Pleen: 1) Ces non homogène

2) Équalisa différentielles dorden

- 3) Équation dissérentielles linéaires autonomes
- 4) Exponentielles de matrices
- 5) Colcel de l'exponentielle deur MuCO

1) les non homogène

On s'intéresse maintenant au cas non homogène (x'(t) = A(t) x(t) +b(t)
(x) 7 x(fo) = x.

la livéaité, le différence de deux solutions de (x) est solution de l'équation homogène avec b=0.

Ainsi, si v esture solution quelconque de (*), toute solution & de (*) s'écrit & = 11+v œuec u solution de l'équation homogène.

du résolvente est utile pour donner une formule explicite pour le solution de (x) et aursi pour trouver une solution de (x) en pratique

Repulous que pour lot T, RA(t, to) & Mn(R) vérifie Sd RA(t, to) = A(t) RA (t, to) = In.

Théorène (Fornulo de Duhamel) Soient 1567, 26 ER". d'enique solution de (22(t) = A(t) *(1) + b(t) est u(t) = R(t, t) x6 + \int R(t, s) b(s) de 2 2(b) = 26

Preuve: For unition, it sught de rénfier que un est solution:

ulto) = $R(t_0, t_0)x_0 + 0 = x_0$ ulto) = $R(t_0, t_0)x_0 + \frac{1}{2} F(t, t_0)$ ovec $F(u, t) = \int R(t, s) b(s) ds$ = $\frac{1}{4} R(t, t_0)x_0 + \frac{1}{2} F(t, t_0) + \frac{1}{2} F(t, t_0)$ = $\frac{1}{4} R(t, t_0)x_0 + R(t, t_0) b(t_0) + \int_{t_0}^{t} \frac{1}{2} R(t, s) b(s) ds$ = $A(t)R(t, t_0)x_0 + \int_{t_0}^{t} A(t_0)R(t, t_0) b(s) ds$.

= $A(t)R(t, t_0)x_0 + \int_{t_0}^{t} R(t, s) b(s) ds$) + $b(t_0)$.

= Alt) u(e) +b(t)

En pretique por utilise sovent le vous thate de "le vouvelon de le constante"

pour trouver une solution pour reulière sous le forme v(t) = R(t, to) c(t).

En dérivourt: v'(t) = d. x(t, to) c(t) + R(t, to) c'(t) = A(t) v(t) + c'(t)

En A(t)R(t, to) c(t) + R(t, to) c'(t) = A(t) v(t) + c'(t)

V(t)

Aimi c'(t)=R(to,t) b(t).

Ou pout honce choisir une column peutimlière sons le forme

v(t) = R(6,6) \int R(to,5) b(s) b = \int R(6,5) b(s) ds (v(6)=0)

So serialier (n=1, A(t) = a) So x(t) = a x(t) + b(t), $x(t) = e x(b) + \int_{t_0}^{t} e^{(t-b)a} ds$.

2) Équations différentielles linéaires d'ordre n

Une équedien différentièle lineaire d'orden (scalaire) est le le forme:

y'''(t) + \(\sum_{=0}^{1} \) di(t) y''(t) = \(\beta(t) \) CF\

Où \(\lambda(: \cdot) \rightarrow \R, \(\beta(: \cdot) \rightarrow \R) \) sont continues.

Proposition l'équelon (x) se releast, ou posont
$$x = (y, y', ..., y''')$$

Sous le forme $x(t) = A(t) x(t) + b(t)$ où:

$$A(t) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Ainn, dons le coes
$$\beta=0$$
, a solutions $V_1, \dots, V_n: T \to \mathbb{R}$ forment une base soil le matrix wronchieune $W(t) = \begin{pmatrix} V_1(t) & V_n(t) \\ & & & \\$

λ..., In ∈R tels que V+∈ R:

$$V(t) = \lambda_1 V_1(t) + \cdots + \lambda_n V_n(t)$$

$$V(t) = \lambda_1 V_1(t) + \cdots + \lambda_n V_n'(t)$$

$$\vdots$$

$$V(n-t)(t) = \lambda_1 V_1(t) + \cdots + \lambda_n V_n(t)$$

3) Équations différentielles livérises autonomes

des équation dissérentielles linéaires autonomes sont de le forme x'(t) = Ax(t)

over AElln(K) (K=ROUC) et z:R-Kh

(A ve dépand pas de t ou park ours d'équichors différentielles lendaires à coefficients constants)

Con pariculier: $A = \begin{pmatrix} 0 & 0 \\ 0 & \infty \end{pmatrix}$ est seux matrix diagonale.

