 𝔗+
Sn,Nn

we have

ℙ(𝒯n = Tn) = ∏︂
1≤i≤n

1

Si−1
.

Now let ˜︁𝔗+
k,n be the set of all trees obtained from 𝔗+

k,n by labelling a1, . . . , ak their k active
vertices. It is enough to show that for every ˜︁Tn ∈ ˜︁𝔗+

k,n we have

(2.3) ℙ
(︁𝒯 n = ˜︁Tn

)︁= 1

Sn!
∏︂

1≤i≤n

1

Si−1
.

Indeed, since there are Sn! ways to relabel by a1, . . . , ak the Sn active vertices of any given
tree Tn ∈ 𝔗+

k,n, this will imply that ℙ(𝒯n = Tn) = ℙ(𝒯 n = Tn).
To establish (2.3) we need to introduce some notation. Let ˜︁𝔉n

k be the set of all forests of
rooted, edge-labelled and vertex-labelled trees, such that:

– Sn vertices are labelled a1, . . . , aSn ;
– all the other vertices are labelled in a one-to-one fashion by ⟦k + 1, n⟧ ∩ {1 ≤ i ≤ n :

xi = −1};
– the edges are labelled in a one-to-one fashion by ⟦k + 1, n⟧ ∩ {1 ≤ i ≤ n : xi = 1}.
In addition, the labelling satisfies the following condition: edge-labels increase along paths
directed from the roots, and all vertices labelled with an integer (i.e., not a) have a label which
is larger than the labels of their adjacent edges. Notice that forests in ˜︁𝔉n

k are made of Sk trees.
Observe that the random forest ℱn

i satisfies ℱn
i ∈ ˜︁𝔉n

i for every 0 ≤ i ≤ n. If Fi ∈ ˜︁𝔉n
i and

Fi−1 ∈ ˜︁𝔉n
i−1, we write Fi ⇝ Fi−1 if Fi−1 is obtained from Fi by either adding a new tree

made of a sole vertex labeled i, or choosing two different trees T1, T2 in Fi and adding an
edge labeled i between the roots r(T1) and r(T2) of respectively T1 and T2, and rooting the
tree thus obtained at r(T1).

Now, let Fn
0 be the forest made of the tree ˜︁Tn. Observe that there is a unique sequence

(F n
n , . . . ,F n

1 ) such that Fn
i ∈˜︁𝔉n

i for every 0 ≤ i ≤ n − 1 and such that Fn
i ⇝ Fn

i−1 for every
1 ≤ i ≤ n. Notice that Fn

i is made of Si trees. In particular,

ℙ
(︁𝒯 n = ˜︁Tn

)︁= ℙ
(︁(︁ℱn

n ,ℱn
n−1, . . . ,ℱn

0
)︁= (︁

Fn
n ,F n

n−1, . . . ,F
n
0
)︁)︁

=
n∏︂

i=1

ℙ
(︁ℱn

i−1 = Fn
i−1|ℱn

i = Fn
i

)︁
.

Then observe that if xi = −1 we have ℙ(ℱn
i−1 = Fn

i−1|ℱn
i = Fn

i ) = 1 since to build ℱn
i−1 from

ℱn
i with probability one we add a new one-vertex tree labelled i to ℱn

i−1, and since xi = −1,
the forest Fn

i−1 is also obtained from Fn
i by adding a new one-vertex tree labelled i. If xi = 1

we have the equality ℙ(ℱn
i−1 = ℱn

i−1|ℱn
i = ℱn

i ) = 1
Si(Si−1)

; indeed, there are Si(Si − 1) ways
of choosing a pair (T1, T2) of different trees in Fn

i , and one of them gives Fn
i−1 when adding

an edge labeled i between the roots r(T1) and r(T2) of respectively T1 and T2, and rooting
the tree thus obtained at r(T1).

As a consequence,

ℙ
(︁𝒯 n = ˜︁Tn

)︁= ∏︂
1≤i≤n
xi=1

1

Si(Si − 1)
= 1

Sn!
∏︂

1≤i≤n

1

Si−1
,



2892 BELLIN, BLANC-RENAUDIE, KAMMERER AND KORTCHEMSKI

TABLE 3
Table of the main notation and symbols introduced in Section 2.5

𝔅k,n(A) set of rooted binary plane trees with 2n − 1 vertices, such that k of the leaves are labelled with
the letter a and the 2n − k − 1 other vertices are labelled in a one-to-one manner with the integers
of A

𝔅+
k,n(A) set of trees in 𝔅k,n(A) such that the vertices have increasing labels paths directed from the root

𝔅+
k,n 𝔅+

k,n(A) with A = ⟦1,2n − k − 1⟧

FIG. 5. Illustration of the construction of the bijection Φ by induction.

where the last equality is readily checked by induction. This establishes (2.3) and completes
the proof. □

2.5. A connection with increasing binary trees. It turns out that 𝔗k,n(A) is in bijection
with a certain set of increasing plane binary trees, which are rooted trees, with an order among
the children of internal vertices (see Section 3.2 for a precise setting), and where every vertex
has either zero or two children. We also provide a table of notation (Table 3).

Such a bijection is well known in the case k = 0 (see, e.g., [27] and [17], Section 6).
To make this connection explicit, we need some further notation. For n ≥ 1, 0 ≤ k ≤ n and
A ⊂ ℕ with cardinality #A = 2n − k − 1 we define 𝔅k,n(A) to be the set of rooted binary
plane trees with 2n− 1 vertices, such that k of the leaves are labelled with the letter a and the
2n − k − 1 other vertices are labelled in a one-to-one manner with the integers of A. We also
define 𝔅+

k,n(A) to be the set of trees in 𝔅k,n(A) such that the vertices have increasing labels
along paths directed away from the root. We set 𝔅+

k,n = 𝔅+
k,n(⟦1,2n − k − 1⟧) (see the right

of Figure 6 for an example of a tree in 𝔅+
4,15).

We are now ready to define a function Φ from
⋃︁
𝔗k,n(A) to

⋃︁
𝔅k,n(A) where the unions

are over all possible triplets (k, n,A). The definition is done by induction. If τ is a trivial tree
with one vertex then set Φ(τ) = τ . If τ has at least 2 vertices, then let u be the child of the
root ρ such that the edge between ρ and u has the smallest label, denoted by ℓ, among all the
edges adjacent to ρ. Denote by τ1 the sub-tree rooted in u composed of all the descendants
of u and τ2 the sub-tree rooted in ρ composed of all the vertices that are not in τ1. Then Φ(τ)

is the binary tree starting with a root, labelled ℓ, with two children: the first child on the left
gives birth to Φ(τ1) and the second one on the right gives birth to Φ(τ2) (see Figures 5 and
6).

PROPOSITION 10. The function Φ defined above is a bijection between 𝔗+
k,n and 𝔅+

k,n.

PROOF. It suffices to construct explicitly the inverse bijection Ψ of Φ. We proceed by
induction. For a tree τ with a single vertex let Ψ(τ) = τ . If τ is a binary tree with at least 2
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FIG. 6. An example of a tree τ ∈ 𝔗+
4,8 on the left and its image by the bijection Φ(τ) ∈𝔅+

4,15 on the right.

children and a root labelled ℓ, let τ1 be the tree on the left and let τ2 be the tree on the right
of the root. Then Ψ(τ) is obtained by attaching the root of Ψ(τ1) to the root of Ψ(τ2) with
an edge labelled ℓ. And the root of Ψ(τ2) becomes the root of Ψ(τ). It is a simple matter to
check that Ψ is indeed the inverse bijection of Φ. □

As a consequence, we can identify the cardinality of 𝔗+
0,n, which is the set of all possible

trees with 0 active vertices and n frozen vertices which can be obtained by Algorithm 1, using
the fact that |𝔅+

0,n| is counted by the so-called tangent numbers [18].

COROLLARY 11. The cardinality of 𝔗+
0,n is given by

#𝔗+
0,n = 4n(4n − 1)|B2n|

2n
= tan(2n−1)(0),

where Bn is the nth Bernoulli number and tan(n) stands for the nth derivative of the tangent
function. This sequence of numbers is given by OEIS A000182.

3. Local limits. Let 𝔗 be the set of all rooted, vertex-labelled, edge-labelled, and locally
finite (meaning that every vertex has finite degree) trees. For every t ∈ 𝔗 and h ∈ ℕ let ⟦t⟧h

be the finite rooted vertex-labelled edge-labelled tree obtained from t by keeping only the
vertices at distance at most h from the root vertex together with the edges between them,
and their labels. It is standard to construct a metric dloc on 𝔗 such that the space (𝔗,dloc)

is Polish (i.e., separable and complete) and tn → t for dloc if and only if for every h ≥ 1,
we have ⟦tn⟧h = ⟦t⟧h (as rooted, vertex-labelled, edge-labelled trees) for n large enough.
Similar metrics can be defined for other families of trees (plane and unlabelled, plane, and
vertex-labelled and edge-labelled) and will be also denoted by dloc. We refer to the associated
topologies as “the local topology”.

3.1. Proof of Theorem 1. We begin by showing that conditions (II) and (III) are equiva-
lent. Since the sequence of trees (𝒯n(x))n≥0 is increasing, it converges almost surely for dloc,
if and only if, almost surely, the degree of each vertex converges (to a finite value).

First, we show that every vertex degree converges a.s. if and only if every vertex freezes
a.s. at some finite time. Once a vertex is frozen its degree does not change, so if every ver-
tex freezes a.s. at some finite time then a.s. every vertex degree converges. For the other
implication, we show that if with positive probability a vertex does not eventually freeze,
then with positive probability its degree does not converge. Set P = {n ≥ 1 : xn = +1} and
M = {n ≥ 1 : xn = −1}. Observe that

(3.1)
∑︂
n∈P

1

Sn(x)
= +∞.
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Indeed, since the walk (Sn(x))n≥0 never touches 0 we have n−1#(P ∩ {1, . . . , n})≥ 1/2 for
all n ≥ 1. Thus

∑︁
n∈P 1/Sn(x) ≥∑︁n∈P 1/(n + 1) diverges.

Now fix n0 ∈ P and denote by v the vertex that appears at time n0. Let E be the event
“v never freezes”. We show that ℙ(E) > 0 implies that with positive probability the degree
of v does not converge. To this end, for n ∈ P, n ≥ n0, let En denote the event “the degree
of v increases by one at time n”. Then, since the event En involves times in P while the
event E involves times in M, conditionally given E the events (En)n≥1 are independent and
ℙ(En|E) = 1/Sn(x). Thus, by (3.1) and Borel-Cantelli, ℙ(the degree of v diverges as n →
∞|E) = 1. Thus with positive probability the degree of v does not converge.

Now, to show that (II) and (III) are equivalent, it remains to show that, almost surely,
the fact that all the vertices freeze at some point is equivalent to the divergence of the sum∑︁

n∈M 1/Sn(x). Fix a vertex v appearing at time n0 ≥ 0. The probability that it never freezes
is
∏︁

n∈M,n>n0
(1 − 1/Sn(x)) which converges towards 0 if and only if

∑︁
n∈M 1/Sn(x) = +∞.

Now we prove that (II) and (III) imply (I). Let t be a finite tree with no vertex labelled a (so
all vertices are frozen). If m is the biggest label of t then for all h and n the event “⟦𝒯n(x)⟧h =
t” depends only on the first m steps of x. Therefore for all n large enough ℙ(⟦𝒯n(x)⟧h = t) =
ℙ(⟦𝒯n(xn)⟧h = t). If 𝒯n(x) converges locally to 𝒯∞(x), then, by (III), all the vertices of 𝒯∞(x)

are frozen so we deduce that 𝒯n(xn) also converges locally in distribution to 𝒯∞(x).
Finally we show that (I) implies (II). Assume (I) and suppose that 𝒯n(x) does not converge

locally almost surely. Then there exists i such that xi = +1 and the vertex vi added at time i

in 𝒯n(x) has a degree converging towards +∞ with positive probability. In other words

ℙ
(︁
deg

(︁
vi,𝒯n(x)

)︁→ +∞)︁= lim
m→∞ℙ

(︃⋃︂
n≥i

{︁
deg

(︁
vi,𝒯n(x)

)︁≥ m
}︁)︃

> 0.

Let φ be an increasing function such that, for all k ≤ n, xφ(n)
k = xk . There is an obvious

coupling such that 𝒯n(x) = 𝒯n(xφ(n)) for all n. Therefore, for all m,⋃︂
n≥i

{︁
deg

(︁
vi,𝒯n(x)

)︁≥ m
}︁= ⋃︂

n≥i

{︁
deg

(︁
vi,𝒯n

(︁
xφ(n))︁)︁≥ m

}︁
,

and

lim
m→∞ℙ

(︃⋃︂
n≥i

{︁
deg

(︁
vi,𝒯φ(n)

(︁
xφ(n))︁)︁≥ m

}︁)︃≥ lim
m→∞ℙ

(︃⋃︂
n≥i

{︁
deg

(︁
vi,𝒯n

(︁
xφ(n))︁)︁≥ m

}︁)︃

which is positive. We deduce that under this coupling the degree of vi in 𝒯φ(n)(xφ(n)) tends
to ∞ with positive probability so 𝒯n(xn) can not converge locally. □

3.2. A connection with geometric Bienaymé trees: Proof of Theorem 2. For the proof of
Theorem 2, we need the Ulam–Harris formalism of plane trees. Let 𝒰 be the set of labels
defined by

𝒰 =
∞⋃︂

n=0

ℕ
n,

where, by convention, (ℕ)0 = {∅}. In other words, an element of 𝒰 is a (possibly empty)
sequence u = u1 · · ·uj of positive integers. When u = u1 · · ·uj and v = v1 · · ·vk are elements
of 𝒰 , we let uv = u1 · · ·ujv1 · · ·vk be the concatenation of u and v. In particular, u∅ =
∅u = u. Finally, a (Ulam–Harris) plane tree is a subset of 𝒰 satisfying the following three
conditions:
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(i) ∅ ∈ τ ,
(ii) if v ∈ τ and v = uj for some j ∈ ℕ, then u ∈ τ ,

(iii) for every u ∈ τ , there exists an integer ku(τ ) ≥ 0 such that for every j ∈ ℕ, uj ∈ τ if
and only if 1 ≤ j ≤ ku(τ ).

