IV. De théorème d'ITô

1) Structure des zéros du MB

\(\mathcal{I}_V (B_t) \) est un MB issu de 0, (\(\mathcal{F}_t \)), la tribu canonique de 0 (\(\mathcal{F}_t = \sigma (B_u ; 0 \leq u \leq t) \)) complétée par l'ensemble des événements de la grand tribu.

On note \(L_t^\alpha (B) \) le bps local de 0 au niveau \(\alpha \) au temps \(t \).

\(S_t \) est un temps d'arrêt, on note \(\tilde{B}_t = B_{T_t + t} - B_{T_t} \), \(\mathcal{M} \)

On a \(L_t^\alpha (\tilde{B}) = L_{T_t + t}^\alpha (B) - L_{T_t}^\alpha (B) \).

Pour simplifier, on note \(L_t^\alpha = L_t^\alpha (B) \).

Pour \(\alpha > 0 \), \(\tilde{B}_t = \frac{1}{\alpha} B_{\alpha t} \) est un MB, et \(L_t^\alpha (B^{(x)}) = \frac{1}{\alpha} L_{x^2 t}^\alpha (B) \).

\(\lim_{t \to +\infty} L_t = 0 \) \(\quad (**) \)

\(\forall \varepsilon > 0, \exists T_\varepsilon > 0 \).

Preuve :

\((L_t)_{t \geq 0} \) par le thm de Lévy.

Le résultat en découle d'après la loi du tout ou rien.

Pour 1) \(\mathcal{B} = \bigcap_{t \geq 0} \mathcal{F}_t \), \(A = \bigcap_{t \geq 0} \bigcup_{\varepsilon > 0} B_{s} > 0 \) \(\quad \mathbb{F}^{\varepsilon} \in \mathcal{F}_t \).

Donc \(P(A) = 0 \) ou 1.

Or \(P(A) = \lim_{\varepsilon \to 0} \mathbb{P} \left(\sup_{0 \leq s \leq t} B_s > \varepsilon \right) = \frac{1}{2} \).

Pour 2) on utilise l'invariance du MB:

\(1 = \mathbb{P} (\sup_{s \leq t} B_s > 0) = \lim_{\varepsilon \to 0} \mathbb{P} (\sup_{s \leq t} B_s > \varepsilon) \)

\(= \lim_{\varepsilon \to 0} \mathbb{P} (\sup_{s \leq t} T \leq s_{\varepsilon} > \varepsilon) \)

\(= \mathbb{P} (\sup_{\delta > 0} B_{t} > 1) \).

Pour, punch! d'échelle, \(\mathbb{P} (\sup_{\delta > 0} B_{t} > 4) = 1 \). VAI.
Thm

\[B_t = 0 \iff \exists \text{ un point de croissance de } L. \]
(càd soit \((V \geq 0, \forall t \geq t_0)\) soit \((V \geq 0, t \geq t_1.5)\))

Preuve

\begin{enumerate}
\item Déjà vu.
\item Dém 0, ok.
\end{enumerate}

Pour \(q \in q^\prime\), on pose \(\sigma_q = \inf \{ t \geq 0 ; B_t = 0 \} \leq \infty \text{ p.s.} \)

D'après ce qui précède, \(L_{\sigma_q} > L_{q} \quad \forall t > 0, \text{ p.s.}\)

Ainsi :
\(\sigma_q \text{ si } \exists q \text{ t.q. } t = \sigma_q, \text{ ou à bien } V \geq 0, \forall t \geq t_1.5 \)
\(\sigma_q \text{ si } \exists q \text{ t.q. } t = \sigma_q, \text{ on choisit pour } \sigma_q, \)
\(\text{ou choisit } q \leq t_1.5 \text{. Ainsi } \sigma_q \text{ et } \)
\(\sigma_q \text{ est un point de croissance de } L, \text{ et donc } L_{t - \varepsilon} < L_t. \)

Pour \(s \geq 0\), on note \(\tau_s = \inf \{ t \geq 0 ; L_t > s \} \leq \infty \text{ p.s.}\)

\(s \to \tau_s \text{ est } 1, \text{ càd.}\)

De plus \(\tau_{s_1} - \tau_{s_2} \text{ p.s.}\)

Corollaire

Soit \(D \text{ l'ensemble des discontinuités de } L. \)

1) \(\forall s \geq 0, B_t = 0 \implies \tau_s \leq s \implies V \leq \tau_s \implies s \in D \)