On vérifie alox que la solution de x'(t) = A x(t) est $x(t) = \begin{pmatrix} x_1(t_0) e \\ x_2(t_0) e \end{pmatrix} = \begin{pmatrix} e_1(t_0) & 0 \\ 0 & e \end{pmatrix}$ $x(t) = \begin{pmatrix} x_1(t_0) e \\ x_2(t_0) \end{pmatrix} = \begin{pmatrix} x_1(t_0) & 0 \\ 0 & e \end{pmatrix}$

Da vous ence solution explicite, qui permet d'en déduire le compositement onjuplonque des solutions:

- · si di so ti, alors toute salution a vérifie x(6) =>0. Si di so ti, alors toute salution cet bornée
- · Si «i, >0, doss 1/216)11 -> +20 pour vout sulution telle que 2,0(6) \$0.

etc.

Autre cos intéressant: Supposan AEUn(R) diagonalisable.

On peut alors écuse A = PDP' aux D diagonale et Pt Glu(R).

On vérifie alors que la solution de (21H = AXII)

2716) = 16

est $x(t) = P e^{(t+b)D} P' x(t)$ En esset x'(t) = PD e P' x(t)= $APe^{(t-b)}P' x(tb) = Ax(t)$.

Ples généralement, nous allon vois que les saluhons se calculent à l'aide de la notion d'exponentielle de matrice

4) Exponentielle de matrices

Connengan par quelques rappels

Ia K=Ros C. On muit Un(K) d'une nome 11.11 multiplicative (11ABN & 11A11 11BI)
VA, BELLIN (K)) par excuple 11 Al= sup 11 AxII.
Definition L'exponentielle de matrix cet l'epplication $\exp: U_n(K) \rightarrow U_n(K)$ $A \mapsto \exp(A) = e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$
$\exp: \mathcal{U}_n(\mathcal{K}) \to \mathcal{U}_n(\mathcal{K})$
$A \mapsto \exp(A) = C = \frac{2}{R} \frac{A}{R!}$
no sivie est bien définie con $\stackrel{2}{\underset{R=3}{\sim}} \frac{A^{R}}{R!}$ converge absolutent:
I HALL SE HALL SE LANGE
Reppelous quelques propriétés (sou peuve) de l'exponentielle
Proposition
· expect coo
· YAEUn(K), the est dérivable et de = A et = e A · YAEUn(K), exp(A) est inversible et exp(A) = exp(-A)
· Si A, BEMA(K) commercent (AB=BA), alos exp(A+B)= exp(A) exp(B)
· Si PEGINCKI, AEMINCUI, Per FI = epapi
· Si PEHN(K), AEUN(U), PeAFI = epaFI · Si D=(5:0) est liagonale, alors exp(0)= (el o elm)
Exemple Pour aberrona exp(&-b) = e (cos(b) - sin(b)) (sin(b) (os(b))
(en effet écrivous (a-b) = a Iz+bM avec M=(10).
Oure Iz et Mionnihout, enp(0-b) = e e.
En effet écrivous $\begin{pmatrix} a - b \\ b & a \end{pmatrix} = a I_2 + b M$ avec $M = \begin{pmatrix} 0 - 1 \\ 1 & 0 \end{pmatrix}$. (ouve I_2 et M connecteur, $e \in P(a - b) = e^a e^b M$. Mais $M^2 = -I_2$, le sorte que $e^{bM} = \sum_{k=0}^{\infty} \frac{1}{k!} \frac{b^k}{b^k} \frac{k}{k!} = \sum_{k=0}^{\infty} \frac{1}{(2k)!} \frac{2k}{b^k} \frac{k}{(2k)!} \frac{1}{b^k} \frac{k}{(2k)!} = \sum_{k=0}^{\infty} \frac{1}{(2k)!} \frac{k}{(2k)!} \frac{k}{(2k)!} \frac{1}{(2k)!} \frac{k}{(2k)!} \frac{1}{(2k)!} \frac{1}{$
= cosb I2+ Sinb M.

Théorème Soiet toer, loer. Alors le solution de (2'(t)=A2(t)
est 2(t)=e xo pour terr Pleure: Si x(t) = e 10, on a x(ta) = e x0 = In x0 = x0 Jet 2'(t) = A e (t-to)A 20 = A 2(t) L'enriché provient du Hobarine de Couchy-Lipschitz linsaire Romanque: On peut de montrer l'enriché de rectement: si y ent une auche column de (2/1t) = A z(t) posons z(t) = e (t-ts)A y(t)

Alors z'(t) = - A e (t-ts)A z(t) t e (t-ts)A z(t) = 0 (en A e - e A A A z(t))

Dose z est constante. Couvre z(to) = Xo, on abtient y(t) = e z(to) = e zo.

Lorsque A est dragonalisable, A = PDP' avec D disgonde et PETINU, e = P e P et or retrouve le fait que le sdetien ent 2(6) = P e P 2(6)

Dons le cos général, la théorie de la réduction des endonorphisms journet de calcaler elexponentielle de matrie.

5) Calcul de l'exponentielle dons Un CC)

Reprelous audques notions de reduction.