If τ is a plane tree and u ∈ τ let θuτ = {v ∈ 𝒰 : uv ∈ τ } be the subtree of descendants of u.
We finally let 𝕋 be the set of all plane trees (observe that such trees may be infinite, but are
always locally finite).

Given a probability distribution μ on ℤ+, the law ℙμ of a Bienaymé tree with offspring
distribution μ (sometimes known as a Galton–Watson tree, but we prefer to use the terminol-
ogy suggested in [2]) is a probability measure on 𝕋 that can be characterized by the following
two properties (see, e.g., [36] for more general statements):

(i) ℙμ(k∅ = j) = μ(j) for j ∈ ℤ+,
(ii) for every j ≥ 1 with μ(j) > 0, the shifted trees θ1τ, . . . , θj τ are independent under

the conditional probability ℙμ( · |k∅ = j) and their conditional distribution is ℙμ.

The following simple result gives a characterization of Bienaymé trees with geometric
offspring distribution in terms of an invariance property involving subtrees (since we have
not managed to find a reference in the literature we include the short proof for completeness).

LEMMA 12. Let p ∈ [0,1). Let 𝒯 be a random plane tree such that ℙ(k∅(𝒯 ) = 0) =
1 − p and under the conditional probability ℙ(·|k∅(𝒯 ) > 0) the two trees θ1𝒯 and 𝒯 \θ1𝒯
are independent with conditional distribution equal to the law of 𝒯 . Then 𝒯 is a Bienaymé
tree with offspring distribution μ given by μ(k) = (1 − p)pk for k ≥ 0.

PROOF. First, for j ≥ 1 we have

ℙ
(︁
k∅(𝒯 ) ≥ j

)︁= ℙ
(︁
k∅(𝒯 ) > 0

)︁
ℙ
(︁
k∅(𝒯 \θ1𝒯 ) ≥ j − 1|k∅(𝒯 ) > 0

)︁
,

which implies ℙ(k∅(𝒯 ) ≥ j) = pℙ(k∅(𝒯 ) ≥ j − 1). Thus ℙ(k∅(𝒯 ) = k) = (1 − p)pk for
k ≥ 0.

Second, we argue by induction. Take n ≥ 1 and assume that the shifted trees θ1𝒯 , . . . , θn𝒯
are independent under the conditional probability ℙ( · |k∅(𝒯 ) = n) with conditional distribu-
tion equal to the law of 𝒯 . Then for f1, . . . , fn+1 ≥ 0 measurable

𝔼
[︁
f1(θ1𝒯 ) · · ·fn+1(θn+1𝒯 )|k∅(𝒯 ) = n + 1

]︁= 𝔼
[︁
f1(θ1𝒯 )gn(𝒯 \θ1𝒯 )|k∅(𝒯 ) > 0

]︁
with gn(τ ) = 1k∅(τ )=nf2(θ1τ) · · ·fn+1(θnτ )ℙ(k∅(𝒯 ) > 0)/ℙ(k∅(𝒯 ) = n + 1). Thus, by as-
sumption, we have 𝔼[f1(θ1𝒯 ) · · ·fn+1(θn+1𝒯 )|k∅(𝒯 ) = n + 1] = 𝔼[f1(𝒯 )]𝔼[gn(𝒯 )]. But

𝔼
[︁
gn(𝒯 )

]︁= ℙ(k∅(𝒯 ) = n)ℙ(k∅(𝒯 ) > 0)

ℙ(k∅(𝒯 ) = n + 1)
𝔼
[︁
f2(θ1𝒯 ) · · ·fn+1(θn𝒯 )|k∅(𝒯 ) = n

]︁
,

which is equal to 𝔼[f2(θ1𝒯 ) · · ·fn+1(θn𝒯 )|k∅(𝒯 ) = n] thanks to the first step. The desired
result follows from the induction hypothesis. □

For every tree τ ∈ 𝔗+
k,n(A), we define τ̃ to be the unique element of 𝔗+

k,n obtained by
shifting the labels of τ to make them consecutive; specifically if f : {1, . . . ,2n− k − 1} → A

denotes the unique increasing bijection, an edge/vertex is labeled f (i) in τ if and only if its
corresponding edge/vertex is labeled i in τ̃ (see Figure 7).

We are now ready to establish Theorem 2.

PROOF OF THEOREM 2. First, we claim that almost surely the sequence (𝒯n(X))n≥0
converges locally towards a tree denoted by 𝒯∞. Observe that if (Sn)n≥0 touches 0, then
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FIG. 7. Illustration of the proof of Theorem 2.

the sequence of trees (𝒯n(X))n≥0 is almost surely eventually constant and thus converges. If
p ≤ 1/2, (Sn)n≥0 touches 0 almost surely at some point, so the sequence of trees (𝒯n(X))n≥0
converges almost surely. If p > 1/2, conditionally on the fact that (Sn)n≥0 never touches 0,
this walk satisfies the condition of Theorem 1, so (𝒯n(X))n≥0 has a local limit. We conclude
that, for every value of p ∈ [0,1), almost surely the sequence (𝒯n(X))n≥0 converges locally
towards a tree 𝒯∞.

We shall first consider 𝒯∞ conditioned on having at least 2 vertices (which amounts to
conditioning on the event {X1 = +1}). Conditionally given {X1 = +1}, 𝒯n(X) is composed
of two trees: the tree 𝒯 1

n (X) representing all the descendants of the first child of the root of
𝒯n(X), and the tree 𝒯 2

n (X) representing all the other vertices, including the root of 𝒯n(X) (see
Figure 7).

The main idea is then to check that if one of the trees 𝒯 1
n (X) or 𝒯 2

n (X) has at least one ac-
tive vertex, then it will eventually almost surely evolve (i.e., its degree changes or it freezes).
This will show that the two trees 𝒯 1

n (X) or 𝒯 2
n (X) evolve independently with the same tran-

sition probabilities, which in turn will entail that conditionally given {X1 = 1}, (𝒯 1
n (X))n≥1

and (𝒯 2
n (X))n≥1 converge locally, jointly, towards two independent trees distributed like 𝒯∞.

Let us now make this discussion more formal. Notice that (𝒯n(X))n≥0 is a Markov chain
in the state space E :=⋃︁

n≥1
⋃︁

0≤k≤n𝔗
+
k,n starting at the trivial tree, denoted by t◦, composed

of a single active vertex. Denote by α its transition matrix. The absorbing states are exactly
the trees in

⋃︁
n≥1 𝔗

+
0,n with no active vertices. For n ≥ 2, let In be the random variable which

is equal to 1 when Sk = 0 for some k ≤ n − 1 or when the nth action (corresponding to the
step Xn) occurs in the tree 𝒯 1

n−1(X) and 2 if it occurs in the tree 𝒯 2
n−1(X). For example, when

Xn = −1 and Sk > 0 for all k ≤ n − 1, an active vertex of 𝒯n−1(X), chosen uniformly at
random, will freeze. If this vertex is chosen in 𝒯 1

n−1(X), then In = 1, otherwise, it is chosen
in 𝒯 2

n−1(X) and In = 2. By convention we also set I1 = 1. Denote by a(t) the number of
active vertices of a tree t ∈ E.

The previous discussion shows that, conditionally given the event {X1 = 1}, the process
(𝒯 1

n (X),𝒯 2
n (X), In)n≥1 is a Markov chain in the state space E2 ×{1,2}, starting at (t◦, t◦,1),

with transitions given by

(x, y, i) → (︁
x′, y,1

)︁
with probability k(x, y)α

(︁
x, x′)︁

(x, y, i) → (︁
x, y′,2

)︁
with probability

(︁
1 − k(x, y)

)︁
α
(︁
y, y′)︁,

for every x, x′, y, y′ ∈ E, and i ∈ {1,2} where

k(x, y) := a(x)

a(x) + a(y)
if a(x) + a(y) > 0 and k(x, y) := 1 otherwise.

Let x ∈ E be a nonabsorbing state (i.e., a(x) > 0). Let y ∈ E and n ≥ 1. We show that
conditionally given {𝒯 1

n (X) = x and 𝒯 2
n (X) = y} the probability that Ik = 1 for some k > n
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is 1 and that the probability that Ik = 2 for some k > n is 1. The forthcoming Lemma 13 then
entails that conditionally given {X1 = 1}, the trees (𝒯 1

n (X))n≥1 and (𝒯 2
n (X))n≥1 converge

locally, jointly, towards two independent trees distributed like 𝒯∞.
Now, we show that that conditionally given {𝒯 1

n (X) = x and 𝒯 2
n (X) = y} the probability

that Ik = 1 for some k > n is 1 (for Ik = 2 the argument is the same). Observe that since
a(x) > 0, we have Sk > 0 for every 1 ≤ k ≤ n. If Sk = 0 for some k > n, this implies that
both 𝒯 1

k (X) and 𝒯 2
k (X) have no active vertices left. So in particular, there must be an integer

n < ℓ ≤ k such that Iℓ = 1. Conditionally given (Sk)k≥n, if Sk > 0 for all k > n, then the
probability that Ik = 2 for all k > n is∏︂

k≥n

Sk − a(x)

Sk

≤ ∏︂
k≥n

(︃
1 − 1

Sk

)︃
≤ ∏︂

k≥n

(︃
1 − 1

k + 1

)︃
= 0.

Therefore we can apply the forthcoming Lemma 13 and deduce that, conditionally given
{X1 = 1}, the trees (𝒯 1

n (X))n≥1 and (𝒯 2
n (X))n≥1 converge locally, jointly, towards two inde-

pendent trees distributed like 𝒯∞.
To conclude, for a vertex and edge labelled locally finite tree τ denote by τ to be the plane

tree obtained from τ by first ordering the vertices in such a way that the labels of edges
connecting vertices to their children are increasing from left to right, and second erasing all
the labels (for example the vertices of the tree on the left of Figure 6 are ordered in such a
way). By continuity of the operation τ ↦→ τ on the set of labelled locally finite trees with
respect to the local topology, we conclude that conditionally on the fact that 𝒯 ∞ is not a

single vertex, the two trees 𝒯 1
∞ and 𝒯 2

∞ are independent copies of 𝒯 ∞. Since 𝒯 ∞ has only
one vertex with probability 1 − p (this happens if and only if X1 = −1), the desired result
follows from Lemma 12. □

LEMMA 13. Let (Xn)n≥0 and (Yn)n≥0 be two Markov chains on the countable state space
E with the same transition matrix α. Denote by A:= {x ∈ E : α(x, x) = 1} their set of absorb-
ing states. Let k : E × F → [0,1]. Define a Markov chain (Un,Vn, In)n≥0 on the state space
E2 × {1,2} with transition matrix given by, for all x, x′, y, y′ ∈ E and i ∈ {1,2}:

(x, y, i) → (︁
x′, y,1

)︁
with probability k(x, y)α

(︁
x, x′)︁

(x, y, i) → (︁
x, y′,2

)︁
with probability

(︁
1 − k(x, y)

)︁
α
(︁
y, y′)︁.

Suppose that, for all (x, y, i) ∈ (E \ A) × E × {1,2}, ℙ(x,y,i)(∃n ≥ 1, In = 1) = 1. Similarly,
suppose that, for all (x, y, i) ∈ E × (E \ A) × {1,2}, ℙ(x,y,i)(∃n ≥ 1, In = 2) = 1. Let n0 =
m0 = 0. For all k ≥ 1, if the set {n : n > nk−1 and In = 1} is nonempty, we define nk as
its minimum, otherwise we set nk = nk−1. Similarly, if the set {m : m > mk−1 and Im = 2}
is nonempty, we define mk as its minimum, otherwise we set mk = mk−1. Then, for every
(x, y) ∈ E2, ((Unk

)k≥0, (Vmk
)k≥0) under ℙ(x,y,1) has the same law as ((Xk)k≥0, (Yk)k≥0)

under ℙx ⊗ ℙy .

PROOF OF LEMMA 13. We show that ((Unk
)0≤k≤r , (Vmk

)0≤k≤s) under ℙ(x,y,1) has
the same law as ((Xk)0≤k≤r , (Yk)0≤k≤s) under ℙx ⊗ ℙy by double induction on (r, s). If
r = s = 0, the result is obvious. Suppose it is true for some pair (r, s). We show it for
(r, s + 1) (the case (r + 1, s) is similar). Let x = (x1, . . . , xr) ∈ Er , y = (y1, . . . , ys) ∈ Es

and ys+1 ∈ E. Write U := (Unk
)1≤k≤r , V := (Vmk

)1≤k≤s , X := (Xk)1≤k≤s , Y := (Yk)1≤k≤s ,
and ℙ := ℙ(x,y,1). Suppose that ys /∈ A, then ms+1 > ms and

ℙ(U = x,V = y,Vms+1 = ys+1)

= ℙ(U = x,V = y)ℙ(xr ,ys ,1)(∃n ≥ 1, I1 = · · · = In−1 = 1, In = 2,Vn = ys+1).
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By induction hypothesis, ℙ(U = x,V = y) = ℙx(X = x)ℙy(Y = y). Moreover

ℙ(xr ,ys ,1)(∃n ≥ 1, I1 = · · · = In−1 = 1, In = 2,Vn = ys+1)

= ℙ(xr ,ys ,1)(∃n ≥ 1, In = 2)α(ys, ys+1) = α(ys, ys+1).