2) Les composantes convexes de \(\mathbb{R}_+ \forall \varepsilon > 0, B_t = 0 \Gamma \text{ sont les intervalles } [\tau_{s_1}, \tau_{s_2}] \text{ pour } s \in D. \)

Preuve

\begin{enumerate}
\item 0, ok.
\item Si \(L_{t + \varepsilon} > L_t \text{ } \forall \varepsilon > 0\), alors \(t = \tau_{L_t}. \)
\end{enumerate}

\(\text{Suis, } \exists \varepsilon > 0 \text{ t.q. } L_t + \varepsilon_0 = L_t \text{ et } L_{t - \varepsilon} < L_t \text{ pour } \varepsilon > 0. \)

Alors \(t = \tau_{L_t}. \text{ De plus, } \tau_{L_t} > t + \varepsilon_0, \text{ donc } L_{t + \varepsilon} \in D. \)

2) Un intervalle de la forme \([\tau_{s_1}, \tau_{s_2}] \text{ ne contient pas d'instants } t \text{ t.q. } B_t = 0. \)
Reciproque, si $S_{\alpha, \beta}$ est une composante contenant e et β_{α}, on a $L_{\alpha} = L_{\beta} = S$, $E_{\alpha} = E_{\beta} = 0$.
On vérifie que $L_{0} = T_{s}$ et $b = T_{s}$.

2) Le théorème d'Ito

On pose $E = \{ e ; \beta_{\alpha} \in B_{\alpha} \}$ continu, $e(0) = 0$ et $s(e) = \sup \{ s; e(s) = 0, t \geq 10^{-2} E_{b} \}$

$$d(e(t), e(0)) = \sqrt{\int_{0}^{t} \left(\epsilon(t) - \epsilon(0) \right)^{2} dt + \int_{0}^{t} \left(\sqrt{\epsilon(t)} - \sqrt{\epsilon(0)} \right)^{2} dt}$$

Pour $u \in D$ et $t \geq 0$, on pose $e_{u}(t) = B_{u}^{-} \epsilon_{u}(t) + N_{u} u$

On pose $N = \sum_{u \in D} \delta(u, e_{u})$

Thm N est un (F_{∞}, \mathbb{P})-processus de Poisson ponctuel.

Preuve
1) On pose $E_{p} = \{ e \in E ; s(e) \geq \frac{1}{p} \}$
Alors $N(0, 13 \times E_{p}) = \text{card} \{ u \in 0, 13 \times D ; u \in E_{p} \}$

$$\leq \frac{1}{p} D_{1}$$

2) On a bien $N(0, 13 \times E_{3}) = 0$ car $0 \notin E_{3}$.

3) On a bien $N_{\infty}(A) = \text{mesurable}$ car

$N_{\infty}(B)$ ne faut intervenir que les excursions en dehors de 0 de $(B_{\alpha}, \alpha \in \mathbb{N}, \alpha > 0)$ qui est (F_{∞}, \mathbb{P}) mesurable.

On pose $0 \leq \epsilon_{t}$ et $A_{1}, ..., A_{k}$ tels que $N_{1}(A_{j}) \leq \infty$.

On pose $B_{\alpha} = B_{\alpha} + u_{\alpha}$, $E_{\alpha} \subseteq F_{\infty}$.
Alors

$$L_{\alpha} \left(B_{\alpha} \right) = L_{\alpha} \left(B_{\alpha} + u_{\alpha} \right) - u_{\alpha}$$

$$T_{\alpha} = T_{\alpha} + u_{\alpha} - T_{\alpha}$$

$$D_{\alpha} = \{ u - s, u \in 0, u \alpha \}$$

$$E_{\alpha} = E_{\alpha} + u_{\alpha} \cap D'$$
On note ν la mesure d'intégrale

\[
\begin{align*}
\min (N_t(A_1) - N_s(A_1), \ldots, N_t(A_K) - N_s(A_K)) &= \sum (N_t(A_i) - N_s(A_i)) \\
&= \sum (N_t^{(1)}(A_i) - N_s^{(1)}(A_i)) \\
&\leq \sum (N_t^{(2)}(A_i) - N_s^{(2)}(A_i)) \\
&\leq \nu.
\end{align*}
\]

Consequences:
- Pour $\nu \neq 0$, on pose $e_m = 0$.

