Feuille d'exercices (cours 1) : convergence étroite dans \mathbb{R}^k

On note $\mathcal{M}_1(\mathbb{R}^k)$ l'ensemble des mesures de probabilités sur \mathbb{R}^k , avec $k \ge 1$ un entier fixé, et \Rightarrow désigne la convergence étroite dans cet espace.

1 Exercices à chercher pour le mardi 1 octobre

Ces exercices seront corrigés au début de la séance du mardi 1 octobre

Exercice 1. Soit $(\mu_n)_{n\geq 1}$ une suite de mesures de $\mathcal{M}_1(\mathbb{R})$ et $\mu\in\mathcal{M}_1(\mathbb{R})$. On suppose que $\mu_n\Rightarrow\mu$. Y a-t-il des implications entre les assertions suivantes?

- (a) μ_n est à densité pour n assez grand
- (c) μ_n est atomique pour n assez grand

(b) μ est à densité

(d) μ est atomique.

Rappelons qu'une mesure atomique est une mesure qui s'écrit $\sum a_i \delta_{b_i}$ pour des suites $a_i \in \mathbb{R}_+$ et $b_i \in \mathbb{R}$ et que dans \mathbb{R}^n par mesure à densité on entend par rapport à la mesure de Lebesgue (l'usage est juste de dire à densité).

Corrigé:

Non:

- si μ_n est à densité, μ peut aussi bien être à densité (prendre $\mu = \mu_n$) qu'atomique (prendre $\mu_n(dx) = 2n\mathbbm{1}_{[-1/n,1/n]}(x)dx$, qui converge étroitement vers δ_0), voire singulière par rapport à la mesure de Lebesgue (penser à l'escalier du diable).
- si μ_n est atomique, μ peut aussi bien être atomique (prendre $\mu = \mu_n$) ou bien à densité (prendre $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{i/n}$, qui converge étroitement vers la mesure de Lebesgue sur [0,1]).

Exercice 2. Montrer qu'une famille $(\mu_i)_{i\in I}$ de mesures de $\mathcal{M}_1(\mathbb{R})$ est tendue si et seulement si il existe une fonction mesurable $f: \mathbb{R} \to [o, \infty)$ telle que $f(x) \to \infty$ pour $|x| \to \infty$ et $\sup_{i \in I} \int_{\mathbb{R}} f \, \mathrm{d}\mu_i < \infty$.

Corrigé :

 \subseteq Posons $C = \sup_{i \in I} \int_{\mathbb{R}} f d\mu_i$. Soit $\varepsilon > 0$ et A > 0 tel que $|f(x)| \ge C/(\varepsilon)$ pour $|x| \ge A$. On écrit, pour $i \in I$,

$$C \geq \int_{\mathbb{R}} f \, d\mu \geq \int_{\mathbb{R} \setminus [-A,A]} f \, d\mu \geq \frac{C}{\varepsilon} \int_{\mathbb{R} \setminus [-A,A]} d\mu_i,$$

de sorte que $\mu_i(\mathbb{R}\setminus[-A,A]) \leq \varepsilon$.

 \Longrightarrow Soit $(A_n)_{n\geq 1}$ une suite de réels strictement positifs tels que pour tout $n\geq 1$ et $i\in I$ on ait

$$\mu_i(\mathbb{R}\setminus[-A_n,A_n])\leq \frac{1}{n^3}.$$

Sans perte de généralité, on peut supposer que la suite (A_n) est strictement croissante et $A_n \to \infty$. On définit alors f par f(x) = 0 si $|x| < A_1$ et f(x) = n si $A_n \le |x| < A_{n+1}$, de sorte que f est mesurable, $f(x) \to \infty$, et pour $i \in I$,

$$\int_{\mathbb{R}} f \, \mathrm{d}\mu_{i} = \sum_{n=1}^{\infty} \int_{[-A_{n+1}, A_{n+1}] \setminus [-A_{n}, A_{n}]} f \, d\mu_{i}$$

$$\leq \sum_{n=1}^{\infty} n \mu_{i} ([-A_{n+1}, A_{n+1}] \setminus [-A_{n}, A_{n}])$$

$$\leq \sum_{n=1}^{\infty} n \mu_{i} (\mathbb{R} \setminus [-A_{n}, A_{n}])$$

$$\leq \sum_{n=1}^{\infty} \frac{1}{n^{2}},$$

d'où le résultat.

2 Exercices additionnels (facultatif)

Exercice 3. Soit $(X_n)_{n\geq 1}$ des variables aléatoires réelles. Montrer que la suite $(X_n)_{n\geq 1}$ est tendue si et seulement si pour tout $\varepsilon > 0$ et pour toute suite $(c_n)_{n\geq 1}$ de réels strictement positifs telle que $c_n \to 0$ on a $\mathbb{P}(c_n|X_n|\geq \varepsilon) \to 0$.