This shows the formula for (r, s + 1) in the case ys /∈ A. Now, if ys ∈ A then

ℙ(U = x,V = y,Vms+1 = ys+1) = ℙ(U = x,V = y)ℙ(xr ,ys ,1)(∀m ≥ 1, Im = 1)1ys=ys+1

+ ℙ(U = x,V = y)ℙ(xr ,ys ,1)(∃m ≥ 1, Im = 2)α(ys, ys+1)

= ℙx(X = x)ℙy(Y = y, Ys+1 = ys+1).

This completes the proof. □

4. The height of uniform attachment trees with freezing. We shall now study the
geometry of uniform attachment trees with freezing. It will be convenient to work with 𝒯 n(x)

as built using Algorithm 2. Recall from Theorem 8 that the only difference between 𝒯n(x)

and 𝒯 n(x) is that all the active vertices of 𝒯 n(x) are labeled a1, . . . , aSn(x), while all the active
vertices of 𝒯n(x) are labelled a. In particular the graph structure of both trees is the same in
law, so it is equivalent to establish our main results with 𝒯n(x) replaced with 𝒯 n(x).

Also recall from (2.1) the definition of 𝕍n(x), which is a deterministic set representing the
labels of the vertices of 𝒯 n(x), and that by a slight abuse of notation we view elements of
𝕍n(x) as vertices of 𝒯 n(x).

An important ingredient in our proofs is Bennett’s concentration inequality. Since it will
be used multiple times, we state it here, tailored for our purpose.

PROPOSITION 14 (Bennett’s inequality). Let (Yi)1≤i≤n be independent Bernoulli ran-
dom variables of respective parameters (pi)1≤i≤n. Set mn = ∑︁n

i=1 pi and assume that
mn > 0. Then, for every t > 0,

ℙ

(︄
n∑︂

i=1

Yi > mn + t

)︄
≤ exp

(︃
−mng

(︃
t

mn

)︃)︃
and

ℙ

(︄
n∑︂

i=1

Yi < mn − t

)︄
≤ exp

(︃
−mng

(︃
t

mn

)︃)︃
,

where g(u) = (1 + u) ln(1 + u) − u for u > 0.

4.1. Uniform bounds on the height. We keep the notation introduced before (see in
particular Table 1). In particular, x = (xn)n≥1 is a fixed sequence of elements of {−1,1},
S0(x) := 1 and for every n ≥ 1

(4.1) Sn(x) := 1 +
n∑︂

i=1

xi; τ(x) := inf
{︁
n ≥ 1 : Sn(x) = 0

}︁
.

To lighten notation we will drop again the x in parenthesis (e.g., we will write Sn instead of
Sn(x), τ instead of τ(x), 𝒯 n instead of 𝒯 n(x), 𝕍n(x) instead of 𝕍n, etc.) but we keep in mind
that all the quantities depend on the sequence x. We first start with an estimate concerning
the height of 𝒯 n (recall its construction using Algorithm 2 in Section 2.2).

PROPOSITION 15. Fix n ≥ 1 and assume that τ > n. Let Height(𝒯 n) denote the height
of 𝒯 n. Then, for every t > 0,

ℙ
(︁
Height

(︁𝒯 n)︁− h+
n > t

)︁≤ exp
(︃
−h+

n g

(︃
t

h+
n

)︃
+ ln(n)

)︃
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and

ℙ
(︁
Height

(︁𝒯 n)︁− h+
n < −t

)︁≤ exp
(︃
−h+

n g

(︃
t

h+
n

)︃)︃
,

where g(u) = (1 + u) ln(1 + u) − u for u > 0.

PROOF. Fix u ∈ 𝕍n. From (2.2) if (Yi)1≤i≤n are independent Bernoulli random variables
of respective parameters (1/Si)1≤i≤n, we have

Hn
0(u)

(d)=
bn(u)∑︂
i=1

Yi1{xi=1}.

Thus, by a union bound over all vertices of 𝒯 n we get

ℙ
(︁
Height

(︁𝒯 n)︁> h+
n + t

)︁≤ nℙ

(︄
n∑︂

i=1

(︃
Yi − 1

Si

)︃
1{xi=1} > t

)︄
.

In addition, when u ∈ 𝕍n is an active vertex (so that bn(u) = n), using the fact that Hn
0(u) ≤

Height(𝒯n), we get

ℙ
(︁
Height

(︁𝒯 n)︁< h+
n − t

)︁≤ ℙ

(︄
n∑︂

i=1

(︃
Yi − 1

Si

)︃
1{xi=1} < −t

)︄
.

The desired bounds then both follow from Bennett’s inequality. □

4.2. A simple lower bound for h+
n . In view of Theorem 3, which tells us that h+

n is the
order of magnitude of Height(𝒯 n), it is useful to have estimates on h+

n . We give here a simple
lower bound on h+

n .

LEMMA 16. Let n ≥ 1. If τ > n then h+
n ≥ ln(n/4).

PROOF. Set pn := #{1 ≤ i ≤ n : xi = +1} and mn := #{1 ≤ i ≤ n : xi = −1}. If
there exists 1 ≤ i ≤ n − 1 such that xi = −1 and xi+1 = +1, we define x′ to be x′ =
(x1, . . . ,xi−1,+1,−1,xi+2,xi+3, . . .). Then it is a simple matter to check that we have
h+
n (x) ≥ h+

n (x′). By iteration, it readily follows that we have the inequality h+
n (x) ≥

h+
n ((+1, . . . ,+1,−1, . . . ,−1,xn+1,xn+2, . . .)) where +1 appears pn times and −1 appears

mn times. Since τ(x) > n entails pn ≥ n/2, it follows that h+
n (x) ≥ ∑︁pn

i=1 1/(i + 1) ≥
ln((pn + 1)/2) ≥ ln(n/4). □

4.3. Limit theorems for the height. We are now in position to establish Theorem 3.

PROOF OF THEOREM 3. We start with (I). Recall that for an active vertex u ∈ 𝔸n we
always have bn(u) = n. Therefore, by (2.2),

H
(︁
Un)︁ (d)=

n∑︂
i=1

Yn
i 1{xi=1}.

Using Bennett’s inequality (Proposition 14), for all ε > 0

ℙ

(︃⃓⃓⃓⃓
H(Un)

h+
n

− 1
⃓⃓⃓⃓
> ε

)︃
≤ 2 exp

(︁−h+
n g(ε)

)︁
.
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This upper bound goes to 0 as n tends to infinity since h+
n goes to infinity by Lemma 16.

We deduce that the sequence (H(Un)/h+
n − 1)n converges to 0 in probability. To conclude it

suffices to show that it is bounded in 𝕃
p for all p ≥ 1. Let p ≥ 1, we have

𝔼

[︃⃓⃓⃓⃓
H(Un)

h+
n

− 1
⃓⃓⃓⃓p]︃

= p

∫︂ ∞
0

ℙ

(︃⃓⃓⃓⃓
H(Un)

h+
n

− 1
⃓⃓⃓⃓
≥ u

)︃
up−1 du.

Using Bennett’s inequality again and by splitting the integral in half at u = 7, the above
quantity is bounded by

7p + 2p

∫︂ ∞
7

exp
(︁−h+

n g(u)
)︁
up−1 du.

Notice that for u ≥ 7 ≥ e2 − 1, we have g(u) ≥ u thus∫︂ ∞
7

exp
(︁−h+

n g(u)
)︁
up−1 du ≤

∫︂ ∞
7

exp
(︁−h+

n u
)︁
up−1 du = 1

(h+
n )p

∫︂ ∞
7h+

n

exp(−u)up−1 du.

By an iterated integration by parts, the last quantity is 𝒪(exp(−7h+
n )/h+

n ). Therefore the
boundedness in 𝕃

p follows.
We now establish (II) and (III). Fix C > 1. By Proposition 15, for all n ≥ 1,

ℙ

(︃
Height(𝒯 n)

h+
n

> C

)︃
≤ exp

(︁−h+
n g(C − 1) + ln(n)

)︁
.

This upper bound goes to 0 when ln(n) = o(h+
n ) since g(C − 1) > 0. It also goes to 0 when

C = e + ε since g(e − 1 + ε) > 1 and by Lemma 16, h+
n ≥ ln(n/4). Similarly,

ℙ

(︃
Height(𝒯 n)

h+
n

< 1 − ε

)︃
≤ exp

(︁−h+
n (x)g(ε)

)︁ −→
n→∞ 0.

This completes the proof of (II). It also shows that the convergence

Height(𝒯 n)

h+
n

ℙ−→
n→∞ 1

holds in probability when ln(n) = o(h+
n ). To fully show (III) we just need to prove that the

sequence (Height(𝒯 n)/h+
n − 1)n is bounded in 𝕃

p for all p ≥ 1 when ln(n) = o(h+
n ). It is

done using the same method as in the proof of (I) by using the fact that for n sufficiently
large we have

ℙ

(︃
Height(𝒯 n)

h+
n

> C

)︃
≤ exp

(︁−h+
n g(C − 1)/2

)︁
for every C ≥ 2. □

5. Regime with a linear amount of active vertices. We shall now investigate the regime
where the number of active vertices grows roughly linearly in the size of the trees: the main
goal of this section is to establish Theorem 4. Here we assume that (1.2) is in force, namely
that there exist c ∈ (0,1] and a sequence (An)n∈ℕ of positive numbers such that An = o(logn)

as n → ∞ and such that

lim
ε→0

lim sup
n→∞

max
An≤i≤εn

⃓⃓⃓⃓
Sn

i

i
− c

⃓⃓⃓⃓
= 0 and ∀ε > 0, lim inf

n→∞ min
εn≤i≤n

Sn
i

n
> 0.
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5.1. An asymptotic equivalent for h+
n . Here we show the convergence of Theorem 4(I),

namely

(5.1)
h+
n

lnn
−−−→
n→∞

c + 1

2c
.

To simplify notation, for all n ∈ ℕ and for all ε > 0, set

ηn(ε) := max
An≤i≤εn

⃓⃓⃓⃓
Sn

i

i
− c

⃓⃓⃓⃓
.

By (1.2), we know that lim supηn(ε) → 0 when ε → 0.

LEMMA 17. Suppose that the assumptions (1.2) hold with An → ∞ when n → ∞. Then,
for all C > 1,

(5.2) lim
ε→0

lim sup
n→∞

max
An≤a<b≤εn

aC<b

⃓⃓⃓⃓
⃓ 1

ln(b/a)

b∑︂
i=a+1

1

Sn
i

1{xn
i =1} − c + 1

2c

⃓⃓⃓⃓
⃓= 0.

PROOF OF LEMMA 17. We prove (5.2) with a double bound. First, let us start with the
upper bound. Let ε ∈ (0,1) and β > 1. For all An ≤ a < b ≤ εn:

b∑︂
i=a+1

1

Sn
i

1{xn
i =1} = ∑︂

a<i≤βℓ

1

Sn
i

1{xn
i =1} +

m∑︂
k=1+ℓ

∑︂
βk−1<i≤βk

1

Sn
i

1{xn
i =1} + ∑︂

βm<i≤b

1

Sn
i

1{xn
i =1},

where ℓ := ⌈lna/ lnβ⌉, m := ⌊lnb/ lnβ⌋ and where, in all the sums over i, it is implicit that
i is an integer. Let Pn := {1 ≤ i ≤ n : xi = 1} and Mn := {1 ≤ i ≤ n : xi = −1}. Note that for
all 1 ≤ i < j ≤ n, we have

#
(︁
Pn ∩ [i + 1, j ])︁− #

(︁
Mn ∩ [i + 1, j ])︁= Sn

j − Sn
i ,

#
(︁
Pn ∩ [i + 1, j ])︁+ #

(︁
Mn ∩ [i + 1, j ])︁= j − i.

Moreover, when An ≤ i < j ≤ εn, we have (j − i)c − 2jηn(ε) ≤ Sn
j − Sn

i ≤ (j − i)c +
2jηn(ε). As a result,

(5.3)

c + 1

2
(j − i) − jηn(ε) ≤ #

(︁
Pn ∩ [i + 1, j ])︁

= Sn
j − Sn

i + j − i

2
≤ c + 1

2
(j − i) + jηn(ε).

Therefore, for every k ∈ ⟦1 + ℓ,m⟧,∑︂
βk−1<i≤βk

1

Sn
i

1{xn
i =1} ≤ ∑︂

βk−1<i≤βk

1

i(c − ηn(ε))
1{xn

i =1}

≤ #
{︁
βk−1 < i ≤ βk : xn

i = 1
}︁ 1

βk−1(c − ηn(ε))

≤
(︃

c + 1

2

(︁
βk − βk−1+1

)︁+ βkηn(ε)

)︃
1

βk−1(c − ηn(ε))

≤
(︃

c + 1

2
(β − 1 + 1/An) + βηn(ε)

)︃
1

(c − ηn(ε))
=: Un(ε),
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where the third inequality comes from (5.3) and where for the fourth inequality we used that
βk−1 ≥ βℓ ≥ a ≥ An. Similarly, since βℓ−1 ≤ a,

∑︂
a<i≤βℓ

1

Sn
i

1{xn
i =1} ≤ #

{︁
a < i ≤ βℓ : xn

i = 1
}︁ 1

βℓ−1(c − ηn(ε))
≤ βℓ − βℓ−1

βℓ−1(c − ηn(ε))
,

and since βm+1 ≥ b,

∑︂
βm<i≤b

1

Sn
i

1{xn
i =1} ≤ #

{︁
βm < i ≤ b : xn

i = 1
}︁ 1

βℓ−1(c − ηn(ε))
≤ βm+1 − βm

βm(c − ηn(ε))
.