Formule additive dans l'échelle du temps local:
Soit $H : \mathbb{R}^+ \times \mathbb{R} \times E \rightarrow \mathbb{R}$ mesurable par rapport à $(\mathcal{F}_t \otimes \mathcal{E})_{t \geq 0}$. Alors
\[
E \left[\sum_s H(s, w; e_s) \right] = E \left[\sum_{s} \int_{0}^{\infty} \text{d} w \int_{E} \text{d} \nu(w) H(s, w; e_s) \right].
\]

Formule additive dans l'échelle du temps normal:
Soit $H : \mathbb{R}^+ \times \mathbb{R} \times E \rightarrow \mathbb{R}$ prévisible par rapport à $(\mathcal{F}_t \otimes \mathcal{E})_{t \geq 0}$. Alors
\[
E \left[\sum_s H(s, w; e_s) \right] = E \left[\int_{0}^{\infty} \text{d} w \int_{E} \text{d} \nu(w) H(s, w; e_s) \right].
\]
En effet, si H est $\mathcal{F}_t \otimes \mathcal{E}$-mesurable, alors $H(s, w; e_s)$ est $\mathcal{F}_s \otimes \mathcal{E}$-mesurable.

Conséquences:
- Comme $\tau_s \neq \tau$ est de nombre fini:
\[
E \left[\sum_s H(s, w; e_s) \right] = E \left[\int_{0}^{\infty} \text{d} w \int_{E} \text{d} \nu(w) H(s, w; e_s) \right] = E \left[\int_{0}^{\infty} \text{d} w \int_{E} \text{d} \nu(w) H(s, w; e_s) \right].
\]
Formule multiplicative
Soit $f : \mathbb{R}_+ \times \mathbb{E}_3 \to \mathbb{R}_+$ mesurable et $f(\cdot, \cdot) = 0$.
Alors $E[I \exp\left(-\sum_{s \geq 0} f\left(s, e_s\right)\right)] = \exp\left(-\sum_{s \geq 0} \mathbb{E}\left[\sum_{s \geq 0} \left(1 - e^{-s}\right)\right]\right)$.

3) Quelques propriétés de la mesure d'Itô

Lemme
$(\mathcal{H}_t)_{t \geq 0}$ est un sous-différentiel
1) $p.s., \forall t \geq 0, \quad T_t = \sum_{s \leq t} (T_s - T_{s-})$

Preuve : 1) On vérifie que
$T_{s'} - T_s = \inf \{\epsilon > 0 ; \mathcal{H}_t(B_s) \geq s' - s\} = T_{s'} - T_s$.

2) On calcule $E[I \exp(-\lambda T_t)] = E[I \exp(-\lambda T_{s'})]
\quad \text{où} \quad T_t = \inf \{s > 0 ; B_s \leq t\}$

On a $M_t = \exp\left(-\frac{1}{2} B_t + \lambda - \frac{1}{2} \lambda^2\right)$ est une martingale.
$E[I M_{s'}^{\wedge T_t}] = 1$. On fait $s' \to \infty$ et (VDM) :
$1 = E[I \exp(-\lambda T_t)] \Rightarrow E[I \exp(-\lambda T_{s'})] = e^{-\lambda T_{s'}}$

Ainsi $E[I \exp(-\lambda T_t)] = \exp\left(t \int_0^\infty (1 - e^{\lambda x}) \frac{dx}{\sqrt{2\pi} x^{3/2}}\right)
Ainsi $T_t = \mathcal{N}(0, \mu \lambda)$ où \mathcal{N} est une mesure de Poisson sur \mathbb{R}_+ d'intensité $\mu \lambda$.

D'où le résultat.
Corollaire

\[T_t = \sum_{s \leq t} S(e_s) \]

\[T_{t-} = \sum_{s < t} S(e_s) \]

\[B_t = \sum_{s \leq t} e_s (t - T_{s-}) = e_s (t - T_{s-}) \]

\[\prod_{s \leq t} S(e_s) \]

Prop.

\[n(\xi > x) = \sqrt{\frac{2}{\pi x}} \]

Preuve:

\[E \left[e^{-\xi / t} \right] = E \left[e^{-\sum_{s \leq t} S(e_s)} \right] \]

\[= \exp \left(-\sum_{s} n(de) \left(1 - e^{-\lambda_S(e)} \right) \right) \]