Corrigé:

Supposons que la suite $(X_n)_{n\geq 1}$ est tendue. Soit $\varepsilon > 0$ et $(c_n)_{n\geq 1}$ une suitede réels positifs telle que $c_n \to 0$. Soit $\eta > 0$. Par tension, il existe M > 0 tel que $\mathbb{P}(|X_n| \geq M) \leq \eta$. Pour n assez grand, $\varepsilon/c_n \geq M$, et alors

$$\mathbb{P}(c_n|X_n|\geq \varepsilon)\leq \mathbb{P}(|X_n|\geq M)\leq \eta$$
,

d'où le résultat.

Réciproquement, raisonnons par l'absurde en supposant que la suite $(X_n)_{n\geq 1}$ n'est pas tendue. On peut alors trouver $\varepsilon > 0$ et une extraction $\phi(n)$ telle que $\mathbb{P}\big(|X_{\phi(n)}| \geq n\big) \geq \varepsilon$ pour tout n. On définit alors la suite $(c_n)_{n\geq 1}$ en posant $c_{\phi(k)} = k$ pour tout $k \geq 1$ et $c_i = k-1$ pour $\phi(k-1) \leq i < \phi(k)$. Alors, pour tout $n \geq 1$,

$$\mathbb{P}\left(c_{\phi(n)}|X_{\phi(n)}|\geq 1\right)\geq \varepsilon,$$

contradiction.

Exercice 4. – (Théorème de Riesz et lemme de Scheffé) – Soit (E, A, μ) un espace mesuré, avec μ une mesure positive (pas forcément finie). Soit $(f_n)_{n\geq 1}$ une suite de fonctions mesurables de E dans $\mathbb R$ telles que :

$$f_n \to f \quad \mu - \text{presque partout.}$$
 (1)

(1) On suppose que la convergence (1) a lieu, que pour tout $n \ge 1$, $f_n \in L^p(\mu)$, $f \in L^p(\mu)$ et $||f_n||_p \to ||f||_p$ quand $n \to \infty$. Démontrer que $f_n \to f$ dans $L^p(\mu)$ (théorème de Riesz).

On pourra introduire la fonction $g_n = 2^p(|f_n|^p + |f|^p) - |f_n - f|^p$.

(2) Montrer le lemme de Scheffé :

si (1),
$$f_n$$
 et f sont μ intégrables, $f_n \ge 0$ et $\int_E f_n d\mu \xrightarrow[n \to \infty]{} \int_E f d\mu$

alors
$$\int_{E} |f_n - f| d\mu \xrightarrow[n \to \infty]{} o.$$

- (3) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires positives qui converge presque sûrement vers X. On suppose que $\mathbb{E}[X_n] \to \mathbb{E}[X]$. Montrer que X_n converge vers X dans L^1 .
- (4) Soit $(X_n)_{n\geq 1}$ des variables aléatoires réelles telles que pour tout $n\geq 1$, X_n a pour loi $f_nd\mu$ (i.e. sa loi a une densité f_n par rapport à μ). Montrer que si f_n converge μ -presque partout vers une densité de probabilité f, alors $X_n\Rightarrow X$, où X est une variable aléatoire de loi $fd\mu$.

Corrigé:

(1) Par inégalité triangulaire, on remarque que $|f_n - f|^p \le (|f_n| + |f|)^p \le 2^p \max(|f_n|^p, |f|^p) \le 2^p (|f_n|^p + |f|^p)$ de sorte que $g_n \ge 0$. Appliquons le lemme de Fatou à g_n :

$$2^{p+1} \int_{E} |f|^p d\mu = \int_{E} (\liminf_{n \to \infty} g_n) d\mu \le \liminf_{n \to \infty} \int_{E} 2^p (|f_n|^p + |f|^p) d\mu - \limsup_{n \to \infty} \int_{E} |f_n - f|^p d\mu.$$

On en déduit que

$$\limsup_{n\to\infty}\int_E |f_n-f|^p \mathrm{d}\mu \le 0,$$

d'où le résultat.

- (2) C'est simplement le théorème de Riesz pour p = 1.
- (3) C'est simplement le lemme de Scheffé.
- (4) Soit $s \in \mathbb{R}$. On montre que $\mathbb{P}(X_n \le s) \to \mathbb{P}(X \le s)$. Pour cela, en notant $A =]-\infty, s]$, on remarque que

$$\left| \int_{A} f_{n} d\mu - \int_{A} f d\mu \right| \leq \int_{\mathbb{R}} |f_{n} - f| d\mu \quad \underset{n \to \infty}{\longrightarrow} \quad \text{o,}$$

ce qui conclut.

Remarque. La même preuve montre qu'en fait $\mathbb{P}(X_n \in A) \to \mathbb{P}(X \in A)$ pour tout borélien A. Ceci implique la convergence en loi, mais la réciproque n'est pas vraie (prendre par exemple à $\mu_n = \delta_{1/n} \Rightarrow \delta_0$ avec $A = \{0\}$).