Thus

b∑︂
i=a+1

1

Sn
i

1{xn
i =1} ≤ (m − ℓ)Un(ε) + βℓ − βℓ−1

βℓ−1(c − ηn(ε))
+ βm+1 − βm

βm(c − ηn(ε))

≤ ln(b/a)

lnβ
Un(ε) + 2(β − 1)

c − ηn(ε))
.

For the lower bound, the same ideas apply. Indeed, for every integer 1 + ℓ ≤ k ≤ m we have∑︂
βk−1<i≤βk

1

Sn
i

1{xn
i =1} ≥ #

{︁
βk−1 < i ≤ βk : xn

i = 1
}︁ 1

βk(c + ηn(ε))

≥
(︃

c + 1

2

(︁
βk − βk−1 − 2

)︁− βkηn(ε)

)︃
1

βk(c + ηn(ε))

≥
(︃

c + 1

2

(︃
1 − 1

β
− 2

βAn

)︃
− ηn(ε)

)︃
1

(c + ηn(ε))
=: Ln(ε),

where the second inequality comes from (5.3) and the third one comes from the bound βk ≥
βℓ+1 ≥ βa ≥ βAn. Thus

b∑︂
i=a+1

1

Sn
i

1{xn
i =1} ≥ (m − ℓ)Ln(ε) ≥ ln(b/a)

lnβ
Ln(ε) − 2Ln(ε)

≥ ln(b/a)

lnβ
Ln(ε) − c + 1

c

(︃
1 − 1

β
− 2

βAn

)︃
.

Using the assumption that aC < b, we end up with the following inequalities:

Ln(ε)

lnβ
− c + 1

c lnC

(︃
1 − 1

β
− 2

βAn

)︃
≤ 1

ln(b/a)

b∑︂
i=a+1

1

Sn
i

1{xn
i =1} ≤ Un(ε)

lnβ
+ 2(β − 1)

(c − ηn(ε)) lnC
.

Using the fact that An → ∞, notice that lim supn→∞ Un(ε) → (β − 1)(c + 1)/(2c) and
lim infn→∞ Ln(ε) → (1 − 1/β)(c + 1)/(2c) as ε → 0. Therefore

lim sup
ε→0

lim sup
n→∞

max
An≤a<b≤εn

aC<b

⃓⃓⃓⃓
⃓ 1

ln(b/a)

b∑︂
i=a+1

1

Sn
i

1{xn
i =1} − c + 1

2c

⃓⃓⃓⃓
⃓

≤ c + 1

2c

⃓⃓⃓⃓
β − 1

lnβ
− 1

⃓⃓⃓⃓
+ c + 1

c lnC

(︃
1 − 1

β

)︃
+ 2(β − 1)

c lnC
.

This bound tends to 0 as β → 1; since β > 1 was arbitrary, the result follows. □
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PROOF OF THEOREM 4(I). Let (A′
n)n∈ℕ be a sequence of positive integers such that

An ≤ A′
n, A′

n = o(lnn) and A′
n → ∞ as n → ∞. Applying Lemma 17 we see that

lim
ε→0

lim sup
n→∞

⃓⃓⃓⃓
1

lnn

∑︂
A′

n<i≤εn

1

Sn
i

1{xn
i =1} − c + 1

2c

⃓⃓⃓⃓
= 0.

Since Sn
i ≥ 1 for all 1 ≤ i ≤ n and A′

n = o(lnn), we have

A′
n∑︂

i=1

1

Sn
i

1{xn
i =1} = o(lnn).

Finally, for all 0 < ε < 1, by the second assumption of (1.2):∑︂
εn≤i≤n

1

Sn
i

1{xn
i =1} =𝒪(1).

Combining everything gives the desired convergence (5.1). □

5.2. Distances between uniform vertices. Here we prove Theorem 4(II). We keep the no-
tation introduced in Section 2.3: for a vertex v ∈ 𝕍n, let bn(v) be the largest i ∈ {0,1, . . . , n}
such that v belongs to the forest ℱn

i obtained when building 𝒯 n using Algorithm 2. We first
focus on H(V n

1 ) and introduce some notation. Set

Zn :=
bn(V n

1 )∑︂
i=1

Yn
i 1{xn

i =1} and Mn :=
bn(V n

1 )∑︂
i=1

1

Sn
i

1{xn
i =1},

where (Y n
i )1≤i≤n are independent Bernoulli random variables of respective parameters

(1/Sn
i )1≤i≤n (independent from bn(V

n
1 )). Observe that Mn = 𝔼[Zn|bn(V

n
1 )]. By (2.2), we

have

(5.4) H
(︁
V n

1
)︁ (d)= Zn.

Fix p ≥ 1. First we establish that Mn/h+
n converges to 1 in 𝕃

p . Actually, since 0 ≤ Mn ≤ h+
n

almost surely it is enough to show the convergence in probability.
Let ε > 0 be small enough so that ηn(ε) ≤ c/2 for all n large enough. Let γε > 0 be such

that, for all n large enough, we have

γε ≤ min
εn≤i≤n

Sn
i

n
.

Such a γε exists thanks to (1.2). Besides, since An = o(lnn) = o(n), by Lemma 6 we have
bn(V

n
1 ) ≥ An with high probability. Using this, as well as the fact that h+

n ≥ ln(n/4) (see
Lemma 16), we obtain, with high probability as n → ∞,

0 ≤ 1 − Mn

h+
n

= 1

h+
n

n∑︂
i=bn(V n

1 )

1

Sn
i

1{xn
i =1} ≤ 1

h+
n

n∑︂
i=bn(V n

1 )

(︃
1

i(c − ηn(ε))
+ 1

γεn

)︃
1{xn

i =1}

≤ 1

ln(n/4)

2

c
ln
(︃

n

bn(V
n
1 )

)︃
+ 1

γεh+
n

.

Now, fix 0 < δ < 1 and take mn = n1−δ2δ . Then by Lemma 6

ℙ

(︃
ln
(︃

n

bn(V
n
1 )

)︃
> δ ln

(︃
n

2

)︃)︃
= mn + 1 − Sn

mn

n + 1 + Sn
n

−−−→
n→∞ 0.
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We conclude that Mn/h+
n converges towards 1 in probability (and therefore in 𝕃

p for all
p ≥ 1). Now we show that Zn/Mn converges to 1 in 𝕃

p following the same spirit as in the
proof of Theorem 3. We have

𝔼

[︃ ⃓⃓⃓⃓
Zn

Mn

− 1
⃓⃓⃓⃓p

| bn

(︁
V n

1
)︁]︃= p

∫︂ ∞
0

ℙ

(︃ ⃓⃓⃓⃓
Zn

Mn

− 1
⃓⃓⃓⃓
≥ u | bn

(︁
V n

1
)︁)︃

up−1 du.

By Bennett’s inequality (Proposition 14)

ℙ

(︃ ⃓⃓⃓⃓
Zn

Mn

− 1
⃓⃓⃓⃓
≥ u | bn

(︁
V n

1
)︁)︃≤ 2 exp

(︁−Mng(u)
)︁
,

where g(u) = (u + 1) ln(u + 1) − u. Since Mn is of order lnn it is a simple matter to check
that

𝔼

⃓⃓⃓⃓
Zn

Mn

− 1
⃓⃓⃓⃓p

≤ 2p𝔼

[︃∫︂ ∞
0

exp
(︁−Mng(u)

)︁
up−1 du

]︃
−−−→
n→∞ 0.

Since Mn ≤ h+
n we deduce that

𝔼

⃓⃓⃓⃓
Zn − Mn

h+
n

⃓⃓⃓⃓p
≤ 𝔼

⃓⃓⃓⃓
Zn

Mn

− 1
⃓⃓⃓⃓p

−−−→
n→∞ 0.

So (Zn − Mn)/h+
n converges to 0 in 𝕃

p . Since Mn/h+
n converges to 1 in 𝕃

p , Zn/h+
n goes to

1 as well. Finally, using Theorem 4(I), we conclude that Zn/ lnn converges to (c + 1)/(2c)

in 𝕃
p . This proves the first convergence of Theorem 4(II).

So as to deduce the asymptotic behaviour of the distance between two uniform points, we
next show that two uniform random vertices coalesce near the root.

LEMMA 18. Under the assumptions of Theorem 4 the following holds. For all n ≥ 1, let
V n

1 , V n
2 be two independent uniform vertices of 𝕍n. Then

cn(V
n
1 ,V n

2 )

n

ℙ−→
n→∞ 0.

PROOF. Let 0 < ε < 1. Let i, j ≤ n − 1 distinct with xn
i+1 = xn

j+1 = −1 and k ≤ i ∧ j

with xn
k+1 = 1. Denote by B the event “bn(V

n
1 ) = i and bn(V

n
2 ) = j” and by C the event

“cn(V
n
1 ,V n

2 ) = k”. By Lemma 7, it is clear that

ℙ(C|B) = ℙ
(︁
C and cn

(︁
V n

1 ,V n
2
)︁≤ k|B)︁≤ ℙ

(︁
C|cn

(︁
V n

1 ,V n
2
)︁≤ k,B

)︁= (︃
Sn

k+1
2

)︃−1

.

Therefore

ℙ
(︁
cn

(︁
V n

1 ,V n
2
)︁≥ εn|B)︁≤ i∧j∑︂

k=⌈εn⌉

(︃
Sn

k+1
2

)︃−1

1{xn
k+1=1} ≤

n−1∑︂
k=⌈εn⌉

(︃
Sn

k+1
2

)︃−1

1{xn
k+1=1}.

By averaging over i and j it follows that

ℙ
(︁
cn

(︁
V n

1 ,V n
2
)︁≥ εn

)︁≤ n−1∑︂
k=⌈εn⌉

(︃
Sn

k+1
2

)︃−1

1{xn
k+1=1}.

Finally, by the second hypothesis of (1.2), we know that
n−1∑︂

k=⌈εn⌉

(︃
Sn

k+1
2

)︃−1

1{xn
k+1=1} = 𝒪

(︃
1

n

)︃
as n → ∞,

hence the desired result. □

The second convergence of the point (II) of Theorem 4 is then an immediate consequence
of the first convergence of the same point using dominated convergence and Lemma 18.
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5.3. Limit theorem for the height. Here we show Theorem 4(III). The proof of the upper
bound is readily obtained by a union bound, while the lower bound is much more delicate.

PROOF OF THE UPPER BOUND IN THEOREM 4(III). Fix η > 0. First observe that by
definition of f (c) we have

g
(︁
f (c) − 1

)︁= f (c) lnf (c) − f (c) + 1 = 1 + c − 1

c + 1
= 2c

c + 1
,

so that g(f (c) − 1 + η) > 2c/(c + 1). By Theorem 4(I) we have h+
n ∼ (c + 1)/(2c)ln(n) as

n → ∞. As a consequence, there exists δ ∈ (0,1) such that h+
n g(f (c)−1+η) ≥ (1+δ) ln(n)

for n sufficiently large. Hence, by Proposition 15, for n sufficiently large,

ℙ
(︁
Height

(︁𝒯 n)︁> h+
n

(︁
f (c) + η

)︁)︁≤ exp
(︁−h+

n g
(︁
f (c) − 1 + η

)︁+ lnn
)︁≤ exp

(︁−δ ln(n)
)︁

which goes to 0 as n → ∞. This completes the proof of the upper bound. □

It therefore remains to show the lower bound on Height(𝒯n), which is the delicate part
of the proof. Let us explain the main idea of our approach. Since the upper-bound has been
obtained by using a union-bound over all vertices, one would hope to obtain the lower-bound
from the fact that the height of the vertices are “almost independent”. However, their heights
are highly correlated. To overcome this issue, we use the so-called chaining technique and
estimate by induction on k the height of the subtrees Height(𝒯k(xn)). More precisely, for
every increasing sequence of integers (chain) 0 = R0 < R1 < · · · < Rm = n, we have

Height(𝒯n) = ∑︂
0≤i<m

Height
(︁𝒯Ri+1

(︁
xn)︁)︁− Height

(︁𝒯Ri

(︁
xn)︁)︁.

We shall choose an appropriate chain of integers (Ri)0≤i≤m and then bound the differences
appearing in the last display. To this end, the main idea is that if Ri+1/Ri is close to some
large constant C > 0, then 𝒯Ri+1(x

n) can be approximated by a forest of independent trees
attached on 𝒯Ri

(xn). We then show by induction on i that many vertices have a large height
in this forest, and among them many are attached on vertices of 𝒯Ri

(xn) with large height.
To make this intuition rigorous we first need to define some objects. For n ∈ ℕ and 0 ≤

k ≤ n, recall the definition of 𝒯 n
k := 𝒯k(xn) from Algorithm 1. We denote by 𝒜n

k the set of all
vertices in 𝒯 n

n that were active at time k when running Algorithm 1 (these are vertices of 𝒯 n
n

that are either labelled with a and have an adjacent edge labelled by j ≤ k, or labelled with
i > k and have an adjacent edge labelled by j ≤ k). For 0 ≤ k ≤ k′ ≤ n, let ℱn

k,k′ be the forest
obtained as follows:

(i) Consider 𝒯 n
k′ and relabel by ⋆ all the vertices of 𝒯 n

k′ belonging to 𝒜n
k (see Figure 8 for

an example);
(ii) then remove all the edges of 𝒯 n

k′ that belongs to 𝒯 n
k (i.e., all the edges with labels in

⟦1, k⟧);
(iii) finally remove all the vertices with labels in ⟦1, k⟧.

