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Motivation for studying limits

Let X,, be a set of combinatorial objects of “size” n (permutations, partitions,
graphs, functions, walks, matrices, etc.).

Goal: study X,,.

A~ Find the cardinal of X,,. (bijective methods, generating functions)

A Understand the typical properties of X,,. Let X;; be an element of X,
chosen uniformly at random. What can be said of X,,?

A A possibility to study X,, is to find a limiting object X such that X;;, — X
as N — oo.
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Motivation for studying limits

Let (X )n>1 be “discrete” objects converging towards a “limiting” object X:

Xn — X

n—oo

Several consequences:

- From the discrete to the continuous world: if a property P is satisfied by all
the X,, and passes to the limit, then X satisfies P.

- From the world to the discrete world: if a property P is satisfied by X and
passes to the limit, X,, satisfies “approximately” P for n large.

- Universality: it (Y, )n>1 is another sequence of objects converging towards
X, then X,, and Y,, share approximately the same properties for n large.

Igor Kortchemski Limits of large random discrete structures



Motivation for studying limits

Let (X )n>1 be “discrete” objects converging towards a “continuous” object X:

Xn — X

n—oo

AN~ In what space do the objects live?

Igor Kortchemski Limits of large random discrete structures



Motivation for studying limits

Let (X )n>1 be “discrete” objects converging towards a “continuous” object X:

Xn — X

n—oo

AN~ In what space do the objects live? Here, a metric space (Z, d) which will
be complete and separable

Igor Kortchemski Limits of large random discrete structures



Motivation for studying limits

Let (X )n>1 be “discrete” objects converging towards a “continuous” object X:

Xn — X

n—oo

AN~ In what space do the objects live? Here, a metric space (Z, d) which will
be complete and separable (there exists a dense countable subset).

Igor Kortchemski Limits of large random discrete structures



Motivation for studying limits

Let (X )n>1 be “discrete” objects converging towards a “continuous” object X:

Xn — X

n—oo

AN~ In what space do the objects live? Here, a metric space (Z, d) which will
be complete and separable (there exists a dense countable subset).

AN~ What is the sense of the convergence when the objects are random?

Igor Kortchemski Limits of large random discrete structures



Motivation for studying limits

Let (X )n>1 be “discrete” objects converging towards a “continuous” object X:

Xn — X

n—oo

AN~ In what space do the objects live? Here, a metric space (Z, d) which will
be complete and separable (there exists a dense countable subset).

AN~ What is the sense of the convergence when the objects are random? Here,
convergence in distribution:

E[F(Xw)]  —  E[F(X]]

n—,oo

for every continous bounded function F: Z — R.
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Models coded by trees

I. MODELS CODED BY TREES
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Models coded by trees

Stack triangulations (Albengue, MarcKert)

LA L

R

Figure 8: Construction of the ternary tree associated with an history of a stack-triangulation
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Models coded by trees

Dissections (Curien, K.)

Fig. 4. The dual tree of a dissection of Pg, note that the tree has 7 leaves.
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Models coded by trees

Maps (Schaeffer)
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FIGURE 6. Illustration of the Cori-Vauquelin-Schaeffer bijection,
in the case ¢ = 1. For instance, es is the successor of ey, ez the
successor of e;, and so on.
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Models coded by trees

Maps (Addario-Berry)

TR PUBE
B NN A/ 2
(A) A map M. (B) The tree Ty. Tiny squares represent
trivial blocks.
[ 3

e i

N

(¢) The decomposition of M into blocks. (D) The correspondence between blocks

Blocks are joined by grey lines according and nodes of Ty.  Non-trivial blocks
to the tree structure. Root edges of blocks receive the alphabetical label (from A
are shown with arrows. through L) of the corresponding node.
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Models coded by trees

Maps with percolation (Curien, K.)