Exercice 5. – (Transformée de Laplace) – Soit $\mu \in \mathcal{M}_1(\mathbb{R}_+)$. Sa transformée de Laplace est définie par l'intégrale $L_{\mu}(t) = \int_{\mathbb{R}_+} e^{-tx} \mu(\mathrm{d}x)$ pour $t \ge 0$.

- (1) Vérifier que L_u est de classe C^{∞} sur $]0, \infty[$.
- (2) Montrer que pour tout x > 0 on a

$$\mu([o,x[) + \frac{1}{2}\mu(\{x\}) = \lim_{t \to \infty} \sum_{k=o}^{\lfloor tx \rfloor} \frac{(-t)^k}{k!} L_{\mu}^{(k)}(t),$$

- où $L_{\mu}^{(k)}$ désigne la dérivée k-ième de L_{μ} . En déduire que si $\mu, \nu \in \mathcal{M}_1(\mathbb{R}_+)$ ont même transformée de Laplace, alors $\mu = \nu$.
- (3) Soit $(\mu_n)_{n\geq 1}$ une suite de mesures de $\mathcal{M}_1(\mathbb{R}_+)$. On suppose que L_{μ_n} converge simplement sur \mathbb{R}_+ vers une fonction L continue à droite en o. Montrer qu'il existe $\mu \in \mathcal{M}_1(\mathbb{R}_+)$ telle que $L = L_{\mu}$ et $\mu_n \Rightarrow \mu$.

On pourra s'inspirer de la preuve du théorème de Lévy.

Corrigé:

(1) Ceci provient du fait que pour tout entier $k \ge 1$, la dérivée k-ième de $t \mapsto e^{-tx}$ est μ -intégrable, puisque la fonction $x \mapsto x^{\bar{k}}e^{-tx}$ est bornée sur \mathbb{R}_+ pour tout t > 0. En particulier,

$$L_{\mu}^{(k)}(t) = (-1)^k \int_{\mathbb{R}_+} u^k e^{-tu} \mu(\mathrm{d}u).$$

(2) Soit x > 0. D'après la question précédente et le théorème de Fubini,

$$\sum_{k=0}^{\lfloor tx\rfloor} \frac{(-t)^k}{k!} L_{\mu}^{(k)}(t) = \int_{\mathbb{R}_+} \sum_{k=0}^{\lfloor tx\rfloor} \frac{(tu)^k}{k!} e^{-tu} \mu(\mathrm{d}u).$$

Or

$$\sum_{k=0}^{\lfloor tx\rfloor} \frac{(tu)^k}{k!} e^{-tu} = \mathbb{P}\left(\mathsf{Poisson}(tu) \le \lfloor tx\rfloor\right).$$

Montrons que

$$\mathbb{P}(\mathsf{Poisson}(tu) \le \lfloor tx \rfloor) \quad \underset{t \to \infty}{\longrightarrow} \quad \left\{ \begin{array}{ll} \mathsf{o} & \mathsf{si} \; x < u \\ \frac{1}{2} & \mathsf{si} \; x = u \\ \mathsf{1} & \mathsf{si} \; x > u \end{array} \right.$$

en distinguant les trois cas :

-x = u: En notant $(Y_i)_{i \ge 1}$ des variables aléatoires i.i.d. de Poisson de paramètre x, on a

$$\mathbb{P}\left(\mathsf{Poisson}(tx) \leq \lfloor tx \rfloor\right) = \mathbb{P}\left(\frac{Y_1 + \dots + Y_{\lfloor t \rfloor} - \lfloor t \rfloor x + \mathsf{Poisson}(\lfloor tx \rfloor - \lfloor t \rfloor x) - (\lfloor tx \rfloor - \lfloor t \rfloor x)}{\sqrt{tx}} \leq o\right)$$

avec Poisson($\lfloor tx \rfloor - \lfloor t \rfloor x$) une variable aléatoire de Poisson de paramètre $\lfloor tx \rfloor - \lfloor t \rfloor x$ indépendante de $(Y_i)_{i \geq 1}$. D'après le TCL,

$$\mathbb{P}\left(\frac{Y_1 + \dots + Y_{\lfloor t \rfloor} - \lfloor t \rfloor x}{\sqrt{tx}} \le 0\right) \quad \underset{t \to \infty}{\longrightarrow} \quad \frac{1}{2}.$$

En remarquant que $|\lfloor tx \rfloor - \lfloor t \rfloor x| \le 1 + x$, on voit que $\frac{\text{Poisson}(\lfloor tx \rfloor - \lfloor t \rfloor x) - (\lfloor tx \rfloor - \lfloor t \rfloor x)}{\sqrt{tx}} \to \text{o en probabilité lorsque } t \to \infty$ (ceci provient par exemple de l'inégalité de Markov)) donc d'après le lemme de Slutsky on conclut que $\mathbb{P}(\text{Poisson}(tx) \le \lfloor tx \rfloor) \to \frac{1}{2}$ lorsque $t \to \infty$.