Note that all the trees in ℱn
k,k′ have exactly one vertex labelled ⋆ (see Figure 8 for an example),

which by convention is considered to be active. We will thus consider the vertices labelled
⋆ as the roots of the trees in ℱn

k,k′ . Observe that one cannot deterministically reconstruct 𝒯 n
k′

from {ℱn
k,k′,𝒯 n

k }, but in distribution it is possible: if one merges uniformly at random every
active vertex of 𝒯 n

k′ with one vertex labelled ⋆ from ℱn
k,k′ , then one obtains a tree having the

same distribution as 𝒯 n
k′ . This comes from the fact that conditionally given 𝒯 n

k , at any future
time the subtrees grafted on active vertices of 𝒯 n

k after time k are exchangeable. Furthermore,
it will be crucial to keep in mind that that 𝒯 n

k and ℱn
k,k′ are independent. Indeed ℱn

k,k′ may be
constructed following Algorithm 1, independently of the steps 1 ≤ i ≤ k.
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FIG. 8. Illustration of the construction of ℱn
k,k′ with k = 7 and k′ = 13. From left to right: the sequence xn, a

realization of 𝒯 n
k , a realization of 𝒯 n

k′ and the forest ℱn
k,k′ composed of four trees all rooted at their unique vertex

labelled ⋆. If one matches and merges uniformly at random every ⋆ vertex of ℱn
k,k′ with every active vertex of 𝒯 n

k ,

one obtains a tree having the same distribution as 𝒯 n
k′ .

For every 0 ≤ k ≤ k′ ≤ n, for every vertex v ∈ ℱn
k,n we write Hn

k,k′(v) for the height of v in
the forest ℱn

k,n minus its height in ℱn
k′,n (where, by convention, the height of v in ℱn

k′,n is 0 if
v is not in this forest). In words, if v belongs to a certain tree τ of ℱn

k′,n, the quantity Hn
k,k′(v)

represents the height in ℱn
k,k′ of the vertex associated with the root τ .

For η > 0, for every integers n, k,C ∈ ℕ such that Ck ≤ n/C, set

Nn
k (C,η) = #

{︃
v ∈ 𝒜n

Ck+1 : Hn
Ck,Ck+1(v) >

c + 1

2c
ln(C)

(︁
f (c) − η

)︁}︃
.

The set of vertices involved in the definition of Nn
k will play an important role in our approach.

Roughly speaking, they correspond to vertices active at time Ck+1 which are “quite far” from
a vertex active at time Ck . The first main input in the proof of the lower bound of the height
is the following result, which shows that C > 0 can be chosen such that if Ri+1/Ri is close
to C > 0, then there are many active vertices with a “large” height in the forest ℱn

Ri,Ri+1
. Its

proof is deferred to Section 5.4.

LEMMA 19. For every η ∈ (0,1), there exists an integer C ≥ 2, there exist λ > 0 and
ε ∈ (0,1) such that for every n large enough, for every k ∈ ℕ, with An ≤ Ck ≤ εn/C, we
have

ℙ
(︁
Nn

k (C,η) ≤ 4Ck)︁≤ λ

Ck
.

For every n, k ∈ ℕ, with Ck ≤ n/C, let Mn
k be the maximal number of active vertices of

a tree in the forest ℱn
Ck,Ck+1 . The second main input in the proof of the lower bound of the

height is the following result, which shows that the this quantity cannot be too large. Its proof
is deferred to Section 5.4.

LEMMA 20. For every n large enough, for every k ∈ℕ, with An ≤ Ck ≤ n/C,

ℙ
(︁
Mn

k > k3)︁≤ 1

k2 .

Let us now explain how the lower bound for the height follows from Lemmas 19 and 20.

PROOF OF THE LOWER BOUND FOR THEOREM 4(III). Fix η ∈ (0,1) and take C ≥ 2,
λ > 0, ε ∈ (0,1) such that the conclusion of Lemma 19 holds and write Nn

k instead of
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Nn
k (C,η) to simplify notation. For all integers n, k ∈ ℕ such that An ≤ Ck ≤ n/C, set

N
n

k = #
{︃
v ∈𝒜n

Ck ,∀ℓ ∈ ⟦1, k − 1⟧ s.t. An ≤ Cℓ,Hn
Cℓ,Cℓ+1(v) >

c + 1

2c
ln(C)

(︁
f (c) − η

)︁}︃
.

We shall show that if Kn is the largest integer k such that Ck ≤ εn/C, then

(5.5) ℙ
(︁
N

n

Kn
≥ 1

)︁ −→
n→∞ 1.

If (5.5) holds, then with probability tending to 1 there exists a vertex vKn ∈ 𝒜n
CKn

and ver-
tices vi ∈ 𝒜n

Ci for every i ∈ ⟦1,Kn − 1⟧ such that An ≤ Ci , vi is an ancestor of vi+1 and

dn(vi, vi+1) > c+1
2c

ln(C)(f (c) − η). Thus the height of vKn in 𝒯 n is at least

#
{︁
i ∈ ℕ : ln(An)/ ln(C) ≤ i < Kn

}︁ · c + 1

2c
ln(C)

(︁
f (c) − η

)︁
,

which is equal to(︃⌊︃
ln(n)

ln(C)
+ ln(ε/C)

ln(C)

⌋︃
−
⌈︃

ln(An)

ln(C)

⌉︃)︃
· c + 1

2c
ln(C) · (︁f (c) − η

)︁ ∼
n→∞ ln(n)

c + 1

2c

(︁
f (c) − η

)︁
.

Since η ∈ (0,1) was chosen arbitrarily, this will imply the desired result.
The main step of the proof to prove (5.5) is to establish that for every k ∈ ℕ with An ≤

Ck ≤ εn/C we have

(5.6) ℙ
(︁
N

n

k+1 < 2k+1|Nn

k ≥ 2k)︁=𝒪
(︃

1

k2

)︃
,

where here, and in the rest of the proof, the 𝒪 is uniform in An ≤ Ck ≤ εn/C. This means
that there exists a constant Δ > 0 such that the term 𝒪(1/k2) can be bounded from above by
Δ/k2 for every An ≤ Ck ≤ εn/C and n large enough. If this holds, we will then have

ℙ
(︁∃k with An ≤ Ck ≤ εn/C and N

n

k < 2k)︁≤ ℙ
(︁
Nn

kn
< 2kn

)︁+𝒪
(︄ ∞∑︂

k=kn

1

k2

)︄

with kn = ⌈ln(An)/ ln(C)⌉. By Lemma 19,

ℙ
(︁
Nn

kn
< 2kn

)︁≤ ℙ
(︁
Nn

kn
≤ 4Ckn

)︁≤ λ

Ckn
≤ λ

An

−→
n→∞ 0,

where the first inequality holds because C ≥ 2. As a consequence, with probability tending
to 1 as n → ∞, for every integer k such that An ≤ Ck ≤ εn/C, we have N

n

k ≥ 2k , which
implies (5.5).

It thus remains to establish (5.6). Note that the random variable N
n

k is 𝒯 n
Ck measurable, and

so is independent of the random variables Nn
k and Mn

k which are ℱn
Ck,Ck+1 measurable. As a

consequence, we get for every k ∈ℕ with An ≤ Ck ≤ εn/C:

(5.7)

ℙ
(︁
N

n

k+1 < 2k+1|Nn

k ≥ 2k)︁
≤ ℙ

(︁
Nn

k < 4Ck)︁+ ℙ
(︁
Mn

k > k3)︁+ ℙ
(︁
N

n

k+1 < 2k+1,Nn
k ≥ 4Ck,Mn

k ≤ k3|Nn

k ≥ 2k)︁
≤𝒪

(︃
1

Ck

)︃
+𝒪

(︃
1

k2

)︃
+ ℙ

(︁
N

n

k+1 < 2k+1,Nn
k ≥ 4Ck,Mn

k ≤ k3|Nn

k ≥ 2k)︁,
where we have used Lemmas 19 and 20.

To bound the third term, we shall estimate N
n

k by using a second moment technique. To
this end, we recall that one may reconstruct a tree with the same distribution as 𝒯 n

Ck+1 , by
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merging uniformly at random each active vertex from 𝒯 n
Ck with one vertex labelled ⋆ from

ℱn
Ck,Ck+1 . With this in mind, it follows that

(5.8) 𝔼
[︁
N

n

k+1|𝒯 n
Ck ,ℱn

Ck,Ck+1

]︂
= N

n

kN
n
k

Sn
Ck

,

where we recall that Sn
Ck = SCk(xn) represents the number of active vertices of 𝒯 n

Ck .
Next, denote by 𝒜n

Ck,Ck+1 the set of all active vertices of the forest ℱn
Ck,Ck+1 . For v ∈

𝒜n
Ck,Ck+1 , let En

k (v) be the event defined by

En
k (v) =

{︃
∀ℓ ∈ ⟦1, k − 1⟧ s.t. An ≤ Cℓ,Hn

Cℓ,Cℓ+1(v) >
c + 1

2c
ln(C)

(︁
f (c) − η

)︁}︃
,

if this event holds say that v is k-good, and k-bad otherwise. Observe that by definition, for
every tree of ℱn

Ck,Ck+1 , either all its active vertices are k-good, or all its vertices are k-bad.
Note that, for all v, v′ ∈𝒜n

Ck,Ck+1 , conditionally on 𝒯 n
Ck and ℱn

Ck,Ck+1 , the events En
k+1(v)

and En
k+1(v

′) are negatively correlated unless v, v′ are in the same tree in ℱn
Ck,Ck+1 . Indeed,

on the one hand, if the trees of ℱn
Ck,Ck+1 containing v and v′ are different, then when we

attach the tree containing v to an active vertex of 𝒜n
Ck in such a way that v is k-good then

the tree containing v′ will have less chance to be attached to another vertex of 𝒜n
Ck in such

a way that v′ is k-good, and vice versa. On the other hand, if v and v′ are in the same
tree and if we have the inequalities Hn

Ck,Ck+1(v) > c+1
2c

ln(C)(f (c) − η) and Hn
Ck,Ck+1(v

′) >

c+1
2c

ln(C)(f (c) − η), if we denote by w the (random) active vertex of 𝒯 n
Ck on which this tree

is attached, then v and v′ are both k + 1-good if and only if w is k-good.
As a result, writing ˜︁ℙ and ˜︁𝔼 for the conditional probability and expectation conditionally

given 𝒯 n
Ck and ℱn

Ck,Ck+1 , we get

(5.9)

˜︃𝒱ar
[︁
N

n

k+1
]︁= ˜︃𝒱ar

[︃ ∑︂
v∈𝒜n

Ck,Ck+1

1En
k+1(v)

]︃
= ∑︂

v,v′∈𝒜n

Ck,Ck+1

˜︃𝒞ov(1En
k+1(v),1En

k+1(v
′))

≤ Mn
k

∑︂
v∈𝒜n

Ck,Ck+1

˜︁ℙ(︁En
k+1(v)

)︁= Mn
k ·˜︁𝔼[︁Nn

k+1
]︁
.

Thus, by (5.9), still on the event {Nn

k ≥ 2k,Nn
k ≥ 4Ck,Mn

k ≤ k3}, we have

˜︁ℙ(︁Nn

k+1 < 2k+1)︁ ≤ ˜︁ℙ(︃N
n

k+1 <
1

2
˜︁𝔼[︁Nn

k+1
]︁)︃≤ 4

˜︃𝒱ar[Nn

k+1]˜︁𝔼[Nn

k+1]2
≤ 4

Mn
k˜︁𝔼[Nn

k+1]

= 4Mn
k Sn

Ck

Nn
k Nn

k

≤ 4k3Ck

2kCk
= 𝒪

(︃
1

k2

)︃
.

As a consequence,

ℙ
(︁
N

n

k+1 < 2k+1,Nn
k ≥ 4Ck,Mn

k ≤ k3|Nn

k ≥ 2k)︁
= 𝔼

[︁˜︁ℙ(︁Nn

k+1 < 2k+1)︁1Nn
k ≥4Ck,Mn

k ≤k3 |Nn

k ≥ 2k]︁= 𝒪
(︃

1

k2

)︃
,

and (5.6) follows from (5.7). This completes the proof. □
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5.4. Proof of Lemmas 19 and 20. We keep the notation introduced in Section 5.3. The
following estimate is the first step for the proof of Lemma 19.

LEMMA 21. For every η ∈ (0,1), there exists an integer C > 1 and ε ∈ (0,1) such that
for every n large enough for every k ∈ ℕ, with An ≤ Ck ≤ εn/C, we have

𝔼
[︁
Nn

k (C,η)
]︁≥ 5Ck.

PROOF OF LEMMA 21. Recall that g(x) = (1 + x) ln(1 + x) − x. Set δ = 1 − c+1
2c

·
g(f (c) − 1 − η), which belongs to (0,1) since g(f (c) − 1 − η) < (2c)/(c + 1), and then
choose an integer C > 1 large enough such that

(5.10)
1

ln(C)4 exp
(︁−(1 − δ) ln(C)

)︁≥ 6

cC
and ln(C) ≥ c + 1

2c

(︁
f (c) − η

)︁
.

It remains to check that this value of C satisfies the desired conclusion. By Lemma 5 for
every v ∈ 𝒜n

Ck+1 ,

Hn
Ck,Ck+1(v)

(d)= ∑︂
Ck<i≤Ck+1

Yn
i ,

where (Y n
i )1≤i≤n are independent Bernoulli random variables of respective parameters

(1/Sn
i 1xn

i =1)1≤i≤n. Lemma 17 yields

lim
ε→0

lim sup
n→∞

max
An≤Ck≤εn

⃓⃓⃓⃓ ∑︂
Ck<i≤Ck+1

1

Sn
i

1xn
i =1 − c + 1

2c
ln(C)

⃓⃓⃓⃓
−→
n→∞ 0.

