TD3 – Intégration, théorèmes de convergence

1 – Petites questions

1) Soit $(f_n)_{n\geqslant 0}$ une suite de fonctions continues sur [0,1], avec $0\leqslant f_n\leqslant 1$ pour tout n, qui converge simplement vers 0. Montrer que

$$\lim_{n\to\infty}\int_0^1 f_n(x)dx = 0.$$

2) On définit sur un espace mesuré (E,\mathcal{A},μ) une suite de fonctions mesurables $(f_n)_{n\geqslant 0}$ et une fonction mesurable f telle que $f_n\to f$ μ -p.p. quand $n\to\infty$. On suppose que

$$\sup_{n\geq 0}\int_{E}|f_{n}|\,d\mu<\infty.$$

Montrer que f est intégrable.

3) (Inégalité de Markov) Soit $f \in \mathcal{L}_1(E, A, \mu)$. Montrer que pour tout A > 0,

$$\mu(\{|f|\geqslant A\})\leqslant \frac{1}{A}\int_E|f|d\mu.$$

4) Soit $f \in \mathcal{L}_1(E, A, \mu)$. Montrer que $\mu(\{f = +\infty\}) = 0$. Que dire de la réciproque?

2 – Intégration, théorèmes de convergence

Exercice 1.

1) Soit f une fonction dérivable sur [0,1], de dérivée f' bornée. Prouver que

$$\int_0^1 f'(x) dx = f(1) - f(0).$$

2) (*) Trouver une fonction continue presque partout dérivable sur [0,1] telle que f(0) = 0, f(1) = 1 et $\int_0^1 f'(x) dx = 0$.

Pour des questions, demande de précisions ou explications, n'hésitez pas à m'envoyer un mail à igor.kortchemski@ens.fr , ou bien à venir me voir au bureau V4.

Exercice 2 (Borel-Cantelli is back). Soient $f: (\mathbb{R}, \mathcal{B}(\mathbb{R})) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction intégrable pour la mesure de Lebesgue et $\alpha > 0$. Montrer que pour presque tout $x \in \mathbb{R}$,

$$\lim_{n\to\infty} n^{-\alpha} f(nx) = 0.$$

Indication donnée à titre indicatif : on pourra considérer, pour $\eta > 0$, les ensembles

$$A_{n,n} = \{x \in \mathbb{R} : n^{-\alpha} | f(nx) | > \eta \}, \ n \geqslant 1.$$

Exercice 3 (Uniforme continuité de l'intégrale).

Soient (E, A, μ) un espace mesuré et $f : (E, A, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction intégrable.

1) Montrer que

$$\lim_{n\to\infty}\int |f|\mathbb{1}_{\{|f|>n\}}d\mu=0.$$

2) Montrer que

$$\forall \epsilon>0, \ \exists \delta>0, \ \forall A\in \mathcal{A}, \ \ \mu(A)<\delta \Rightarrow \int_{A} |f| \, d\mu <\epsilon.$$

3) Si $f:(\mathbb{R},\mathcal{B}(\mathbb{R}))\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ est intégrable pour la mesure de Lebesgue, que peut-on dire de la fonction $F:\mathfrak{u}\to\int_{[0,\mathfrak{u}]}fd\lambda$?

Exercice 4 (Problème: convergence en mesure).

Soit (E, \mathcal{A}, μ) un espace mesuré tel que $\mu(E) < \infty$. Soient $(f_n)_{n \geqslant 0}$ et f des fonctions mesurables de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que la suite (f_n) converge vers f en mesure si pour tout $\epsilon > 0$,

$$\mu(|f-f_n|>\epsilon)\longrightarrow 0.$$

- 1. Montrer que si $\int_E |f-f_n| d\mu \to 0$, alors $f_n \to f$ en mesure. Remarquer que la réciproque est fausse.
- 2. Montrer que si $f_n \to f$ μ -p.p., alors $f_n \to f$ en mesure. Remarquer que la réciproque est fausse.
- 3. En utilisant le lemme de Borel-Cantelli, montrer que si $f_n \to f$ en mesure, alors on peut extraire une suite de (f_n) qui converge μ -p.p. vers f.
- 4. *Un théorème de convergence dominée plus fort.* On suppose que $f_n \to f$ en mesure et qu'il existe une fonction $g: E \to \mathbb{R}$ intégrable telle que $|f_n| \leqslant g \mu$ -p.p. pour tout $n \geqslant 1$.
 - (a) Montrer que $|f| \le g \mu$ -p.p.
 - (b) En déduire à l'aide de la propriété d'uniforme continuité de l'intégrale que

$$\int_{E} |f_{n} - f| d\mu \to 0.$$

- 5. L'espace $L^0(E, \mu)$. On note $L^0(E, \mu)$ l'ensemble des fonctions mesurables quotienté par la relation d'égalité μ -p.p.
 - (a) Montrer que l'on définit une distance sur $L^0(E, \mu)$ par

$$\delta(f,g) = \inf\{\epsilon > 0, \mu(|f-g| > \epsilon) \leqslant \epsilon\}$$

et que celle-ci métrise la convergence en mesure.

