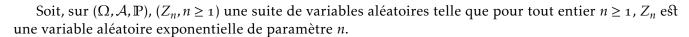
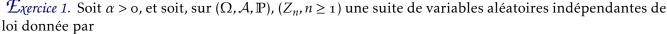


0 - Petites questions



- 1. Montrer que Z_n converge presque sûrement vers o lorsque $n \to \infty$.
- 2. Montrer que presque sûrement, à partir d'un certain rang, $Z_n < Z_1$.
- 3. On suppose ici que les variables aléatoires $(Z_n)_{n\geq 1}$ sont indépendantes. Calculer $\sum_{n\geq 1} \mathbb{P}[Z_n > Z_1]$. Commenter.

1 - Lemmes de Borel-Cantelli



$$\mathbb{P}(Z_n = 1) = \frac{1}{n^{\alpha}} \text{ et } \mathbb{P}(Z_n = 0) = 1 - \frac{1}{n^{\alpha}}.$$

Montrer que $Z_n \to o$ dans \mathbb{L}^1 mais que, p.s.,

$$\limsup_{n\to\infty} Z_n = \left\{ \begin{array}{ll} 1 & \text{si } \alpha \leq 1 \\ \text{o } & \text{si } \alpha > 1 \end{array} \right..$$

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées. On note F la fonction de répartition de X_1 et on suppose que X_1 n'est pas p.s. constante.

1. Soit $a \in \mathbb{R}$ tel que o < F(a) < 1. Montrer que p.s.,

$$\liminf_{n\to\infty} X_n \le a \le \limsup_{n\to\infty} X_n.$$

- 2. On pose $\alpha = \inf\{x \in \mathbb{R} : F(x) > 0\}$ et $\beta = \sup\{x \in \mathbb{R} : F(x) < 1\}$. Montrer que $\alpha < \beta$, que $\alpha \neq +\infty$ et que $\beta \neq -\infty$.
- 3. Montrer que p.s.,

$$\limsup_{n\to\infty} X_n = \beta \text{ et } \liminf_{n\to\infty} X_n = \alpha.$$

Pour des questions, demande de précisions ou explications, n'hésitez pas à m'envoyer un mail à igor.kortchemski@ens.fr , ou bien à venir me voir au bureau V4.

Exercice 3. Soient X_1, X_2, \ldots des variables aléatoires i.i.d. telles que $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_n = 0) = 1/2$. Posons :

$$L_n:=\max\{k\geq 1; \text{ il existe } i\leq n-k \text{ tel que } X_{i+1}=\cdots=X_{i+k}=1\}.$$

- 1. Montrer que p.s. $\limsup_{n\to\infty} L_n/\ln(n) \le 1/\ln(2)$.
- 2. Montrer que p.s. $\liminf_{n\to\infty} L_n/\ln(n) \ge 1/\ln(2)$.
- 3. Conclure.

Exercice 4. Soit $(X_n, n \ge 0)$ une suite de variables aléatoires réelles positives, indépendantes et de même loi définies sur $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. Montrer que p.s. $\sum_{n=0}^{\infty} X_n = \infty$, sauf dans un cas à préciser.
- 2. Montrer que pour tout $\alpha > 0$ on a l'équivalence suivante :

$$\mathbb{E}[X] < \infty \iff \sum_{n \ge 0} \mathbb{P}[X \ge \alpha n] < \infty.$$

Indication. On pourra montrer que

$$\sum_{n \geq \mathbf{0}} \alpha n \mathbb{P}(\alpha n \leq X < \alpha(n+1)) \leq \mathbb{E}\left[X\right] \leq \sum_{n \geq \mathbf{0}} \alpha(n+1) \mathbb{P}(\alpha n \leq X < \alpha(n+1)).$$

En déduire la dichotomie suivante : p.s.

$$\limsup \frac{X_n}{n} = \begin{cases} o & \text{si } \mathbb{E}[X_1] < \infty \\ \infty & \text{si } \mathbb{E}[X_1] = \infty \end{cases}.$$

Exercice 5. (LFGN cas non intégrable) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et de même loi. On pose, pour tout $n\geq 1$, $S_n=X_1+\ldots+X_n$.

