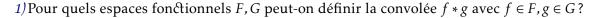


ENS Paris, 2012-2013

TD7 – Bouillon mathématique à ma façon

1 – Apéritif – Petites questions

0) Quels sont les théorèmes vus en cours avec une hypothèse « σ -fini » ?



.

2 – Entrée – Convolution

Exercice 1. (Approximation C^{∞})

- 1. Soient f une fonction localement intégrable sur $\mathbb R$ (c'est-à-dire intégrable sur tout compact de $\mathbb R$) et φ une fonction de classe C^∞ à support compact. Montrer que la fonction $f * \varphi$ est définie pour tout $x \in \mathbb R$ et est de classe C^∞ .
- 2. Soit $\phi: x \mapsto \exp\left(-\frac{1}{1-x^2}\right)\mathbb{1}_{|x|<1}$, montrer que cette fonction est une fonction \mathcal{C}^{∞} à support compact.
- 3. En déduire que pour tout $p \in [1, \infty[$, l'ensemble des fonctions de classe C^{∞} sur \mathbb{R} est dense dans $\mathbb{L}^p(\mathbb{R})$.

3 – Plat de viande – Dualité $L^p - L^q$

Exercice 2. (Séquentielle compacité faible) Soit $p \in]1,\infty[$ et q son exposant conjugué, $\Omega \subset \mathbb{R}$ un ouvert de \mathbb{R} et μ la mesure de Lebesgue. Soit (f_n) une suite bornée de $\mathbb{L}^p(\Omega)$ $(c-\grave{a}-d$ que la suite $(\|f_n\|_p)_{n\geq 1}$ est bornée).

1. Montrer que $\mathbb{L}^q(\Omega)$ est séparable (c'est à dire qu'il contient une partie dénombrable dense).

Pour des questions, demande de précisions ou explications, n'hésitez pas à m'envoyer un mail à igor.kortchemski@ens.fr , ou bien à venir me voir au bureau V4.

2. Soit D une partie dénombrable dense de $\mathbb{L}^q(\Omega)$. Montrer qu'il existe une sous-suite $(f_{\varphi(n)})$ telle que pour tout $h \in D$,

$$\lim_{n\to\infty}\int_{\Omega}f_{\varphi(n)}hd\mu \text{ existe dans }\mathbb{R}.$$

3. Montrer que pour tout $g \in \mathbb{L}^q(\Omega)$,

$$\phi(g) = \lim_{n \to \infty} \int_{\Omega} f_{\varphi(n)} g d\mu \text{ existe dans } \mathbb{R}.$$

4. En déduire qu'il existe $f \in \mathbb{L}^p(\Omega)$ telle que l'on ait convergence faible dans $\mathbb{L}^p(\Omega)$ de la suite $(f_{\varphi(n)})$ vers f, c'est-à-dire:

$$\forall g \in \mathbb{L}^q(\Omega), \qquad \lim_{n \to \infty} \int_{\Omega} f_{\varphi(n)} g d\mu = \int_{\Omega} f g d\mu.$$

5. Le résultat précédent subsiste-t-il pour p = 1?

Exercice 3. (Petit contre-exemple) Soient $E = \{a, b\}$ et μ la mesure définie sur $\mathcal{P}(E)$ par $\mu(\{a\}) = 1$ et $\mu(\{b\}) = \mu(E) = +\infty$. Caractériser $\mathbb{L}^{\infty}(\mu)$ et le dual topologique de $\mathbb{L}^{1}(\mu)$. Conclure.

4 – Plat de poisson – Mesures signées

Exercice 4. (L'espace $\mathcal{M}(\mathbb{R})$)

(i) Montrer que $\mathcal{M}(\mathbb{R})$ l'espace des des mesures boréliennes signées sur \mathbb{R} est un espace de Banach pour la norme

$$\mu\mapsto \|\mu\|$$
,

où $\|\mu\| = |\mu|(\mathbb{R})|$.

Indication : $si(\mu_n)_{n\geq 1}$ est une suite de Cauchy, on pourra montrer que

$$\lim_{n\to\infty}\sup\{|\mu(A)-\mu_n(A)|; A\in\mathcal{B}(\mathbb{R})\}=0$$

où µ est à déterminer.

(ii) Soit (X, A, μ) un espace mesuré fini. Montrer que pour tout $f \in \mathbb{L}^1(X, A, \mu)$:

$$||f||_{\scriptscriptstyle 1} = ||f \cdot \mu||,$$

où $(f \cdot \mu)$ est la mesure absolument continue par rapport à μ de densité f.

5 – Fromage – Pour préparer le partiel à venir

Chercher des exercices des partiels des années précédents (les énoncés sur disponibles sur le site d'enseignement du DMA - http://www.math.ens.fr/enseignement - partie Archives pédagogiques, puis Annales d'examens).

2

6 – Dessert – Compléments (hors TD)

Exercise 5. (Fonctions à variation finie) Soit une fonction $f : [a, b] \to \mathbb{R}$.