Hence, by [6], Theorem 1, we have

lim
ε→0

lim sup
n→∞

max
An≤Ck≤εn

dTV

(︃
Hn

Ck,Ck+1(v),𝒫oi
(︃

c + 1

2c
ln(C)

)︃)︃
= 0,

where 𝒫oi(λ) denotes a Poisson random variable with parameter λ and dTV stands for the
total variation distance. As a consequence, setting

P(C) := ℙ

(︃
𝒫oi

(︃
c + 1

2c
ln(C)

)︃
>

c + 1

2c
ln(C)

(︁
f (c) − η

)︁)︃
,

we have

(5.11) lim
ε→0

lim sup
n→∞

max
An≤Ck≤εn

⃓⃓⃓⃓
ℙ

(︃
Hn

Ck,Ck+1(v) >
c + 1

2c
ln(C)

(︁
f (c) − η

)︁)︃− P(C)

⃓⃓⃓⃓
= 0.

Then, for λ > 2 and t > 1, using the bound ⌈u⌉! ≤ u3(u/e)u for u ≥ 2, observe that

ℙ
(︁𝒫oi(λ) > λt

)︁≥ e−λ λ⌈λt⌉

⌈λt⌉! ≥ e−λλλt

(︃
e

λt

)︃λt 1

(λt)3 = e−λg(t−1) 1

(λt)3 .

Taking into account our choice of C (see (5.10)), it follows that

(5.12) P(C) ≥ 1

ln(C)4 exp
(︃
−c + 1

2c
ln(C)g

(︁
f (c) − 1 − η

)︁)︃≥ 6

cC
.

Then observe that by linearity we have

𝔼
[︁
Nn

k (C,η)
]︁= #𝒜n

Ck+1ℙ

(︃
Hn

Ck,Ck+1(v) >
c + 1

2c
ln(C)

(︁
f (c) − η

)︁)︃
.
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But |#𝒜n
Ck+1/(cC

k+1)−1| = |Sn
Ck+1/(cC

k+1)−1| ≤ ηn(ε)/c for Ck+1 ≤ εn, where we recall
that

ηn(ε) = max
An≤i≤εn

⃓⃓⃓⃓
Sn

i

i
− c

⃓⃓⃓⃓
.

The desired result follows by using (5.11) and (5.12). □

Observe that by (1.2) we may choose ε0 ∈ (0,1) such that

lim sup
n→∞

max
An≤i≤ε0n

⃓⃓⃓⃓
Sn

i

i
− c

⃓⃓⃓⃓
<

c

2
and lim inf

n→∞ min
ε0n≤i≤n

Sn
i

n
> 0,

which implies the existence of a constant c0 > 0 such that

(5.13) for every n sufficiently large, for every 1 ≤ i ≤ n, c0i ≤ Sn
i ≤ i + 1,

where the upper bound comes from the fact that xn
i ≤ 1.

We are now ready to prove Lemma 19.

PROOF OF LEMMA 19. Fix η ∈ (0,1). Consider C > 1 given by Lemma 21. Take ε ∈
(0,1) small enough such that the conclusion of Lemma 21 holds. The main idea of the proof
is to show that for some fixed λ > 0 we have uniformly for every k ∈ ℕ with An ≤ Ck ≤ εn/C

(5.14) 𝒱ar
(︁
Nn

k (C,η)
)︁≤ λCk.

Indeed, it will then directly follow from Lemma 21 and Bienaymé–Chebyshev’s inequality
that

ℙ
(︁
Nn

k (C,η) < 4Ck)︁≤ ℙ
(︁⃓⃓
Nn

k (C,η) −𝔼
[︁
Nn

k (C,η)
]︁⃓⃓

> Ck)︁≤ 𝒱ar
(︁
Nn

k (C,η)
)︁
/C2k ≤ λ/Ck.

We shall show that

(5.15) 𝔼
[︁(︁

Nn
k (C,η)

)︁2]︁≤ (︁𝔼[︁Nn
k (C,η)

]︁)︁2 +𝒪(︁Ck)︁.
This indeed implies (5.14). Observe that by definition of Nn

k (C,η), setting t = c+1
2c

×
ln(C)(f (c) − η), we have

Nn
k (C,η) = ∑︂

v∈𝒜n

Ck+1

1Hn

Ck,Ck+1 (v)>t .

Note from Algorithm 2, that for every v,w ∈ 𝒜n
Ck+1 with v ≠ w

(︁
Hn

Ck,Ck+1(v),Hn
Ck,Ck+1(w)

)︁ (d)=
(︃ ∑︂

Ck<i≤Ck+1

Yn
i ,

∑︂
Ck<i≤Ck+1

Zn
i

)︃

where (Zn
i )1≤i≤n are independent Bernoulli random variables of respective parameters

(1/Sn
i 1xn

i =1)1≤i≤n. The problem is that (Zn
i )1≤i≤n and (Y n

i )1≤i≤n are not independent. The
idea is to say that, conditionally on the fact that v and w do not coalesce (i.e., they do not
belong to the same tree) before time Ck+1, then, when the height of v goes up by 1 in the
coalescence process, the height of w does not change and vice versa. Therefore their heights
are negatively correlated. One can see that, for all v,w ∈ 𝒜n

Ck+1 ,

(5.16)

ℙ
(︁
Hn

Ck,Ck+1(v) > t and Hn
Ck,Ck+1(w) > t

)︁
≤ ℙ

(︁
Ck ≤ cn(v,w) ≤ Ck+1)︁

+ ℙ
(︁
cn(v,w) < Ck,Hn

Ck,Ck+1(v) > t,Hn
Ck,Ck+1(w) > t

)︁
.
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The first probability of (5.16) is bounded from above as follows:

(5.17)

ℙ
(︁
Ck ≤ cn(v,w) ≤ Ck+1)︁≤ 1 − ∏︂

Ck≤i≤Ck+1

(︃
1 − 1xn

i =1
1(︁Sn
i
2

)︁)︃

≤ 1 − exp
(︃ ∑︂

Ck≤i≤Ck+1

ln
(︃

1 − 1(︁Sn
i
2

)︁)︃)︃,

which is 𝒪(1/Ck) using (1.2), and where the 𝒪(1/Ck) is uniform in v, w and in n ≥ Ck+1.
We then focus on the event involved in the second probability of (5.16). One can write

Hn
Ck,Ck+1(v) = ∑︂

Ck<i≤Ck+1

Yn
i ,

where (Y n
i )1≤i≤n are independent Bernoulli random variables of respective parameters

(1/Sn
i 1xn

i =1)1≤i≤n. Moreover, we note that if we know that Yn
i = 1 and that cn(v,w) ≤ i −1,

then it implies that there is no coalescence with the tree containing w. More precisely, one
can write

Hn
Ck,Ck+1(w) = ∑︂

Ck<i≤Ck+1

Zn
i ,

with

Zn
i = Yn

i 1cn(v,w)≥i + ξn
i 1cn(v,w)<i and Yn

i =0,

where the ξn
i ’s are independent Bernoulli r.v. of parameter (1/(Sn

i − 1))1xn
i =1 respectively

and are taken independently from the Yn
i ’s. As a result, the second probability in (5.16) is

bounded from above by

(5.18)

ℙ

(︃
cn(v,w) < Ck,

∑︂
Ck<i≤Ck+1

Yn
i > t and

∑︂
Ck<i≤Ck+1

Zn
i > t

)︃

= ℙ

(︃
cn(v,w) < Ck,

∑︂
Ck<i≤Ck+1

Yn
i > t and

∑︂
Ck<i≤Ck+1

ξn
i 1Yn

i =0 > t

)︃

≤ ℙ

(︃ ∑︂
Ck<i≤Ck+1

Yn
i > t and

∑︂
Ck<i≤Ck+1

ξn
i > t

)︃

= ℙ

(︃ ∑︂
Ck<i≤Ck+1

Yn
i > t

)︃
ℙ

(︃ ∑︂
Ck<i≤Ck+1

ξn
i > t

)︃
≤ ℙ

(︃ ∑︂
Ck<i≤Ck+1

ξn
i > t

)︃2
.

Now, thanks to the fact that 1/Sn
i ≤ 1/(Sn

i − 1), one can define some random variables ˜︁Yn
i ’s

for i ≥ 1 such that, for all i ≥ 1, we have ˜︁Yn
i ≤ ξn

i and (˜︁Yn
i )i≥1 is a family of independent

Bernoulli random variables of parameter (1/Sn
i )1xn

i =1, having thus the same law as (Y n
i )i≥1.

It follows that

ℙ

(︃ ∑︂
Ck<i≤Ck+1

ξn
i > t

)︃
− ℙ

(︃ ∑︂
Ck<i≤Ck+1

Yn
i > t

)︃
= ℙ

(︃ ∑︂
Ck<i≤Ck+1

ξn
i > t ≥ ∑︂

Ck<i≤Ck+1

˜︁Yn
i

)︃

≤ ℙ

(︃ ∑︂
Ck<i≤Ck+1

(︁
ξn
i − ˜︁Yn

i

)︁
> 0

)︃
.
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Thus

ℙ

(︃ ∑︂
Ck<i≤Ck+1

ξn
i > t

)︃
− ℙ

(︃ ∑︂
Ck<i≤Ck+1

Yn
i > t

)︃
≤ 𝔼

[︃ ∑︂
Ck<i≤Ck+1

(︁
ξn
i − ˜︁Yn

i

)︁]︃

= ∑︂
Ck<i≤Ck+1

1

Sn
i (Sn

i − 1)
1xn

i =1 = 𝒪
(︃

1

Ck

)︃
,

where the 𝒪(1/Ck) is uniform in n ≥ Ck+1. By combining this estimate with (5.16) and
(5.18), we conclude that

ℙ
(︁
Hn

Ck,Ck+1(v) > t,Hn
Ck,Ck+1(w) > t

)︁
≤ ℙ

(︁
Hn

Ck,Ck+1(v) > t
)︁
ℙ
(︁
Hn

Ck,Ck+1(w) > t
)︁+𝒪

(︃
1

Ck

)︃
.

Therefore, since #𝒜n
Ck+1 ≤ Ck+1 + 1,

𝔼
[︁(︁

Nn
k (C,η)

)︁2]︁
= ∑︂

v∈𝒜n

Ck+1

ℙ
(︁
Hn

Ck,Ck+1(v) > t
)︁+ ∑︂

v≠w∈𝒜n

Ck+1

ℙ
(︁
Hn

Ck,Ck+1(v) > t and Hn
Ck,Ck+1(w) > t

)︁

= 𝒪(︁Ck)︁+ ∑︂
v≠w∈𝒜n

Ck+1

ℙ
(︁
Hn

Ck,Ck+1(v) > t
)︁
ℙ
(︁
Hn

Ck,Ck+1(w) > t
)︁+ (︁#𝒜n

Ck+1

)︁2𝒪(︃ 1

Ck

)︃

= ∑︂
v≠w∈𝒜n

Ck+1

ℙ
(︁
Hn

Ck,Ck+1(v) > t
)︁
ℙ
(︁
Hn

Ck,Ck+1(w) > t
)︁+𝒪(︁Ck)︁

= ∑︂
v,w∈𝒜n

Ck+1

ℙ
(︁
Hn

Ck,Ck+1(v) > t
)︁
ℙ
(︁
Hn

Ck,Ck+1(w) > t
)︁+𝒪(︁Ck)︁

= 𝔼
[︁
Nn

k (C,η)
]︁2 +𝒪(︁Ck)︁.

This implies (5.14) and completes the proof. □

To establish Lemma 20 and bound Mn
k we use the following estimate on Pólya urns, which

may be shown by following verbatim the proof of Lemma A.1 from [9].

LEMMA 22. Fix an integer z0 > 0 and set U0 = 1. Let (zn)n≥1 ∈ {−1,1}ℕ, set Zn =∑︁n
i=0 zi . Assume that Zn > 0 for every n ≥ 1 and

∑︁∞
n=0 1/Z2

n < ∞. Let (Un)n≥1 be a se-
quence of random nonnegative integers such that for every n ≥ 0,

ℙ(Un+1 = Un + zn+1|Un) = Un

Zn

; ℙ(Un+1 = Un|Un) = Zn − Un

Zn

.

Almost surely for every t ≥ 0

ℙ

(︃
sup
i≥1

⃓⃓⃓⃓
Ui

Zi

− 1

z0

⃓⃓⃓⃓
> t

1

z0

)︃
≤ 2 exp

(︃
− (t2/4)(1/z0)∑︁

n≥1 1/Z2
n + t max(

∑︁
n≥1 1/Z2

n,maxn≥1 1/Zn)

)︃
.

PROOF OF LEMMA 20. We apply Lemma 22 with t = k2, z0 = Sn
Ck , zi = xn

Ck+i
for 1 ≤

i ≤ Ck+1 − Ck and zi = 1 for all i > Ck+1 − Ck , and Ui being the number of active vertices
in a given tree of ℱn

Ck,Ck+i
. Thus, writing Xk for the number of active vertices of a any fixed
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tree of the forest ℱn
Ck,Ck+1 , writing δn

k :=∑︁
Ck<n≤Ck+1 1/(Sn

i )2 +∑︁
j≥1 1/(Sn

Ck+1 + j)2, and
εn
k := maxCk<i≤Ck+1 1/Sn

i ,

ℙ
(︁
Xk/S

n
Ck+1 >

(︁
1 + k2)︁/Sn

Ck

)︁≤ 2 exp
(︃
− (k4/4)/Sn

Ck

δn
k + k2 max(δn

k , εn
k )

)︃
.

And by (5.13), as k,n → ∞ with An ≤ Ck ≤ n/C, we have Sn
Ck ≤ Ck + 1, 1/Sn

Ck =
𝒪(1/Ck), εn

k =𝒪(1/Ck) and δn
k = 𝒪(1/Ck), thus for every k large enough,

ℙ
(︁
Xk > k3)︁≤ 2e−k2/𝒪(1).