Soit AcluCOI

· LEC entreue valeure progrede A si 3 VEC, V=0, ovec Av= LV

· Des valleus propres sont les recines du polynôme conschéristique PA(XI= det (XIn-A) de A.

Aimi, ni di..., in sont les différentes soleens propros de A, on a PA(X) = (x - 4,) A ... (x - 1,) P2

où Pi, ,, p, > vénifient p, + ... + p= n. Pi est le multipliaire algébrique de li

Théorème (Cayley Hamilton)
Toute matrie annels son polynôme caractérishque: $P_{A}(A) = (A - h_{2} I_{n})^{p_{1}} \cdots (A - h_{r} I_{n})^{p_{r}} = 0$

· le sous-espece proprie a ssouié à la est $Ti = TI_i = \text{Ker}(A - li In)$ se dimenser li= dim TI; est epplié multiplisité géonétrique de li.

· de sois-espece conochérestique orsonie à li est l'i = l'i = Vai (A-liIn)?

Aimi, Ti CTi mais ces espaces perment être différents.

Théorème (de décomposition des noyaux) On a C^ = M_1 (+) ... (+) Mr et:

- (1) dim Ti = Pi
- D ∀xeni, xeni > Azeni
- 3 ho restriction de Aà l'i s'élut

Alni - li fri +Vi

avec In l'hentité son l'et Ni: l'i >1? est nilpotent d'indie < pi c'est-à-dère Ni =0

Remarques. le fait que Ni =0 est une vouségrence de la définition de M.
mais il se pout que Ni =0 avec mi <p.

. Due metrie est diagonalisable si 3 bare de C'de vecteurs propres, a qui est équivalent à

a"=TTO-OTT

D'après le l'héorème, ce n'est possible que si Ti = Ti Vi . Aimi A est diagonalisable soi V1 = i = r dim Ti = pi.

Cen choisissant eve bere édéphée à la décomposition, on abbient PKH. COI he of AP- NIN

PETLUCO he PAPE O+N

evec D'dragonde, d'élémets digonaux x1,..., x aver li pidais et

N = (Ni Nr) avac Ni nilpotents

de théorème de Torlen permet de metre N sois forme relativement 8° après:

Théorème de Jordon Pour bout AEUN(C), JPEG(NCC) top P'AP s'écuit

publics PIAP = (TITI) over Ji & Mpi Ca) de le forme

 $J_{i} = \begin{pmatrix} J_{c,i} & 0 \\ 0 & J_{i,ei} \end{pmatrix} \text{ avec } J_{i,R} = \begin{pmatrix} \lambda_{i} & 1 & 0 \\ 0 & \lambda_{i}^{2} \end{pmatrix} \text{ une matrix correle}$ le taille $\Lambda_{i,R} \in \{1,2...,R_{i}\}$

On appelle J=p'AP la forme réduite de Jordon de A et les motries Ji; les blocs de Jordon. La dimension ni, est appelée taille du bloc

Remergne: il est possible de montrer que le nombre de Hou avec li ser le diagonale de teille 7, d'est dem Ker (A-li) - den Ver (A-li).

Exemple
$$J = \begin{pmatrix} \lambda_1 & \lambda_2 & 0 \\ \lambda_1 & \lambda_2 & 0 \end{pmatrix}$$
 est une réduite de Tordon avec $P_1 = 1$ et $e_1 = 3$

Remerque: Si $N = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in U_n(G)$, Neutripalente Haberton a $N = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Coci poemet de coelcule l'exponentielle d'enve forme réduite de Tordon, qui se roune ve cer colcul de l'exponentielle d'enve bloc de la forme $T_{e_1} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \lambda_i T + N_{ijk}$

Notous $n_{e_1} = \lambda_i T + N_{ijk}$

On a alors $\lambda_{e_1} = \lambda_{e_2} = \lambda_{e_3} = \lambda_{e_4} = \lambda_{e_4} = \lambda_{e_5} = \lambda_{e_5} = \lambda_{e_6} = \lambda_{$

Problève Soit ACMACCI. Toute solution de s

oula Wi= max NiR 15RSPi

Le teure $\sum_{k=0}^{m_{i-1}} t^k v_{i,k}$ est constant quand $m_i = 1$ (ce qui est le cos quand $e_i = p_i$).

Or en déduit:

Théorème Soit A Ella (C), notain \(\), In ses valeur propres.

On pose $\Gamma^{S} = \bigoplus \Gamma_{i}$, $\Gamma^{M} = \bigoplus \Gamma_{i}$, $\Gamma^{C} = \bigoplus \Gamma_{i}$.

(expose steelle) (expose introlle) (expose introlle) (expose introlle)

Soit à rene solution de x'(E) = A z(t). Alors

- 2 2101 ET (=> Len lixle)1120

Pour un rea général, on le décompose en 2°+2°+2°.