Remarque. Plus formellement, on a utilisé le fait que si $X_n + Y_n \Rightarrow Z$, avec $X_n \perp Y_n$ et Y_n qui converge en probabilité vers o, alors $X_n \Rightarrow Z$.

-x < u: alors

$$\mathbb{P}(\mathsf{Poisson}(tu) \leq \lfloor tx \rfloor) = \mathbb{P}(tu - \lfloor tx \rfloor \leq tu - \mathsf{Poisson}(tu)) \\
\leq \mathbb{P}(tu - \lfloor tx \rfloor \leq |tu - \mathsf{Poisson}(tu)|) \\
\leq \frac{\mathsf{Var}(\mathsf{Poisson}(tu))}{(tu - \lfloor tx \rfloor)^2} \\
\sim \frac{u}{t(u - x)^2}$$

lorsque $t \to \infty$, qui tend donc vers o.

-x > u: alors, de même,

$$\mathbb{P}(\mathsf{Poisson}(tu) \leq \lfloor tx \rfloor) = 1 - \mathbb{P}(\mathsf{Poisson}(tu) > \lfloor tx \rfloor)$$

$$= 1 - \mathbb{P}(\mathsf{Poisson}(tu) - tu > \lfloor tx \rfloor - tu)$$

$$\geq 1 - \mathbb{P}(|\mathsf{Poisson}(tu) - tu| > |tx| - tu)$$

et

$$\mathbb{P}\left(\left|\mathsf{Poisson}(tu) - tu\right| > \lfloor tx \rfloor - tu\right) \leq \frac{\mathsf{Var}(\mathsf{Poisson}(tu))}{(|tx| - tu)^2} \sim \frac{u}{t(x-u)} \to \mathsf{o}.$$

Ainsi,

$$\sum_{k=0}^{\lfloor tx \rfloor} \frac{(tu)^k}{k!} e^{-tu} \quad \underset{t \to \infty}{\longrightarrow} \quad \mathbb{1}_{[0,x[}(u) + \frac{1}{2} \mathbb{1}_{\{x\}}(u).$$

En utilisant le théorème de convergence dominée, on conclut que

$$\int_{\mathbb{R}_+} \sum_{k=0}^{\lfloor tx \rfloor} \frac{(tu)^k}{k!} e^{-tu} \mu(\mathrm{d}u) \quad \underset{t \to \infty}{\longrightarrow} \quad \int_{\mathbb{R}_+} (\mathbb{1}_{[0,x[}(u) + \frac{1}{2}\mathbb{1}_{\{x\}}(u))\mu(\mathrm{d}u) = \mu([0,x[) + \frac{1}{2}\mu(\{x\}).$$

Supposons maintenant que $\mu, \nu \in \mathcal{M}_1(\mathbb{R}_+)$ ont même transformée de Laplace. Notons D l'ensemble des atomes de μ et de ν , qui est au plus dénombrable. Alors d'après le résultat précédent, $\mu([x,y[)=\nu([x,y[)$ pour tous $x,y\in\mathbb{R}\backslash D$. Puisque $\mathbb{R}\backslash D$ est dense, on en déduit que μ et ν coincident sur tout intervalle ouvert et donc $\mu=\nu$ par application du lemme des classes monotones.

(3) On remarque tout d'abord que si $\mu_n \Rightarrow \mu$, alors L_{μ_n} converge simplement vers μ (la fonction $x \mapsto e^{-tx}$ étant continue bornée sur \mathbb{R}_+).

Il suffit de montrer que $(\mu_n)_{n\geq 1}$ est tendue. En effet, on conclut alors la preuve comme pour le théorème de Lévy : soit μ la limite en loi le long d'une sous-suite ϕ_0 (qui existe par tension). On raisonne par l'absurde et on suppose qu'il existe $\varepsilon > 0$, une extraction ϕ et une fonction $f: \mathbb{R} \to \mathbb{R}$ continue bornée telle que $|\mu_{\phi(n)}(f) - \mu(f)| \geq \varepsilon$. Par tension, il existe une extraction ψ telle que $\mu_{\phi \circ \psi(n)} \Rightarrow \nu$ pour une certaine mesure $\nu \in M_1(\mathbb{R})$. Comme $L_{\mu_{\phi_0(n)}}$ converge simplement vers L_μ , comme $L_{\mu_{\phi_0(n)}}$ converge simplement vers L_μ et comme L_{μ_n} converge simplement vers L_μ on en déduit que $L = L_\mu = L_\nu$ et donc $\mu = \nu$.