10 / 672



Models coded by trees

‘ParKing functions (Chassaing, Louchard))
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Local limits of BGW trees

I. MODELS CODED BY TREES

II. LocAL LiMmIiTS OF BGW TREES
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I1I. ScALING LiIMITS OF BGW TREES
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Local limits of BGW trees

Recall that in a BGW tree, every individual has a random number of children
(independently of each other) distributed according to p (offspring distribution).
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Recall that in a BGW tree, every individual has a random number of children
(independently of each other) distributed according to p (offspring distribution).

What does a large BGW tree look like, near the root?
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Local limits of BGW trees

Local limits: critical case

Let 1 be a critical offspring distribution. Let T,, be a BGW tree conditioned on
having n vertices.

Theorem (Kesten '87, Janson 12, Abraham & Delmas '14)

The convergence

(d)

Th Too

n—,oo

holds in distribution for the local topology, where T, is the infinite BGW tree
conditioned to survive.
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Local limits of BGW trees

Local limits: subcritical case

Let 1 be a subcritical offspring distribution and assume that the radius of
convergence of ) :-qpiztis 1.
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Local limits: subcritical case

Let 1 be a subcritical offspring distribution and assume that the radius of
convergence of ) :-qpiztis 1.

Theorem (Jonsson & Stefansson '11, Janson 12, Abraham &
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The convergence
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Scaling limits of BGW trees

I. MODELS CODED BY TREES

II. LocAL LiMmiTs OF BGW TREES

III. ScALING LIMITS OF BGW TREES

—==>0 =D 0<>
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Scaling limits of BGW trees
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Scaling limits of BGW trees

What does a large BGW tree look like, globally?
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Scaling limits of BGW trees

A simulation of a large random critical GW tree
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Scaling limits of BGW trees

CODING TREES BY FUNCTIONS

mﬁ
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Scaling limits of BGW trees

Contour function of a tree

Define the contour function of a tree:
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Scaling limits of BGW trees

Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.
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Scaling limits of BGW trees

SCALING LIMITS: FINITE VARIANCE

mﬁ
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Scaling limits of BGW trees

Scaling limits : finite variance

Let 1 be an offspring distribution with finite positive variance such that
2_i>o th(i) = 1. Let T, be a BGW tree conditioned on having n vertices.
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Scaling limits of BGW trees

Scaling limits : finite variance

Let 1 be an offspring distribution with finite positive variance such that
2_i>o th(i) = 1. Let T, be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let 02 be the variance of u. Let t — C¢(T,) be the contour function of T,

Then: .
(d)
—C2nt(7n)> —
(\/ﬂ oct<l

where the convergence holds in distribution in C([0, 1], R)
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Scaling limits of BGW trees

Scaling limits : finite variance

Let 1 be an offspring distribution with finite positive variance such that
2_i>o th(i) = 1. Let T, be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let 02 be the variance of u. Let t — C¢(T,) be the contour function of T,

Then: . ,
(d)
—cznt(frn)) (a) (— -@(t)) |
(\/E o<ty T O 0<t<1

where the convergence holds in distribution in C([0, 1],R), where @ is the
normalized Brownian excursion.

A~ Consequence: for every a > 0,

P (g - Height(7,,) > a - \/T_L) — P(supe > a)

n—oo
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Scaling limits of BGW trees

Scaling limits : finite variance

Let 1 be an offspring distribution with finite positive variance such that
2_i>o th(i) = 1. Let T, be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let 02 be the variance of u. Let t — C¢(T,) be the contour function of T,

Then: . ,
(d)
—cznt(frn)) (a) (— -@(t)) |
(\/E o<ty T O 0<t<1

where the convergence holds in distribution in C([0, 1],R), where @ is the
normalized Brownian excursion.