Then, since there are at most Sn
Ck = 𝒪(Ck) trees in ℱn

Ck,Ck+1 , for n large enough, for every

k ∈ℕ, with An ≤ Ck ≤ n/C,

ℙ
(︁
Mn

k > k3)︁≤ Sn
Ck 2e−k2/𝒪(1) ≤ 1/k2. □

6. Application: Contact-tracing in a stochastic SIR dynamics. Our results can be ap-
plied to study the so-called “infection tree” of a stochastic SIR dynamics, which is a classical
model for the evolution of epidemics (for background on stochastic epidemic models, see
[4, 12]). We assume that initially there is 1 infectious individual (that has just become in-
fected) and n susceptible individuals. The infectious periods of different infectives are i.i.d.
distributed according to an exponential random variable of parameter 1. During its infectious
period an infective makes contacts with a given individual at the time points of a time homo-
geneous Poisson process with intensity λn. If a contacted individual is still susceptible, then
it becomes infectious and is immediately able to infect other individuals. An individual is
considered “removed” once its infectious period has terminated, and is then immune to new
infections, playing no further part in the epidemic spread. The epidemic ceases as soon as
there are no more infectious individual present in the population. All Poisson processes are
assumed to be independent of each other; they are also independent of the infectious periods.

We call a “step” an event where either a susceptible individuals becomes infective, or
where an individual’s infectious period terminates. Denote by τn the number of steps made
when the epidemic ceases. For 0 ≤ k ≤ τn, let 𝒯n

k be the infection tree after k steps, in which
the vertices are individuals and where an edge is present between two individuals if one
has infected the other. We are interested in the evolution of the associated “infection tree”
(𝒯n

k )0≤k≤τn , as well as in the shape of the full infection tree 𝒯n
τn

when the epidemic ceases.
Let (Un

k , In
k )k≥0 be a Markov chain with initial state (Un

0 , I n
0 ) = (n,1) and transition prob-

abilities given by

(︁
Un

k+1, I
n
k+1
)︁=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︁
Un

k − 1, I n
k + 1

)︁
with probability

λnU
n
k

1 + λnU
n
k

,(︁
Un

k , In
k − 1

)︁
with probability

1

1 + λnU
n
k

with {(k,0) : 0 ≤ k ≤ n} as absorbing states (we use “U” for “uninfected”). Observe that
evolution of the number of susceptible individuals and the number of infectious individuals
in the infection tree evolves according to this Markov chain. Then define the random sequence
Xn = (Xn

i )1≤i≤τ ′
n

of ±1 as follows: let τ ′
n be the absorption time of the Markov chain, and

for 1 ≤ i ≤ τ ′
n set Xn

i = In
i − In

i−1. See Figure 9 for a simulation.
Then by construction, it is clear that(︁

𝒯n
k

)︁
0≤k≤τn

(d)= (︁𝒯k

(︁
Xn)︁)︁

0≤k≤τ ′
n
.



2914 BELLIN, BLANC-RENAUDIE, KAMMERER AND KORTCHEMSKI

FIG. 9. Left: simulation of (Un, In) for λn = 2/n and n = 10,000 (Un in blue and In in red). Centre: the
corresponding fluid limit. Right: simulation of (Un, In) for λn = 2 and n = 100,000.

To simplify notation, let 𝒯n = 𝒯n
τn

be the full infection tree when the epidemic ceases. We
also identify the random variables in the above equality in distribution. For all p ∈ [0,1), we
denote by 𝒢(1−p) the geometric distribution μ given by μ(k) = (1−p)pk for every integer
k ≥ 0.

THEOREM 23. The following assertions hold.

(I) Assume that λn ∼ λ/n for some λ > 0. Then 𝒯n converges in distribution locally
towards a Bienaymé tree with offspring distribution 𝒢(1/(1 + λ)).

(II) Assume that λn ≫ 1/n. Then 𝒯n is not tight for the topology of the local convergence.

PROOF. For (I), assume that λn ∼ λ/n as n → ∞ for some λ > 0. We first prove that
(In

k )k≥0 converges in distribution for the product topology towards the random walk (Sk)k≥0
such that Sk+1 − Sk = 1 with probability λ/(1 + λ) and Sk+1 − Sk = −1 with probability
1/(1 + λ). Indeed, the local convergence of 𝒯n(Xn) implies the local convergence of 𝒯n. So
as to achieve this, one can first see that since Un

k ≤ n for all k ≥ 0, we have

λnU
n
k

1 + λnU
n
k

≤ nλn

1 + nλn

−→
n→∞

λ

1 + λ
.

But we also have

inf
k≤√

n

λnU
n
k

1 + λnU
n
k

≥ λn(n − √
n)

1 + nλn

−→
n→∞

λ

1 + λ
.

For all k0 ≥ 0, one can thus build a coupling between (In
k )0≤k≤k0 and (Sk)0≤k≤k0 such that

the two walks coincide w.h.p. until time k0 as n → ∞.
Thus, by Skorokhod’s representation theorem we may assume that almost surely, for every

k0 ≥ 1, (In
k )0≤k≤k0 = (Sk)0≤k≤k0 for n sufficiently large. By Theorem 1, 𝒯n converges locally

in distribution to a uniform attachment tree with freezing built using the sequence (Sk+1 −
Sk)k≥0. By Theorem 2, this is a Bienaymé tree with offspring distribution 𝒢(1/(1 +λ)). This
proves (I).

For (II), we argue by contradiction and assume that (𝒯n)n≥0 is tight. By Prokhorov’s
theorem, let φ be an extraction such that (𝒯φ(n))n≥0 converges in distribution. Similarly
to the proof of (I), observe that (I

φ(n)
k )k≥0 converges in distribution with respect to the

product topology towards (k + 1)k≥0 since for all fixed k ≥ 0, the transition probability
λnU

φ(n)
k /(1 + λφ(n)U

φ(n)
k ) converges to 1 as n → ∞. Thus, by Skorokhod’s representation

theorem we may assume that almost surely, for every k0 ≥ 1, (I
φ(n)
k )0≤k≤k0 = (k + 1)0≤k≤k0

for n sufficiently large. But if xi = 1 for every i ≥ 1, the sum
∑︁

i≥1
1

Si(x)
1{xi=−1} converges,

so by Theorem 1 the sequence (𝒯φ(n))n≥0 does not converge locally in distribution, a contra-
diction. □
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THEOREM 24. The following assertions hold.

(I) Assume that λn ∼ λ/n for some λ > 1. Let A be the event of survival of a Bienaymé
process with offspring distribution 𝒢(1/(1 + λ)).

(a) The convergence

(6.1)
(︃In⌊nt⌋

n

)︃
t≥0

(d)−→
n→∞

(︁
max

(︁
2 − 2gλ(t) − t,0

)︁
1A

)︁
t≥0,

holds in distribution for the topology of uniform convergence on compact sets, where gλ

is the solution of the ordinary differential equation g′
λ(t) = −λgλ(t)/(1 + λgλ(t)) with

gλ(0) = 1.
(b) For all n ≥ 1, conditionally given 𝒯n, let V n

1 and V n
2 be independent uniform

vertices of 𝒯n. Then

(6.2)
H(V n

1 )

lnn

(d)−→
n→∞

λ

λ − 1
1A and

dn(V n
1 ,V n

2 )

lnn

(d)−→
n→∞

2λ

λ − 1
1A,

where H(V n
1 ) is the height of V n

1 in 𝒯n and dn denotes the graph distance in 𝒯n.

(II) Assume that λn ≫ 1/n.

(a) The convergence

(6.3)
(︃In⌊nt⌋

n

)︃
0≤t≤2

ℙ−→
n→∞

(︁
min(t,2 − t)

)︁
0≤t≤2,

holds in probability for the topology of uniform convergence.
(b) We have

(6.4)
H(V n

1 )

lnn

ℙ−→
n→∞ 1,

dn(V n
1 ,V n

2 )

lnn

ℙ−→
n→∞ 2 and

Height(𝒯n)

ln(n)

ℙ−→
n→∞ e.

We observe that the solution gλ of the differential equation can be expressed using the
principal branch of the Lambert W function defined as the inverse function W : [−1/e,∞) →
[−1,∞) of the function x ↦→ xex which is increasing on [−1,∞). See, for example, [14] for
more details about this function. Explicitly, using the fact that W ′(x) = W(x)/(x(1+W(x))),
we check that, for all t ≥ 0,

(6.5) gλ(t) = 1

λ
W
(︁
λeλe−λt )︁.

In particular, gλ is infinitely differentiable and one can see that gλ is convex, decreasing, and
goes to 0 at ∞.

REMARK 25. It would be very interesting to obtain a limit theorem for Height(𝒯n) in the
setting of Theorem 24(I)(b). This requires more work, because the behavior of the number of
infected/active vertices near the extinction time τ ′

n should give a nonnegligible contribution
to the height.

PROOF OF THEOREM 24. For (I)(a), we assume λ > 1 and we determine the fluid limit
of the chain (Un, In). Let (˜︁Un,˜︁In) be a Markov chain which has the same initial conditions
as (Un, In) and the same transition probabilities but which is not stopped when ˜︁In reaches
zero. We check that (6.1) holds using the classical theory of fluid limits of Markov chains
(see, e.g., [30] or [16]), and more precisely a combination of Grönwall’s inequality with
Doob’s maximal inequality.
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We claim that it is enough to show that

(6.6)
(︃ ˜︁Un⌊nt⌋

n

)︃
t≥0

ℙ−→
n→∞

(︁
gλ(t)

)︁
t≥0,

uniformly on compacts. Indeed, it is easy to see that ˜︁In
k = 2(n − ˜︁Un

k ) − k + 1 so that (6.6)
entails the convergence

(6.7)
(︃˜︁In⌊nt⌋

n

)︃
t≥0

ℙ−→
n→∞

(︁
2 − 2gλ(t) − t

)︁
t≥0,

uniformly on compacts. Let us check that this implies (6.1). Since t ↦→ 2 − 2gλ(t) − t is
concave, starts from zero at time zero, stays positive and then goes below zero, it is thus
enough to identify the limit of the probability that the chain ˜︁In reaches zero before time εn

as first n → ∞ and then ε → 0 as the probability of extinction of a 𝒢(1/(1 + λ))-Bienaymé
process. To this end, for all ε > 0, for n large enough, for all k ≤ εn, since n ≥ ˜︁Un

k ≥ (1− ε)n

we have

λ

1 + λ
− ε ≤ (1 − ε)

nλn

1 + nλn

≤ λn
˜︁Un

k

1 + λn
˜︁Un

k

≤ nλn

1 + nλn

≤ λ

1 + λ
+ ε.

Thus, one can couple (In,Un) until time εn with two simple random walks (Y
ε

k)k≥0 and
(Y ε

k)k≥0 starting from one such that

ℙ
(︁
Y

ε

1 = 1
)︁= λ

1 + λ
+ ε and ℙ

(︁
Y ε

1 = 1
)︁= λ

1 + λ
− ε

so that, for all n large enough, for all k ≤ εn,

(6.8) Y ε
k ≤ ˜︁In

k ≤ Y
ε

k.

Since the probabilities that the random walks Y ε and Y
ε

starting from 1 reach the negative
integers both converge as ε → 0 to the probability of extinction of a 𝒢(1/(1 + λ))-Bienaymé
process, we get the desired result.

It remains to check (6.6). This is a rather direct application of Lemma 6.5 in [15] (which
remains clearly true if we add a superscript n to all the objects). More precisely, let t > 0, for
all k ≥ 0 let Xn

k = ˜︁Un
k − ngλ(k/n) and let (ℱn

k )k≥0 be the natural filtration associated with
Xn. This lemma states (in greater generality) that if there exists a constant C > 0 such that,
for all n ≥ 1, for all 0 ≤ k ≤ nt ,

(6.9)
⃓⃓
𝔼
(︁
Xn

k+1 − Xn
k |ℱn

k

)︁⃓⃓≤ C

n

(︂
1 + sup

0≤j≤nt

⃓⃓
Xn

j

⃓⃓)︂
a.s. and 𝔼

(︁(︁
Xn

k+1 − Xn
k

)︁2)︁≤ C,

then sup0≤k≤nt |Xn
k |/n → 0 in probability as n → ∞, which implies (6.6).

To show (6.9), we first compute

𝔼
(︁
Xn

k+1 − Xn
k |ℱn

k

)︁= − λ˜︁Un
k /n

1 + λ˜︁Un
k /n

− n

(︃
gλ

(︃
k + 1

n

)︃
− gλ

(︃
k

n

)︃)︃
.

Moreover, since the function gλ is twice differentiable, using a Taylor expansion at order 2
and using the definition of gλ one gets that⃓⃓⃓⃓

𝔼

(︃
Xn

k+1 − Xn
k + λ˜︁Un

k /n

1 + λ˜︁Un
k /n

− λgλ(k/n)

1 + λgλ(k/n)
|ℱn

k

)︄⃓⃓⃓⃓

= n

⃓⃓⃓⃓
gλ

(︃
k + 1

n

)︃
− gλ

(︃
k

n

)︃
+ 1

n

λgλ(k/n)

1 + λgλ(k/n)

⃓⃓⃓⃓
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≤ n
1

n2 sup
0≤s≤t+1

⃓⃓
g′′

λ(s)
⃓⃓

≤ C

n
,

for some constant C > 0. Moreover, the function x ↦→ x/(1 + x) is 1-Lipschitz on [0,∞).
Thus, the first inequality of (6.9) is satisfied. The second one is clearly satisfied since ˜︁Un

k+1 −˜︁Un
k ∈ {0,−1} and since gλ is differentiable and g′

λ is bounded on [0, t + 1].
We now turn to (I)(b). We essentially apply Theorem 4 with c = (λ − 1)/(λ + 1) and

An = log logn. However, the rub is that the fluid limit t ↦→ max(2 − 2gλ(t) − t,0) of In

reaches zero at some time t0 which is the unique positive time at which 2 − 2gλ(t0) − t0 = 0
so that we can not apply it directly. To overcome this issue, we shall check that we are in
position to apply Theorem 4 to the subtree 𝒯⌊(t0−ε)n⌋(Xn). This will indeed enable us to
conclude since if V n

1 and V n
2 are two independent uniform random vertices of 𝒯n, then by

Lemma 6,

ℙ
(︁
bτ ′

n

(︁
V n

1
)︁≤ (t0 − ε)n

)︁= ℙ
(︁
bτ ′

n

(︁
V n

2
)︁≤ (t0 − ε)n

)︁≥ 1 − ε + o(1) as n → ∞.