Pour montrer que $(\mu_n)_{n\geq 1}$ est tendue, on écrit

$$K \int_{0}^{1/K} (1 - L_{\mu_{n}}(t)) dt = K \int_{0}^{1/K} \left(1 - \int_{0}^{\infty} e^{-tx} \mu(dx) \right) dt$$

$$= K \int_{0}^{\infty} \int_{0}^{1/K} (1 - e^{-tx}) dt \mu_{n}(dx)$$

$$\geq K \int_{K}^{\infty} \int_{0}^{1/K} (1 - e^{-tx}) dt \mu_{n}(dx)$$

$$\geq K \int_{K}^{\infty} \int_{0}^{1/K} (1 - e^{-Kt}) dt \mu_{n}(dx)$$

$$= \frac{1}{e} \mu_{n}([K, \infty[).$$

Or par convergence dominée $K \int_0^{1/K} (1 - L_{\mu_n}(t)) dt \to K \int_0^{1/K} (1 - L_{\mu}(t)) dt$ et par continuité à droite $K \int_0^{1/K} (1 - L_{\mu}(t)) dt \to 0$ lorsque $K \to \infty$. On en déduit aisément la tension de $(\mu_n)_{n \ge 1}$.

Exercice 6. Soit $(\mu_n)_{n\geq 1}$ une suite de mesures de $\mathcal{M}_1(\mathbb{R})$ et $\mu\in\mathcal{M}_1(\mathbb{R})$.

(1) On suppose que $(\mu_n)_{n\geq 1}$ est tendue. Montrer que

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, $\forall n \ge 1$, $|x - y| \le \delta \implies |\phi_{\mu_n}(x) - \phi_{\mu_n}(y)| \le \varepsilon$.

(en d'autres termes, la suite $(\phi_{\mu_n})_{n\geq 1}$ est uniformément équicontinue).

- (2) On suppose que $\mu_n \Rightarrow \mu$. Montrer que ϕ_{μ_n} converge vers ϕ_{μ} uniformément sur tout compact. Donner un exemple où la convergence n'est pas uniforme.
- (3) La réciproque de l'énoncé de la première question est-elle vraie, autrement dit est-ce que si la suite $(\phi_{\mu_n})_{n\geq 1}$ est uniformément équicontinue alors la suite $(\mu_n)_{n\geq 1}$ est tendue?

Corrigé:

(1) Soit $\varepsilon >$ o et M > o tel que pour tout $n \ge 1$, $\mu_n(\mathbb{R} \setminus [-M, M]) \le \varepsilon$. Par uniforme continuité, il

existe $\delta >$ o tel que $|x-y| \le \delta$ et $t \in [-M,M]$ impliquent $|e^{itx} - e^{ity}| \le \varepsilon$. On écrit alors :

$$|\phi_{\mu_n}(x) - \phi_{\mu_n}(y)| = \int_{[-M,M]} |e^{itx} - e^{ity}| \mu_n(dt) + \int_{\mathbb{R}\setminus[-M,M]} |e^{itx} - e^{ity}| \mu_n(dt)$$

$$\leq \varepsilon + 2\mu_n(\mathbb{R}\setminus[-M,M])$$

$$\leq 3\varepsilon$$

(2) On sait que ϕ_{μ_n} converge simplement vers ϕ_{μ} . C'est alors un résultat général : si une suite de fonctions réelles sur un compact est uniformément équicontinue et converge simplement, alors elle converge uniformément. Pour le démontrer dans notre cas précis, soit $\varepsilon > 0$ et K un compact. Soit $\delta > 0$ tel que l'implication de la première question est vraie. En passant à la limite, remarquons tout d'abord que $|x-y| \le \delta$ implique $|\phi_{\mu}(x)-\phi_{\mu}(y)| \le \varepsilon$. Par compacité, on peut recouvrir K par un nombre fini de boules $(B(x_i,\delta))_{1\le i\le k}$. Soit N tel que $n\ge N$ implique $\max_{1\le i\le k} |\phi_{\mu_n}(x_i)-\phi_{\mu}(x)| \le \varepsilon$. Alors, pour $n\ge N$, soit $x\in K$. En notant $1\le i\le k$ l'entier tel que $x\in B(x_i,\delta)$:

$$|\phi_{\mu_n}(x) - \phi_{\mu}(x)| \le |\phi_{\mu_n}(x) - \phi_{\mu_n}(x_i)| + |\phi_{\mu_n}(x_i) - \phi_{\mu}(x_i)| + |\phi_{\mu}(x_i) - \phi_{\mu}(x)| \le 3\varepsilon,$$

ce qui conclut.

En prenant par exemple $X_n = 1/n$ et X = 0, on a $\phi_{X_n}(t) = e^{it/n} \to \phi_X(t)$ pour tout $t \in \mathbb{R}$, mais $\|\phi_{X_n} - \phi_X\|_{\infty} = 2$ pour tout $n \ge 1$.