A~ Consequence: for every a > 0,

P (g - Height(7,,) > a - \/T_L) — P(supe > a)

n—o0
©.9)
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Scaling limits of BGW trees

Scaling limits : finite variance

Let 1 be an offspring distribution with finite positive variance such that
2_i>o th(i) = 1. Let T, be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let 02 be the variance of u. Let t — C¢(T,) be the contour function of T,

Then: . ,
(d)
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where the convergence holds in distribution in C([0, 1],R), where @ is the
normalized Brownian excursion.

ldea of the proof:
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Scaling limits of BGW trees

Scaling limits : finite variance

Let 1 be an offspring distribution with finite positive variance such that
2_i>o th(i) = 1. Let T, be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let 02 be the variance of u. Let t — C¢(T,) be the contour function of T,

Then: . ,
(d)
—cznt(frn)) (a) (— -@(t)) |
(\/E o<ty T O 0<t<1

where the convergence holds in distribution in C([0, 1],R), where @ is the
normalized Brownian excursion.

ldea of the proof:

AN~ The Lukasieiwicz path of T,,, appropriately scaled, converges in distribution
to @ (conditioned Donsker’s invariance principle).
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Scaling limits of BGW trees

Scaling limits : finite variance

Let 1 be an offspring distribution with finite positive variance such that
2_i>o th(i) = 1. Let T, be a BGW tree conditioned on having n vertices.

Theorem (Aldous '93)

Let 02 be the variance of u. Let t — C¢(T,) be the contour function of T,

Then: . ,
(d)
—cznt(frn)) (a) (— -@(t)) |
(\/E o<ty T O 0<t<1

where the convergence holds in distribution in C([0, 1],R), where @ is the
normalized Brownian excursion.

ldea of the proof:

AN~ The Lukasieiwicz path of T,,, appropriately scaled, converges in distribution
to @ (conditioned Donsker’s invariance principle).

A~ Go from the Lukasieiwicz path of T, to its contour function.
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Scaling limits of BGW trees

Do THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

Q%Q&Q
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Scaling limits of BGW trees

Do THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

Q%Q&D

Yes, if we view trees as compact metric spaces by equiping the vertices with the
graph distance!
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Scaling limits of BGW trees

The Hausdorff distance

Let X,Y be two subsets of the same metric space Z.
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Scaling limits of BGW trees

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}

be the r-neighborhoods of X and Y.
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Scaling limits of BGW trees

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}
be the r-neighborhoods of X and Y. Set

du(X,Y) =inf{r >0; X C Y, and Y C X,}.
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Scaling limits of BGW trees

The Gromov—Hausdorff distance

Let X, Y be two compact metric spaces.
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Scaling limits of BGW trees

The Gromov—Hausdorff distance

Let X, Y be two compact metric spaces.

"he Gromov—Hausdorff distance between X and Y is the smallest Hausdorff
distance between all possible isometric embeddings of X and Y in a same metric
space Z.
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Scaling limits of BGW trees

‘The Brownian tree

A~ Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a
compact metric space such that the convergence

holds in distribution in the space of compact metric spaces equiped with the
Gromov—Hausdorff distance.
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Scaling limits of BGW trees

‘The Brownian tree

A~ Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a
compact metric space such that the convergence

holds in distribution in the space of compact metric spaces equiped with the
Gromov—Hausdorff distance.

Notation: for a metric space (Z,d) and a >0, a- Z is the metric space
(Z,a-d).
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Scaling limits of BGW trees

‘The Brownian tree

A~ Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a
compact metric space such that the convergence

holds in distribution in the space of compact metric spaces equiped with the
Gromov—Hausdorff distance.

Notation: for a metric space (Z,d) and a >0, a- Z is the metric space
(Z,a-d).

The metric space T is called the Brownian continuum random tree (CRT), and
Is coded by a Brownian excursion.
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Scaling limits of BGW trees

SCALING LIMITS: INFINITE VARIANCE CASE

mﬁ
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix oc € (1,2). Let u be an offspring distribution such that

Z iy = 1 (1 is critical)
i>0

(1 has a heavy tail)
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Fix oc € (1,2). Let u be an offspring distribution such that

Z iy = 1 (1 is critical)
i>0

(1 has a heavy tail)

Let T, be a BGW|, tree conditioned on having n vertices.