1. Montrer que

$$\mathbb{E}(|X_1|) \le 1 + \sum_{n \ge 1} \mathbb{P}(|X_n| \ge n).$$

2. En déduire que si X_1 n'est pas intégrable alors la suite $(n^{-1}S_n)_{n\geq 1}$ diverge p.s.

Exercice 6. Montrer qu'il n'existe pas de mesure de probabilité sur $\mathbb{N}^* := \{1, 2, ...\}$ telle que, pour tout $n \ge 1$, la probabilité de l'ensemble des multiples de n soit égale à 1/n.

Exercice 7. Soit $(Y_n)_{n\geq 1}$ une suite de v.a. de Bernoulli indépendantes définies par $\mathbb{P}(Y_n=1)=p$ et $\mathbb{P}(Y_n=-1)=1-p$ avec $0 et <math>p \neq 1/2$. On considère la marche aléatoire $Z_n=Y_1+Y_2+\cdots+Y_n$ (avec $Z_0=0$). On note $A_n=\{Z_n=0\}$.

- a) Que représente l'événement $\limsup_{n\to\infty} A_n$?
- b) Montrer que $\mathbb{P}(\limsup_{n\to\infty} A_n) = 0$.

2 - Loi du 0-1 de Kolmogorov

Exercice 8. Montrer que si les variables aléatoires réelles $(X_n)_{n\geq 0}$ sont indépendantes, la série $\sum_{n\geq 0} X_n$ converge ou diverge presque sûrement.

Exercice 9. On suppose que les variables aléatoires réelles $(X_n)_{n\geq 0}$ sont indépendantes.

- a) Montrer que le rayon de convergence R de la série entière $\sum_{n>0} X_n z^n$ est presque sûrement constant.
- b) On suppose maintenant que les variables aléatores $(X_n)_{n\geq 0}$ ont même loi. Montrer que si $\mathbb{E}\left[\ln(|X_1|)^+\right] = \infty$, alors R = 0 p.s. , et que si $\mathbb{E}\left[\ln(|X_1|)^+\right] < \infty$, alors $R \geq 1$ p.s.

$3 - \hat{A}$ chercher pour la prochaine fois

Exercice 10. Soit $(X_n, n \ge 1)$ une suite de v.a. i. i.d. de loi exponentielle de paramètre 1.

- 1. Montrer que $\limsup_{n\to\infty} X_n/\ln(n) = 1$ p.s.
- 2. On pose $Z_n = \max(X_1, ..., X_n) / \ln(n)$, montrer que $\liminf_{n \to \infty} Z_n \ge 1$ p.s.
- 3. Montre que pour une suite $(n_k)_{k\geq 0}$ bien choisie, $\limsup_{k\to\infty} Z_{n_k} \leq 1$ p.s. En déduire que $\lim_{n\to\infty} Z_n = 1$ p.s.

Exercice 11. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes positives, de même loi. On considère l'événement F défini par :

 $F = \{\omega; \text{ il existe une suite infinie croissante } (n_k)_{k \ge 1} \text{ pouvant dépendre de } \omega \text{ pour laquelle } X_{n_k}(\omega) > n_k \}.$

- a) Montrer que $\mathbb{P}(F) = 0$ ou 1.
- b) Montrer que $\mathbb{P}(F)$ ne dépend que de $\mathbb{E}[X_1]$.

$$\mathbb{P}[X_n = 1] = \mathbb{P}[X_n = -1] = 1/2, \qquad n = 0, 1, \dots$$

Montrer qu'avec probabilité 1, il n'existe aucun point z_0 du cercle de convergence de la série entière $F(z) = \sum_{n \geq 0} X_n z^n$ tel que F se prolonge autour de z_0 en une fonction développable en série entière autour de z_0 .

Fin