(3) Oui : si $(\phi_{\mu_n})_{n\geq 1}$ est uniformément équicontinue, comme $|\phi_{\mu_n}(o)|=1$, d'après le théorème d'Arzela-Ascoli, la suite $(\phi_{\mu_n})_{n\geq 1}$ a des sous-suites qui convergent uniformément sur tout compact. Par procédé diagonal (en se restreignant par exemple à des compacts [-N,N] avec N entier), on trouve une extraction γ telle que $(\phi_{\mu_{\gamma(n)}})_{n\geq 1}$ converge uniformément sur tout compact vers une fonction limite continue ϕ . D'après le théorème de Lévy, ϕ est la fonction caractéristique d'une mesure de probabilité vers laquelle $(\phi_{\mu_{\gamma(n)}})_{n\geq 1}$ converge étroitement.

Exercice 7. Soit $(\mu_n)_{n\geq 1}$ une suite de mesures de $\mathcal{M}_1(\mathbb{R})$ et $\mu\in\mathcal{M}_1(\mathbb{R})$ sans atomes. Montrer que $\mu_n\Rightarrow\mu$ si et seulement si $\sup_{s\in\mathbb{R}}|F_{\mu_n}(s)-F_{\mu}(s)|\to o$.

Corrigé:

La réciproque est claire. Le sens direct est une conséquence du deuxième théorème de Dini. Donnons ici une approche dans le contexte de l'exercice. Fixons $k \ge 2$. L'application F_{μ} étant continue, croissante, de limite nulle en $-\infty$ et de limite 1 en ∞ , il existe des points $s_1 < \cdots < s_{k-1}$ tels que $F_{\mu}(s_i) = \frac{i}{k}$ pour tout $1 \le i \le k$. Par convergence simple, pour n assez grand, pour tout $1 \le i \le k$,

$$\frac{i-1}{k} \le F_{\mu_n}(s_i) \le \frac{i+1}{k}.$$

Par convention, posons $s_0 = -\infty$ et $s_k = \infty$. Il vient que pour tout n assez grand, pour tout $s \in \mathbb{R}$, en

П

choisissant s_i tel que $s_i \le s < s_{i+1}$:

$$F_{\mu_n}(s) \le F_{\mu_n}(s_{i+1}) \le \frac{i+2}{k} = F_{\mu}(s_i) + \frac{2}{k} \le F_{\mu}(s) + \frac{2}{k}$$

et de même

$$F_{\mu_n}(s) \ge F_{\mu_n}(s_i) \ge \frac{i-1}{k} = F_{\mu}(s_{i+1}) - \frac{2}{k} \ge F_{\mu}(s) - \frac{2}{k}.$$

Ainsi, pour *n* assez grand,

$$\sup_{s\in\mathbb{R}}|F_{\mu_n}(s)-F_{\mu}(s)|\leq \frac{2}{k},$$

ce qui conclut.

Exercice 8. – (Théorème de Glivenko-Cantelli) – Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et de même loi μ . On considère $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$ la mesure empirique de ces variables aléatoires. On note F_n la fonction de répartition de μ_n et F celle de μ . Le but de cet exercice est de le théorème de Glivenko-Cantelli :

presque sûrement,
$$\lim_{n\to\infty} \sup_{s\in\mathbb{R}} |F_n(s) - F(s)| = 0.$$
 (**)

(1) Montrer (\star) lorsque μ est la loi uniforme sur [0, 1].

Pour $0 \le x \le 1$, on pose $G(x) = \inf\{s \in \mathbb{R} : F(s) \ge x\}$ (appelé inverse généralisé de F). Il est possible de vérifier que G est croissante, continue à gauche en tout point. Soit $(Y_i)_{1 \le i \le n}$ des variables aléatoires indépendantes de loi uniforme sur [0,1].

(2) (a) Montrer que pour tout $t \in \mathbb{R}$ et $x \in [0,1]$ on a

$$F(t) \ge x \iff t \ge G(x).$$
 (2)

- (b) Montrer que $(G(Y_i))_{1 \le i \le n}$ sont des variables indépendantes de même loi μ .
- (c) Montrer que F_n et $A_n \circ F$ ont même loi, où A_n est la fonction de répartition empirique des Y_1, \ldots, Y_n .
- (3) En déduire (★).

Corrigé:

(1) On suit la même approche que pour l'exercice 7. Fixons $k \ge 2$. Il existe des points $s_1 < \cdots < s_{k-1}$ tels que $F(s_i) = \frac{i}{k}$ pour tout $1 \le i \le k$. D'après la loi des grands nombres, presque sûrement, pour n assez grand, pour tout $1 \le i \le k$,

$$\frac{i-1}{k} \le F_{\mu_n}(s_i) \le \frac{i+1}{k}.$$

Par convention, posons $s_0 = -\infty$ et $s_k = \infty$. Il vient que pour tout n assez grand, pour tout $s \in \mathbb{R}$,

en choisissant s_i tel que $s_i \le s < s_{i+1}$:

$$F_{\mu_n}(s) \le F_{\mu_n}(s_{i+1}) \le \frac{i+2}{k} = F_{\mu}(s_i) + \frac{2}{k} \le F_{\mu}(s) + \frac{2}{k}$$

et de même

$$F_{\mu_n}(s) \ge F_{\mu_n}(s_i) \ge \frac{i-1}{k} = F_{\mu}(s_{i+1}) - \frac{2}{k} \ge F_{\mu}(s) - \frac{2}{k}.$$

Ainsi, presque sûrement, pour n assez grand,

$$\sup_{s\in\mathbb{R}}|F_{\mu_n}(s)-F(s)|\leq \frac{2}{k}.$$

Ceci étant vrai pour tout $k \ge 2$, ceci conclut.