View at 7, as a compact metric space (the vertices of 7T,, are endowed with the
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix oc € (1,2). Let u be an offspring distribution such that

Z iy = 1 (1 is critical)
i>0

(1 has a heavy tail)

Let T, be a BGW|, tree conditioned on having n vertices.

View at 7, as a compact metric space (the vertices of 7T,, are endowed with the
graph distance).

What does T, look like for large n?
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Scaling limits of BGW trees

Figure: A large o« = 1.1 — stable tree
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Scaling limits of BGW trees
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Figure: A large o« = 1.5 — stable tree
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Scaling limits of BGW trees

IS

Figure: A large o« = 1.9 — stable tree
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix o« € (1,2). Let u be a critical offspring distribution such that p; ~ c/i*™*.

Let T, be a BGW|, tree conditioned on having n vertices.
View T, as a compact metric space (the vertices of 7T, are endowed with the
graph distance).
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix o« € (1,2). Let u be a critical offspring distribution such that p; ~ c/i*™*.

Let T, be a BGW|, tree conditioned on having n vertices.
View T, as a compact metric space (the vertices of 7T, are endowed with the

graph distance).
Theorem (Duquesne '03)

There exists a random compact metric space T, such that:

(c|M(1 — x)]) 1/ (d)
nl-1/« In njo T
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix o« € (1,2). Let u be a critical offspring distribution such that p; ~ c/i*™*.

Let T, be a BGW|, tree conditioned on having n vertices.
View T, as a compact metric space (the vertices of 7T, are endowed with the

graph distance).
Theorem (Duquesne '03)

There exists a random compact metric space T, such that:

(c|M(1 — x)]) 1/ (d)
nl-1/x “In e T

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix o« € (1,2). Let u be a critical offspring distribution such that p; ~ c/i*™*.

Let T, be a BGW|, tree conditioned on having n vertices.
View T, as a compact metric space (the vertices of 7T, are endowed with the

graph distance).
Theorem (Duquesne '03)

There exists a random compact metric space T, such that:

(c|M(1 — x)]) 1/ (d)
nl-1/x “In e T

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarks
AN~ The tree T, is called the stable tree of index « (introduced by Le Gall &

Le Jan).
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix o« € (1,2). Let u be a critical offspring distribution such that u; ~c/1

Let T, be a BGW|, tree conditioned on having n vertices.
View T, as a compact metric space (the vertices of 7T, are endowed with the

14+ o

graph distance).
Theorem (Duquesne '03)

There exists a random compact metric space T, such that:

(c|M(1 — x)]) 1/ (d)
nl-1/x “In e T

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarks

AN~ The tree T, is called the stable tree of index « (introduced by Le Gall &

Le Jan).
AN~ T is coded by the normalized excursion of a spectrally positive stable

Lévy process of index .
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Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law

Fix o« € (1,2). Let u be a critical offspring distribution such that p; ~ c/i*™*.

Let T, be a BGW|, tree conditioned on having n vertices.
View T, as a compact metric space (the vertices of 7T, are endowed with the

graph distance).
Theorem (Duquesne '03)

There exists a random compact metric space T, such that:

(c|M(1 — x)]) 1/ (d)
nl-1/x “In e T

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarks
AN~ The tree T, is called the stable tree of index « (introduced by Le Gall &

Le Jan).
AN~ T is coded by the normalized excursion of a spectrally positive stable

Lévy process of index .
A~ The maximal degree of T, is of order nl/«

Igor Kortchemski Limits of large random discrete structures



Scaling limits of BGW trees

CONDENSATION : SUBCRITICAL CASE

mﬁ
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Scaling limits of BGW trees

