

ENS Paris, 2013-2014

1 - Petite question

Soit μ une mesure positive sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et $g : \mathbb{R} \to \mathbb{R}_+$ une fonction mesurable.

1. On suppose que pour toute fonction mesurable $f: \mathbb{R} \to \mathbb{R}_+$ on a

$$\int f(x)\mu(dx) = \int f(x)g(x)dx.$$

Que dire de μ ?

2. On suppose maintenant que μ est finie et que pour toute fonction continue bornée $f:\mathbb{R}\to\mathbb{R}_+$ on a

$$\int f(x)\mu(dx) = \int f(x)g(x)dx.$$

Que dire de μ ?

1 - Calculer en cent lecons

Exercice 1. (Formule des compléments) On note Γ la fonction définie pour x > 0 par

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

1. Calculer la mesure image de la mesure

$$x^{a-1}y^{b-1}e^{-(x+y)}\mathbb{1}_{\{x,y\geq 0\}}dxdy$$
,

par l'application $(x,y) \in (\mathbb{R}_+)^2 \mapsto (x+y,x/(x+y)).$

2. En déduire la formule des compléments :

$$\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 t^{a-1} (1-t)^{b-1} dt.$$

Pour des questions, demande de précisions ou explications, n'hésitez pas à m'envoyer un mail à igor.kortchemski@ens.fr , ou bien à venir me voir au bureau V4.

2 – Approximations

Exercice 2. Soit $f:(\mathbb{R},\mathcal{B}(\mathbb{R}))\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ une fonction intégrable pour la mesure de Lebesgue. On suppose que pour tous a < b,

$$\int_{]a,b[} f(x) \, \lambda(dx) = 0.$$

Montrer que $f = o \lambda$ -p.p.

Exercice 3. On se donne deux mesures positives boréliennes μ et ν sur \mathbb{R} , et on suppose que pour tout choix de $a < b \in \mathbb{R}$

$$\mu(]a,b[) \leq \nu(]a,b[) < \infty.$$

Montrer alors que $\mu(A) \leq \nu(A)$ pour tout borélien A.

>○((())○< Exercice 4. (Fonction de répartition d'un ensemble) Soit A un ensemble borélien de \mathbb{R} de mesure finie. Montrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = \lambda(] - \infty, x] \cap A)$ est continue.

→0 $E_{xercice 5.}$ (-Théorème de Lusin) Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction borélienne. Montrer que pour tout $\varepsilon > 0$ il existe une fonction continue $g: [0,1] \longrightarrow \mathbb{R}$ telle que

$$\lambda(\{x, f(x) \neq g(x)\}) \leq \varepsilon.$$

Indication. On pourra commencer par le cas où $f = 1_A$ avec A borélien de [0,1].

$3 - \hat{A}$ chercher pour la prochaine fois

 $\mathcal{E}_{\mathit{Xercice 6.}}$ (Spoiler : convolution inside) Soit K un compact de \mathbb{R}^d et Ω un ouvert de \mathbb{R}^d avec $K \subset \Omega$. Montrer qu'il existe f une fonction \mathcal{C}^{∞} à valeurs dans [0, 1] telle que

$$f = 1 \text{ sur } K, f = 0 \text{ sur } \Omega^c.$$

4 – Compléments (hors TD)

Exercice 7. (\bigstar) Soit μ une mesure positive sur (\mathbb{R} , $\mathcal{B}(\mathbb{R})$) et $g:\mathbb{R}\to\mathbb{R}_+$ une fonction mesurable. On suppose que μ est de masse infinie et que pour toute fonction continue bornée $f: \mathbb{R} \to \mathbb{R}_+$ on a

$$\int f(x)\mu(dx) = \int f(x)g(x)dx.$$

Est-ce que forcément $\mu(A) = \int_A g(x) dx$ pour tout borélien $A \in \mathbb{R}$?

*Exercice 8. (**) Trouver un espace topologique T et une mesure μ sur $(T, \mathcal{B}(T))$ de masse totale 1 qui ne soit pas tendue.