- 1. Montrer que les conditions suivantes sont équivalentes :
 - (i) f s'écrit comme une différence de deux fonctions croissantes continues à droite.
 - (ii) Il existe une mesure signée μ sur [a, b] telle que $f(x) = \mu([a, x])$ pour tout $x \in [a, b]$.
 - (iii) f est continue à droite et à variation bornée c'est-à-dire que f vérifie la condition suivante

$$\sup_{n \ge 2, a \le a_1 < \dots < a_n \le b} \sum_{i=1}^{n-1} |f(a_{i+1}) - f(a_i)| < \infty.$$

2. Donner un exemple de fonction continue $[0,1] \mapsto \mathbb{R}$ qui ne soit pas à variation finie.

Exercice 6. (Théorème de Vitali-Saks) Soit (X, A, μ) un espace mesuré. Une famille $(v_i)_{i \in I}$ de mesures sur A est dite absolument équicontinue par rapport à la mesure μ si :

$$\begin{cases} \forall \epsilon > 0, \exists A_{\epsilon} \in \mathcal{A}, & \mu(A_{\epsilon}) < +\infty \text{ et } \forall i \in I, \nu_{i}(A_{\epsilon}^{c}) < \epsilon, \\ \forall \epsilon > 0, \exists \delta > 0, \forall A \in \mathcal{A}, & \mu(A) < \delta \Longrightarrow \forall i \in I, \nu_{i}(A) < \epsilon \end{cases}$$

On suppose que $A = \sigma(C)$, où C est une classe stable par intersection finie contenant X. Le but est de prouver le résultat suivant

Théorème de Vitali-Saks. Soit $(\nu_n)_{n\geq 1}$ une suite de mesures finies sur \mathcal{A} , absolument équicontinue par rapport à μ et telle que pour tout $C\in\mathcal{C}$, $\lim_n\nu_n(C)$ existe dans \mathbb{R}_+ . Alors pour tout $A\in\mathcal{A}$, $\nu(A)=\lim_n\nu_n(A)$ existe dans \mathbb{R}_+ et ν définit une mesure absolument continue par rapport à μ .

- 1. Soit $\mathcal{B} = \{A \in \mathcal{A}; \nu(A) = \lim_n \nu_n(A) \text{ existe dans } \mathbb{R}_+ \}$. Montrer que \mathcal{B} est stable par différence propre (c-à-d si $A, B \in \mathcal{B}$ avec $A \subset B$, alors $B \setminus A \in \mathcal{B}$).
- 2. Soient $(B_k)_{k\geq 1}$ une suite d'éléments deux à deux disjoints de $\mathcal B$ et B leur réunion. Montrer que

$$\lim_{n\to\infty}\nu_n(B)=\sum_{k\geq 1}\lim_{n\to\infty}\nu_n(B_k).$$

- 3. En déduire que $\mathcal{B} = \mathcal{A}$.
- 4. Montrer que l'application ν est une mesure sur \mathcal{A} , absolument continue par rapport à la mesure μ .

Dans l'exercice suivant, on note $(f \cdot \mu)$ la mesure absolument continue par rapport à μ de densité f.

Exercice 7. (Exercice 2 dans \mathbb{L}^1 : cas particulier du théorème de Dunford-Pettis) Soit (X, \mathcal{A}, μ) un espace mesuré fini. On suppose que $\mathcal{A} = \sigma(\mathcal{C})$, où \mathcal{C} est une classe dénombrable stable par intersection finie contenant X.

¹Contrairement à l'énoncé distribué en TD, il faut que ce soit \mathbb{R}_+ et non pas $\overline{\mathbb{R}}_+$ (sinon c'est faux, voir corrigé)

- 1. Montrer que c'est le cas lorsque X est un espace métrique séparable muni de sa tribu borélienne. Soit $(f_n)_{n\geq 1}$ une suite bornée de $\mathbb{L}^1(X,\mathcal{A},\mu)$ (càd la suite $(\|f_n\|_1)_{n\geq 1}$ est bornée) telle que la suite de mesures $(|f_n|\cdot\mu)_{n\geq 1}$ est absolument équicontinue par rapport à μ .
- 2. Montrer qu'il existe une sous-suite $(f_{\phi(n)})_{n\geq 1}$ telle que les deux suites de mesures définies par $\nu_n^{\pm}:=f_n^{\pm}\cdot\mu$ vérifient : pour tout $C\in\mathcal{C}$, $\lim_n\nu_{\phi(n)}^{\pm}(C)$ existent dans \mathbb{R} .
- 3. Montrer qu'il existe $f \in \mathbb{L}^1(X, \mathcal{A}, \mu)$ vérifiant pour tout $A \in \mathcal{A}$:

$$\lim_{n\to\infty}\int_A f_{\phi(n)}d\mu=\int_A f\,d\mu.$$

4. En déduire la *convergence faible* de $f_{\phi(n)}$ vers f:

$$\forall g \in \mathbb{L}^{\infty}(X, \mathcal{A}, \mu), \quad \lim_{n \to \infty} \int_{X} f_{\phi(n)} g d\mu = \int_{X} f g d\mu.$$

5. Une suite $(f_n)_{n\geq 1}$ qui converge faiblement au sens de d) (mais pour la suite elle-même) converge-telle nécessairement μ -p.p. ou en norme $\|\cdot\|_1$ vers f? Comparer avec l'exercice 8 du TD3.

Exercice 8. Soit (g_n) une suite de fonctions continues positives sur I = [0,1]. On note λ la mesure de Lebesgue sur I et μ une mesure positive de Borel sur I telle que

- 1. $\lim_{n} g_n(x) = o \lambda p.p.$
- 2. $\int_I g_n d\lambda = 1$ pour tout $n \ge 1$.
- 3. $\lim_{n} \int_{I} f g_{n} d\lambda = \int_{I} f d\mu$ pour tout $f \in C(I)$.

Peut-on en déduire que μ est étrangère à λ ?