Condensation (subcritical case)

Let 1 be a subcritical offspring distribution such that p; ~ c/i'*F with f > 1.
Let 7, be a BGW|, tree conditioned on having n vertices.
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Scaling limits of BGW trees

Condensation (subcritical case)

Let 1 be a subcritical offspring distribution such that p; ~ c/i'*F with f > 1.
Let 7, be a BGW|, tree conditioned on having n vertices.
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Scaling limits of BGW trees

Condensation (subcritical case)

Let 1 be a subcritical offspring distribution such that p; ~ c/i'*F with f > 1.
Let 7, be a BGW|, tree conditioned on having n vertices.

We saw that :
— there is a unique vertex of degree of order n (up to a constant),

Igor Kortchemski Limits of large random discrete structures



Scaling limits of BGW trees

Condensation (subcritical case)

Let 1 be a subcritical offspring distribution such that p; ~ c/i'*F with f > 1.
Let 7, be a BGW|, tree conditioned on having n vertices.

We saw that :

— there is a unique vertex of degree of order n (up to a constant),
— the other degrees are of order ar most n'/ ™n(2:P) (yp to a constant),
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Scaling limits of BGW trees

Condensation (subcritical case)

Let 1 be a subcritical offspring distribution such that p; ~ c/i'*F with f > 1.
Let 7, be a BGW|, tree conditioned on having n vertices.

We saw that :

— there is a unique vertex of degree of order n (up to a constant),
— the other degrees are of order ar most n'/ ™n(2:P) (yp to a constant),
— the height of the vertex with maximal degree converges in distribution.
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Scaling limits of BGW trees

Condensation (subcritical case)

Let 1 be a subcritical offspring distribution such that p; ~ c/i'*F with f > 1.
Let 7, be a BGW|, tree conditioned on having n vertices.

We saw that :

— there is a unique vertex of degree of order n (up to a constant),
— the other degrees are of order ar most n'/ ™n(2:P) (yp to a constant),
— the height of the vertex with maximal degree converges in distribution.

It is also possible to show that:
— the height of 7, is of order In(n);
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Scaling limits of BGW trees

Condensation (subcritical case)

Let 1 be a subcritical offspring distribution such that p; ~ c/i'*F with f > 1.
Let 7, be a BGW|, tree conditioned on having n vertices.

We saw that :

— there is a unique vertex of degree of order n (up to a constant),
— the other degrees are of order ar most n'/ ™n(2:P) (yp to a constant),
— the height of the vertex with maximal degree converges in distribution.

It is also possible to show that:

— the height of 7, is of order In(n);
— there are no nontrivial scaling limits.
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Scaling limits of BGW trees

CONDENSATION: CRITICAL CASE

mﬁ
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Scaling limits of BGW trees

Condensation (critical Cauchy case, x = 1)

Let 1 be a critical offspring distribution such that p; ~ L(i)/i%. Let 7,, be a
BGW,, tree conditioned on having n vertices.
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Scaling limits of BGW trees

Condensation (critical Cauchy case, x = 1)

Let 1 be a critical offspring distribution such that p; ~ L(i)/i%. Let 7,, be a
BGW,, tree conditioned on having n vertices.
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Scaling limits of BGW trees

Condensation (critical Cauchy case, x = 1)

Let 1 be a critical offspring distribution such that p; ~ L(i)/i%. Let 7,, be a
BGW,, tree conditioned on having n vertices.

Theorem (K. & Richier '19)

— The maximal degree is of order n/L1(n) (where Ly is slowly varying);
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Scaling limits of BGW trees

Condensation (critical Cauchy case, x = 1)

Let 1 be a critical offspring distribution such that p; ~ L(i)/i%. Let 7,, be a
BGW,, tree conditioned on having n vertices.