- (2) (a) Si $F(t) \ge x$, alors clairement $\inf\{s \in \mathbb{R} : F(s) \ge x\} \le t$ et donc $G(x) \le t$. Réciproquement, montrons que F(t) < x implique t < G(x). Puisque F(t) < x continue à droite, il existe $\varepsilon > 0$ tel que $F(t+\varepsilon) < x$. On a alors $G(x) \ge t + \varepsilon > t$.
 - (b) Elles sont clairement indépendantes de même loi et d'après la question précédente, pour $0 \le t \le 1$,

$$\mathbb{P}(G(Y_1) \le t) = \mathbb{P}(F(t) \ge Y_1) = F(t),$$

d'où le résultat.

(c) Sans perte de généralité, on peut supposer que $X_i = G(Y_1)$. On a alors

$$F_n(t) = \frac{1}{n} \text{Card}(\{1 \le i \le n : G(Y_i) \le t\}) = \frac{1}{n} \text{Card}(\{1 \le i \le n : Y_i \le F(t)\}) = A_n(F(t)).$$

(3) D'après (1), on a

presque sûrement,
$$\lim_{n\to\infty} \sup_{s\in\mathbb{R}} |A_n(s) - s| = 0$$
,

ce qui implique

presque sûrement,
$$\lim_{n\to\infty} \sup_{s\in\mathbb{R}} |A_n(F(s)) - F(s)| = 0$$
,

et le résultat désiré en découle par (c).

Exercice 9. – (Caractérisation des fonctions de répartition dans \mathbb{R}^k .) – Pour $x=(x_1,\ldots,x_k)\in\mathbb{R}^k$ et $y=(y_1,\ldots,y_k)\in\mathbb{R}^k$ on note $x\leq y$ si $x_i\leq y_i$ pour tout $1\leq i\leq k$. Soit $F:\mathbb{R}^k\to[0,1]$ une fonction. On dit qu'elle est continue à droite si $F(x^n)\to F(x)$ lorsque $x^n\downarrow x$. On dit qu'elle est propre si $F(x)\to 1$ lorsque $\min_i x_i\to\infty$ et $F(x)\to 0$ lorsque $\min_i x_i\to 0$. On dit qu'elle est une fonction de répartition s'il existe une mesure $\mu\in\mathcal{M}_1(\mathbb{R}^k)$ telle que $F(x)=\mu(\{y\in\mathbb{R}^k:y\leq x\})$.

(1) Donner un exemple de fonction $F : \mathbb{R}^2 \to [0,1]$ continue à droite, propre, croissante en chacune de ses variables et qui n'est pas une fonction de répartition.

On dit que F est à accroissements positifs si pour tout pavé $[x,y] =]x_1,y_1] \times \cdots \times]x_k,y_k]$ on a $F([x,y]) := \sum_u s(u)F(u) \ge 0$, où la somme est prise sur tous les coins u de [x,y] et $s(u) = (-1)^p$ avec $p = \sum_{i=1}^k \mathbbm{1}_{u_i=y_i}$.

(2) Montrer que $F: \mathbb{R}^k \to [0,1]$ est une fonction de répartition si et seulement si elle est continue à

droite, propre, et est à accroissements positifs.

Pour une preuve probabiliste de la réciproque, on pourra justifier l'existence pour tout $n \ge 1$ de mesures de probabilité μ_n à support dans $(2^{-n}\mathbb{Z})^k$) telles que $\mu_n(x/2^n) = F(]2^{-n}(x-1), 2^{-n}x]$) pour $x \in \mathbb{Z}^k$, et de variables aléatoires $(X^n)_{n\ge 1}$ telles que X^n soit de loi μ_n et $X^m - 2^{-m} < X^n \le X^m$ pour tout m < n, et enfin considérer $X = \lim_{n\to\infty} X^n$.

Corrigé:

- (1) Prenons $F(x_1, x_2) = \mathbb{1}_{x_1 + x_2 \ge 0}$. S'il existe $\mu \in \mathcal{M}_1(\mathbb{R}^k)$ telle que F soit sa fonction de répartition, on a alors $\mu(\lceil -1, 2 \rceil \times \lceil -1, 2 \rceil) = F(2, 2) F(2, -1) F(-1, 2) + F(-1, -1) = -1$, absurde.
- (2) L'implication est claire (si F est la fonction de répartition de $\mu \in \mathcal{M}_1(\mathbb{R}^k)$, la propriété d'être à accroissements positifs provient du fait que $\sum_u s(u)F(u) = \mu(]x,y]$) en reprenant les notations de l'énoncé).