- (b) Montrer que ($L^0(E, \mu), \delta$) est complet.
- (c) Montrer qu'il n'existe pas de distance sur $L^0(E, \mu)$ qui métrise la convergence μ -p.p.

Exercice 5.

Soit $f:]0, 1[\to \mathbb{R}$ une fonction positive, monotone et intégrable. Quelle est la limite de la suite

$$\left(\int_0^1 f(x^n) dx\right)_{n \ge 1}?$$

3 – À préparer pour la prochaine fois

Exercice 6.

- 1. Dans le lemme de Fatou, montrer que si l'on remplace \liminf par \limsup , $f_n \ge 0$ par $f_n \le 0$ et $\ge par \le$, le théorème reste vrai. Montrer en revanche, à l'aide de contre-exemples, qu'on ne peut pas se permettre d'en changer certains mais pas les autres.
- 2. Donner un exemple de fonctions $(f_n)_{n\geqslant 0}$ pour lesquelles l'inégalité est stricte dans le lemme de Fatou.
- 3. Dans le théorème de convergence dominée, vérifier, en donnant des exemples et contreexemples, que si l'on oublie une hypothèse la conclusion peut rester vraie, ou pas !
- 4. Reprendre la question précédente avec le théorème de convergence monotone.
- 5. Soit (f_n) une suite de fonctions positives convergeant μ -pp vers f. Supposons que $\int f_n d\mu \longrightarrow c < \infty$. Montrer que $\int f d\mu$ est définie est appartient à [0,c] mais ne vaut pas nécessairement c.
- 6. Construire une suite de fonctions continues f_n sur [0,1], avec $0 \le f_n \le 1$, et telle que

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 0,$$

sans toutefois que la suite $(f_n(x))$ ne converge pour aucun x de [0,1].

4 – Compléments (hors TD)

Exercice 7. Soit (X, \mathcal{A}, μ) un espace mesuré de masse totale finie et $f: X \to \mathbb{R}$ mesurable. Montrer que:

$$f\in \mathscr{L}_1(X,\mathcal{A},\mu) \qquad \Longleftrightarrow \qquad \sum_{n\geqslant 1} \mu(\{|f|\geqslant n\}) < \infty.$$

Que se passe-t-il si la masse totale est infinie?

Exercice 8 (Quand est-ce que convergence p.p. implique convergence dans \mathscr{L}_1 ?). Soit (E,\mathcal{A},μ) un espace mesuré avec $\mu(E)<\infty$. Une famille $(f_i)_{i\in I}$ de fonctions mesurables de E dans $\mathbb R$ est dite uniformément intégrable si

$$\lim_{c\to\infty}\sup_{i\in I}\int_{\{|f_i|\geqslant c\}}|f_i|d\mu=0.$$

- a) Montrer que toute famille finie de $\mathscr{L}_1(\mathsf{E},\mathcal{A},\mu)$ (noté $\mathscr{L}_1(\mu)$ dans la suite) est uniformément intégrable.
- b) Montrer que la famille $(f_i)_{i \in I}$) est uniformément intégrable si, et seulement si, les deux conditions suivantes sont satisfaites:
 - (i) $\sup\{\int |f_i|d\mu, i \in I\} < \infty$
 - $\text{(ii)} \ \forall \, \epsilon > 0, \exists \, \eta > 0, \forall \, A \in \mathcal{A}, \qquad \mu(A) < \eta \Longrightarrow \forall \, \mathfrak{i} \in I, \int_A |f_{\mathfrak{i}}| d\mu < \epsilon.$
- c) Montrer que si les familles $(f_i)_{i \in I}$ et $(g_i)_{i \in I}$ sont uniformément intégrables, alors il en est de même pour la famille $(f_i + g_i)_{i \in I}$).
- d) Soit $(f_n)_{n\geqslant 1}$ une suite de fonctions qui converge μ -p.p. vers une fonction f. Montrer que $(f_n)_{n\geqslant 1}$ est uniformément intégrable si, et seulement si, $f\in \mathscr{L}_1(\mu)$ et

$$\int_{E} |f_{n} - f| \, d\mu \quad \underset{n \to \infty}{\longrightarrow} \quad 0.$$

Exercice 9 (*). Soient (E, \mathcal{A}, μ) un espace mesuré et $(A_n)_{n\geqslant 1}$ une suite d'éléments de \mathcal{A} . Soit $f:(E, \mathcal{A}, \mu)\to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ une fonction intégrable telle que

$$\int_{\mathsf{E}} |\mathbb{1}_{A_{\mathfrak{n}}} - \mathsf{f}| \, d\mu \quad \underset{\mathfrak{n} \to \infty}{\longrightarrow} \quad 0.$$

Montrer qu'il existe $A \in \mathcal{A}$ tel que $f = \mathbb{1}_A$, μ presque partout.