Theorem (K. & Richier '19)

— The maximal degree is of order n/L1(n) (where Ly is slowly varying);

— the maximum of the other degrees is of order n/1,(n) (where 1, is slowly
varying, with L, = o(Ly)),
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Scaling limits of BGW trees

Condensation (critical Cauchy case, x = 1)

Let 1 be a critical offspring distribution such that p; ~ L(i)/i%. Let 7,, be a
BGW,, tree conditioned on having n vertices.

Theorem (K. & Richier '19)

— The maximal degree is of order n/L1(n) (where Ly is slowly varying);

— the maximum of the other degrees is of order n/1Ly(n) (where L, is slowly
varying, with L, = o(Ly)),

— the height of the vertex with maximal degree converges in probability to cc.
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Scaling limits of BGW trees

Condensation (critical Cauchy case, x = 1)

Let 1 be a critical offspring distribution such that p; ~ L(i)/i%. Let 7,, be a
BGW,, tree conditioned on having n vertices.

Theorem (K. & Richier '19)

— The maximal degree is of order n/L1(n) (where Ly is slowly varying);

— the maximum of the other degrees is of order n/1Ly(n) (where L, is slowly
varying, with L, = o(Ly)),

— the height of the vertex with maximal degree converges in probability to cc.

For example, if
1

M )22
the maximal degree is of order n/In(n), the maximum of the other degrees is of
order n/In(n)?, and the height of the vertex with maximal degree is of order

In(n).

Igor Kortchemski Limits of large random discrete structures



Scaling limits of BGW trees

— W is critical and has finite variance.
Then distances in 7,, are of order /n (up to a constant), and the
scaling limit is the Brownian CRT.
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Scaling limits of BGW trees

— W is critical and has finite variance.
Then distances in 7,, are of order /n (up to a constant), and the
scaling limit is the Brownian CRT.

— W is critical, has infinite variance, and p(n, o)) = L(n)/n%, with L slowly
varying and 1 < o < 2.
Then distances in 7, are of order n*/* (up to a slowly varying function),
and the scaling limit is the «-stable tree.
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Scaling limits of BGW trees

— W is critical and has finite variance.
Then distances in 7,, are of order /n (up to a constant), and the
scaling limit is the Brownian CRT.

— W is critical, has infinite variance, and p(n, o)) = L(n)/n%, with L slowly
varying and 1 < o < 2.
Then distances in 7, are of order n*/* (up to a slowly varying function),
and the scaling limit is the «-stable tree.
— w is subcritical and u(n) =L(n)/n**P with B > 1 and L slowly varying.
Then condensation occurs: there is a unique vertex of degree of order n
(up to a constant), the other degrees are of order nt/Mn(2.B) (yp to a
slowly varying constant), the height of the vertex with maximal degree
converges in distribution, the height of the tree is of order In(n) and there
are no nontrivial scaling limits.
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Scaling limits of BGW trees

W is critical and has finite variance.
Then distances in 7,, are of order /n (up to a constant), and the
scaling limit is the Brownian CRT.

W is critical, has infinite variance, and p(n, o)) = L(n)/n%, with L slowly

varying and 1 < o < 2.

Then distances in 7, are of order n*/* (up to a slowly varying function),
and the scaling limit is the «-stable tree.

W is subcritical and p(n)

=L(n)/n'*P with 3 > 1 and L slowly varying.

Then condensation occurs: there is a unique vertex of degree of order n
(up to a constant), the other degrees are of order nt/Mn(2.B) (yp to a

slowly varying constant),

converges in distribution,

are no nontrivial scaling

W is critical and u(n) =
Condensation occurs,

is slowly varying), the ot

the height of the vertex with maximal degree
the height of the tree is of order In(n) and there
Imits.

L(n)/n? with L slowly varying.

out at a smaller scale, that is n/L;(n) (where L
ner degrees are of order n/Ly(n) (where L is

slowly varying, with L, = o(L1)), and the height of the vertex with
maximal degree converges in probability to co.
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