Puisque F est propre et à accroissements positifs, il existe bien des mesures de probabilité μ_n à support dans $(2^{-n}\mathbb{Z})^k$) telles que $\mu_n(x/2^n) = F(]2^{-n}(x-1), 2^{-n}x]$) pour $x \in \mathbb{Z}^k$.

Ensuite, par construction, F est finiment additive sur les pavés, de sorte que pour $x \in \mathbb{Z}^k$ et $1 \le m < n$:

$$\mu_m(2^{-m}]x-1,x]) = \mu_n(2^{-m}(x-1,x]).$$

Ceci permet de construire par récurrence une suite de variables aléatoires $(X^n)_{n\geq 1}$ telles que X^n soit de loi μ_n et $X^m-2^{-m} < X^n \leq X^m$ pour tout m < n à partir d'une suite de variables aléatoires i.i.d. uniformes sur [0,1]. En effet, supposons X^1,\ldots,X^n construites. Puisque

$$\sum_{i_1,\dots,i_k=0 \text{ ou } 1} \mu_{n+1} \left(\left| X_1^n - \frac{i_1}{2^{n+1}}, X_1^n - \frac{i_1}{2^{n+1}} - 2^{-n-1} \right|, \dots, \left| X_k^n - \frac{i_k}{2^{n+1}}, X_1^n - \frac{i_k}{2^{n+1}} - 2^{-n-1} \right| \right)$$

$$= \mu_n \left(\left| X^n - \frac{1}{2^n}, X^n \right| \right),$$

on construit X^{n+1} sachant X^n de sorte que pour $i_1, \ldots, i_k = 0$ ou 1,

$$X^{n+1} = \left(X_1^n - \frac{i_1}{2^{n+1}}, \dots, X_k^n - \frac{i_k}{2^{n+1}}\right)$$

avec probabilité

$$\frac{1}{\mu_n(\left]X^n-\frac{1}{2^n},X^n\right]}\mu_{n+1}\left(\left]X_1^n-\frac{i_1}{2^{n+1}},X_1^n-\frac{i_1}{2^{n+1}}-2^{-n-1}\right],\ldots,\left]X_k^n-\frac{i_k}{2^{n+1}},X_1^n-\frac{i_k}{2^{n+1}}-2^{-n-1}\right]\right).$$

On a bien $X^m - 2^{-m} < X^n \le X^m$ pour tout m < n, ce qui permet par monotonie de définir $X = \lim_{n \to \infty} X^n$.

Vérifions que la fonction de répartition de X est F. Soit $x \in \mathbb{R}^k$ dyadique. En particulier, $\mathbb{P}(X^n \le x) = F(x)$. Par ailleurs, d'après le lemme de Fatou,

$$\mathbb{P}\left(X < x\right) = \mathbb{E}\left[\lim_{n \to \infty} \mathbb{1}_{X^{n} < x}\right] \leq \liminf_{n \to \infty} \mathbb{P}\left(X^{n} < x\right) \leq \liminf_{n \to \infty} \mathbb{P}\left(X^{n} \leq x\right) \leq F(x) = \mathbb{P}\left(X^{n} \leq x\right) \leq \mathbb{P}\left(X \leq x\right).$$

Ainsi,

$$F(x) \le \mathbb{P}(X \le x) < \mathbb{P}(X < x + 2^{-n}) \le F(x + 2^{-n}).$$

En faisant tendre *n* vers l'infini, on conclut en utilisant la continuité à droite de *F*.

Exercice 10. Soit (E,d) un espace métrique muni de sa tribu borélienne et $f:E\to\mathbb{R}$ mesurable. Montrer que l'ensemble des points de discontinuité de f est mesurable.

Indication. Pour ε , δ > 0, on pourra vérifier que $U_{\varepsilon,\delta} := \{x \in E : \exists y, z \in B(x,\varepsilon), |f(y) - f(z)| > \delta\}$ est ouvert.

Corrigé:

Vérifions tout d'abord que $U_{\varepsilon,\delta}$ est bien ouvert. Si $x \in U_{\varepsilon,\delta}$ et $y,z \in B(x,\varepsilon)$ sont tels que $|f(y)-f(z)| > \delta$, alors pour tout x' tel que $d(x,x') < \varepsilon - \max(d(x,y),d(x,z))$ on a $x' \in U_{\varepsilon,\delta}$. En particulier, $U_{\varepsilon,\delta}$ est mesurable. On conclut en remarquant que l'ensemble des points de discontinuité de f s'écrit

$$\bigcup_{\substack{\delta>0\\\delta\in\mathbb{Q}}}\bigcap_{\varepsilon\in\mathbb{Q}}U_{\varepsilon,\delta}$$