By Skorokhod’s representation theorem, we may assume that the convergence (6.1) holds
almost surely. Therefore, the right-hand side of (1.2) then holds almost surely on the event
that In

k > 0 for all k ≤ (t0 −ε)n thanks to (6.1). To check that Theorem 4 applies to the subtree
𝒯⌊(1−ε)τ ′

n⌋(Xn) with c = (λ − 1)/(λ + 1), it thus suffices to show that the left-hand side of
(1.2) holds almost surely on the event that In

k > 0 for all k ≤ (t0 − ε)n with An = log logn.
By Skorokhod’s representation theorem it is enough to check that, for all ε > 0, there exists
δ > 0 such that on the event that, In

k > 0 for all k ≤ (t0 − ε)n,

(6.10) max
log logn≤k≤δn

⃓⃓⃓⃓
In
k

k
− λ − 1

λ + 1

⃓⃓⃓⃓
≤ ε

with high probability as n → ∞. In turn, it is enough to prove that for every ε > 0 we have

(6.11) max
log logn≤k≤εn

⃓⃓⃓⃓ ˜︁In
k

k
− λ − 1

λ + 1

⃓⃓⃓⃓
≤ 2ε

with high probability as n → ∞. Indeed, note that by definition of gλ, we have g′
λ(0) =

−λ/(λ + 1) so that, as t → 0,

(6.12) 2 − 2gλ(t) − t = λ − 1

λ + 1
t + o(t).

Let ε > 0. Take δ > 0 small enough that, for all t ∈ [0, δ], we have |2 − 2gλ(t) − t − ((λ −
1)/(λ + 1))t | ≤ εt . On the event that In

k > 0 for all k ≤ (t0 − ε)n,

max
log logn≤k≤δn

⃓⃓⃓⃓
In
k

k
− λ − 1

λ + 1

⃓⃓⃓⃓
≤ max

log logn≤k≤εn

⃓⃓⃓⃓ ˜︁In
k

k
− λ − 1

λ + 1

⃓⃓⃓⃓
+ max

εn≤k≤δn

⃓⃓⃓⃓ ˜︁In
k

k
− λ − 1

λ + 1

⃓⃓⃓⃓
.

The second term is bounded from above by 2ε with high probability as n → ∞ thanks to
(6.7) and (6.12). Thus, (6.11) implies (6.10). The upper bound (6.11) follows by combining
the coupling (6.8) with the law of large numbers.

We now turn to (II)(a) and assume λn ≫ 1/n. Let us first establish that if δ > 0, then

(6.13)
(︃In⌊nt⌋

n

)︃
0≤t≤1

ℙ−→
n→∞ (t)0≤t≤1 and sup

log logn≤k≤(1−δ)n

⃓⃓⃓⃓
In
k

k
− 1

⃓⃓⃓⃓
ℙ−→

n→∞ 0,
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where the first convergence holds for the topology of the uniform convergence. Let δ > 0.
Note that, for all k ≤ (1 − δ)n, we have Un

k ≥ δn. As a result, for all ε > 0, for n large
enough, for all k ≤ (1 − δ)n,

1 − ε ≤ λnU
n
k

1 + λnU
n
k

≤ 1.

One can thus obtain the right-hand side of (6.13) by coupling In
k with a simple random walk

(whose step is +1 with probability 1 − ε). The left-hand side of (6.13) stems from the right-
hand side and from the fact that In only makes ±1 steps, so that, for all k ∈ ⟦⌊(1 − δ)n⌋, n⟧,
we have |In

k − In⌊(1−δ)n⌋| ≤ nδ.
We now explain why (6.13) implies (6.3). By (6.13) and by definition of the Markov chain

(In,Un), we have Un
n ≤ n + 1 − In

n = o(n) with high probability, so that after time n, w.h.p.
there are o(n) remaining steps of +1 for In and all the other steps are −1. Hence, for the
topology of the uniform convergence,(︃In⌊nt⌋

n

)︃
1≤t≤2

ℙ−→
n→∞ (2 − t)1≤t≤2,

which concludes the proof of (6.3).
We finally turn to (II)(b). As in the proof of (I)(a), the first two convergences of (6.4) are

proved by applying Theorem 4 to the tree 𝒯⌊(2−ε)n⌋(Xn) for some ε > 0 small enough, with
c = 1 and An = log logn. Indeed, by (6.13),

(6.14) sup
log logn≤k≤n

⃓⃓⃓⃓
In
k

k
− 1

⃓⃓⃓⃓
ℙ−→

n→∞ 0.

After applying Skorokhod’s representation theorem, (6.14) implies the left-hand side of (1.2)
and the right-hand side follows from (6.3).

The last convergence of (II)(b) is more delicate. The idea is to apply Theorem 4 to the tree
𝒯n(Xn) and then to show that the vertices added between times n and τ ′

n, in a first approxi-
mation, do not affect the height.

More precisely, one can first see that by Theorem 4 the height of 𝒯n(Xn) divided by lnn

converges in probability towards e. Indeed, by (6.14), after applying Skorokhod’s representa-
tion theorem, entails that (1.2) holds almost surely for 𝒯n(Xn) with c = 1 and An = log logn.
Next, to understand how the height of 𝒯n behaves compared to 𝒯n(Xn) we need to estimate
the quantity

hn :=
τ ′
n−1∑︂
i=n

1

In
i

1{Xn
i =1}.

Indeed, as we have already seen multiple times, roughly speaking this quantity represents
“the height” added between times n and τ ′

n.
Let us prove that

(6.15) sup
3n/2≤k≤2n

λnU
n
k

1 + λnU
n
k

≤ λnU
n⌊3n/2⌋

1 + λnU
n⌊3n/2⌋

ℙ−→
n→∞ 0.

The inequality holds since (Un
k )k≥0 is nonincreasing. For the above convergence, assume by

contradiction that there exists ε > 0 and an increasing sequence of integers (nj )j≥1 such that,
for all j ≥ 1,

ℙ

(︃ λnj
U

nj

⌊3nj /2⌋
1 + λnj

U
nj

⌊3nj /2⌋
≥ ε

)︃
≥ ε.
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On this event, by monotonicity for every k ∈ ⟦nj , ⌊3nj/2⌋⟧ we have

λnj
U

nj

k

1 + λnj
U

nj

k

≥ ε.

Then, using a coupling between (I
nj

k )k≥n and a simple random walk (˜︁Y ε
k )k≥nj

starting at I
nj
nj

at time nj whose step is +1 with probability ε and −1 with probability 1 − ε, by the law of
large numbers and since In

n /n → 1 in probability as n → ∞ by (6.3), one obtains that on the
same event,

I
nj

⌊3nj /2⌋
nj

≥
˜︁Y ε⌊3nj /2⌋

nj

ℙ−→
n→∞ 1 + 2ε − 1

2
,

which is absurd in view of (6.3). This proves (6.15).
Next, let us prove that

(6.16)
hn

logn

ℙ−→
n→∞ 0.

Define X̂n
i = −Xn

τ ′
n−i+1 for all i ∈ ⟦1, τ ′

n⟧ and Ŝn
i = In

τ ′
n−i = X̂n

1 + · · · + X̂n
i for all i ∈ ⟦0, τ ′

n⟧.
Then

hn =
τ ′
n−n∑︂
i=1

1

Ŝn
i

1{X̂n
i =−1}.

By (6.3), to prove (6.16), it suffices to prove that

(6.17)
1

logn

⌊n/2⌋∧(τ ′
n−n)∑︂

i=1

1

Ŝn
i

1{X̂n
i =−1}

ℙ−→
n→∞ 0.

For all ε > 0, for all n ≥ 1, define the event

𝒜n
ε =

{︃
sup

3n/2≤k≤2n

λnU
n
k

1 + λnU
n
k

≤ ε

}︃
.

By (6.15), we know that

(6.18) lim
ε→0

lim inf
n→∞ ℙ

(︁𝒜n
ε

)︁= 1.

Besides, on the event 𝒜n
ε , one can couple the (X̂n

i )1≤i≤n/2∧(τn−n)’s with i.i.d. random vari-
ables (ξε

i )i≥1 such that ℙ(ξε
i = −1) = ε and ℙ(ξε

i = 1) = 1 − ε so that for all i ≤ n/2 ∧ (τn −
n), we have ξε

i ≤ X̂n
i ≤ 1. For all i ≥ 0, let Ŷ ε

i = ξε
1 +· · ·+ξε

i . Then, for all i ≤ n/2∧(τn −n),
we have Ŷ ε

i ≤ Ŝn
i . In particular, on the event 𝒜n

ε ∩ {∀i ∈ ⟦1, n/2⟧, Ŷ ε
i > 0},

⌊n/2⌋∧(τ ′
n−n)∑︂

i=1

1

Ŝn
i

1{X̂n
i =−1} ≤

⌊n/2⌋∑︂
i=1

1

Ŷ ε
i

1{ξε
i =−1}.

But, by the strong law of large numbers, we have

(6.19) ℙ
(︁∀i ≥ 0, Ŷ ε

i ≥ i/2
)︁ −→

ε→0
1.

For all ε > 0, on the event 𝒜n
ε ∩ {∀i ≥ 0, Ŷ ε

i ≥ i/2}, we obtain that

⌊n/2⌋∧(τ ′
n−n)∑︂

i=1

1

Ŝn
i

1{X̂n
i =−1} ≤

⌊n/2⌋∑︂
i=1

2

i
1{ξε

i =−1}.
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Besides,

𝔼

[︄⌊n/2⌋∑︂
i=1

2

i
1{ξε

i =−1}
]︄

= 2ε

⌊n/2⌋∑︂
i=1

1

i
.

Therefore, we obtain that

𝔼

[︄
1𝒜n

ε∩{∀i≥0,Ŷ ε
i ≥i/2}

⌊n/2⌋∧(τ ′
n−n)∑︂

i=1

1

Ŝn
i

1{X̂n
i =−1}

]︄
≤ 2ε

⌊n/2⌋∑︂
i=1

1

i
.

After letting ε → 0, using (6.18) and (6.19), we deduce (6.17).
It remains to show how (6.16) implies that Height(𝒯n) = Height(𝒯n(Xn)) + o(lnn). To

do so we will use, once again, the coalescence construction and Bennett’s inequality. By
Algorithm 2, conditionally on τ ′

n and (In
i )0≤i≤τ ′

n
, the height of any new vertex added between

time n and τ ′
n is stochastically dominated by Height(𝒯n(Xn))+∑︁τ ′

n−1
i=n Yi where (Y n

i )n≤i≤τ ′
n−1

are i.i.d. Bernoulli random variables of respective parameters (1/In
i 1{Xn

i =1})n≤i≤τ ′
n−1. Using

Bennett’s inequality and a union bound, as in Section 4.3, for all ε > 0 we obtain that

ℙ
(︁
Height

(︁
𝒯n)︁− Height

(︁𝒯n

(︁
Xn)︁)︁≥ hn + ε lnn|τ ′

n,
(︁
In
i

)︁
0≤i≤τ ′

n

)︁≤ n exp
(︃
−hng

(︃
ε lnn

hn

)︃)︃
,

where g(u) = (u + 1) ln(u + 1) − u ∼ u lnu as u → +∞. Since hn = o(lnn) in probability,
the above upper bound goes to 0 when n goes to ∞ and thus Height(𝒯n) is of order e lnn.

□

7. Perspectives and extensions. We mention here some perspectives for future research
in the direction of studying the impact of freezing in random graph models.

(1) What is the number of ends of 𝒯∞(x)?
(2) It would be interesting to study the evolution of the sizes of the trees in the forests

obtained by Algorithm 2 (in the particular case where xn = 1 for every n ≥ 1 this corresponds
to Kingman’s coalescent), as well as the evolution of degree vertices (in the particular case
where xn = 1 for every n ≥ 1 there are nice connections with Pólya urns).

(3) How small can be the typical height of 𝒯n(x) when τ(x) ≥ n? We conjecture that for
any sequence (xn)n≥1 such that τ(xn) ≥ n for every n ≥ 1, for every ε > 0 we have

ℙ
(︁
Height

(︁𝒯n(x)
)︁≥ (e − ε) ln(n)

)︁ −→
n→∞ 1.

(4) A natural question is to obtain a limit theorem for the height of the epidemic tree 𝒯n

in the setting of Theorem 24(I)(b) (see Remark 25).
(5) It would be very interesting to extend our results to other attachment mechanisms,

such as preferential attachment, where new vertices attach to existing vertices proportional to
their degree.

(6) Similarly, one may wonder what happens when the frozen vertices are not chosen
uniformly, notably when vertices with high degrees are more or less likely to freeze.

(7) An important question arising in the context of growing real-world networks or in the
context of infection tracing is how to find the root, or patient zero [38]. This is a very active
area of research, sometimes called network archeology [35]. Such questions have been for
instance considered for uniform attachment and preferential attachment trees [13, 24, 31], as
well as Bienaymé trees [11].
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