Donc

\[\int n(de) \left(1 - e^{-\lambda_S(e)} \right) = \int_{\lambda}^{\infty} \frac{d\lambda}{\sqrt{\pi \lambda^{3/2}}} \left(1 - e^{-\lambda x} \right) \]

\[= \int_{\lambda}^{\infty} \frac{d\lambda}{\sqrt{\pi \lambda^{3/2}}} \left(1 - e^{-\lambda x} \right) \]

\[= \int_{0}^{\infty} \frac{d\lambda}{\sqrt{\pi \lambda^{3/2}}} \left(1 - e^{-\lambda x} \right) \]

\[= \int_{0}^{\infty} \frac{d\lambda}{\sqrt{\pi \lambda^{3/2}}} \left(1 - e^{-\lambda x} \right) \]

\[= \int_{0}^{\infty} \frac{d\lambda}{\sqrt{\pi \lambda^{3/2}}} \left(1 - e^{-\lambda x} \right) \]

\[= \int_{0}^{\infty} \frac{d\lambda}{\sqrt{\pi \lambda^{3/2}}} \left(1 - e^{-\lambda x} \right) \]

\[= \int_{0}^{\infty} \frac{d\lambda}{\sqrt{\pi \lambda^{3/2}}} \left(1 - e^{-\lambda x} \right) \]

\[\text{n(x) la première excitation de longueur } x \]

À lors

\[\text{la loi de } e^{x} \text{ est } n(1, x). \]
On peut écrire $n = n_+ + n_-$ où n_+ est porté par les excursions >0 et n_- par les excursions ≤ 0.

Prop. Soit $E_\varepsilon = \{ e \in E_+ \mid \sup e > \varepsilon \}$. Alors

$$n_+(E_\varepsilon) = \frac{1}{2\varepsilon}.$$

Preuve. On sait que $N_t(E_\varepsilon)$ suit une loi de Poisson de paramètre $t n(E_\varepsilon)$.

Or $\mathbb{P}(N_t(E_\varepsilon) = 0) = e^{(\sup_{s \leq t} B_s \leq \varepsilon)}$.

Or L_{ε} suit une loi $\exp(2\varepsilon)$.

$$\mathbb{P}(L_{\varepsilon} > t) = e^{-\frac{t}{2\varepsilon}}.$$ N'oubliez pas.

Exemple. Soit $k : \mathbb{R}_+ \to \mathbb{R}_+$ et $b > 0$. Estimer.

$$\mathbb{P}\left(\sup_{s \leq t} \left(1 B_s \leq -k(s) \right) \leq b \right)$$

$$= \mathbb{E} \left[e^{\exp\left(-\sum_{\varepsilon \varepsilon \varepsilon} g(s, e_\varepsilon) \right)} \right]$$

$$= e^{\exp\left(-\int_0^t ds \int_0^t d\xi \frac{1}{2} \sup e_\varepsilon - k(s) \geq b \right)}$$

Or $n(\sup e_\varepsilon > b + k(s)) = \frac{1}{b + k(s)}$

$$= e^{\exp\left(-\int_0^t \frac{ds}{b + k(s)} \right)}$$

On encore on introduit $E = \{ (s, e) \in \mathbb{R}^2 \times \{ e \} \mid \sup e \geq b + k(s) \}$.

$$\sup_{s \in E} \left(B_s - k(s) \right) \leq b \iff N(E) = 0.$$
En particulier,
\[\mathbb{P} \left(\sup_{s \geq 0} (18s1 - K(s)) \leq b \right) = \exp \left(- \int_0^\infty \frac{1}{b+k(A_{11})} \, dt \right) \]

le mettre avant

Exemple. Soit \(\mathcal{G} \geq 0 \) mesurable et

\[A_t = \sum_{s \leq t} \int_0^{t_s} ds \, \mathcal{G}(B_s) \]

On a : \[A_t = \sum_{s \geq t} \int_{t_s}^{s} ds \, \mathcal{G}(B_s) = \sum_{s \geq t} \int_0^{t_s} ds \, \mathcal{G}(B_s) \]

Ainsi \[\mathbb{E} \left[\exp \left(- \lambda A_t \right) \right] = \mathbb{E} \left[\exp \left(- \sum_{s \leq t} \lambda \int_0^{t_s} du \, \mathcal{G}(B_u) \right) \right] \]

\[= \exp \left(- \int_0^t \mathcal{G} \left(\int_0^1 \left(1 - e^{-\lambda \int_0^t du \, \mathcal{G}(B_u)} \right) \right) \right) \]