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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Motivation for studying limits

Let Xn be a set of combinatorial objects of “size” n

(permutations, partitions,
graphs, functions, walks, matrices, etc.).

Goal: study Xn.

y Find the cardinal of Xn.

(bijective methods, generating functions)

y Understand the typical properties of Xn. Let Xn be an element of Xn

chosen uniformly at random. What can be said of Xn?

y A possibility to study Xn is to find a limiting object X such that Xn ! X

as n ! 1.
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Motivation for studying limits

Let (Xn)n>1 be “discrete” objects converging towards a “limiting” object X:

Xn �!
n!1

X.

Several consequences:

- From the discrete to the continuous world: if a property P is satisfied by all
the Xn and passes to the limit, then X satisfies P.

- From the world to the discrete world: if a property P is satisfied by X and
passes to the limit, Xn satisfies “approximately” P for n large.

- Universality: if (Yn)n>1 is another sequence of objects converging towards
X, then Xn and Yn share approximately the same properties for n large.
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Motivation for studying limits

Let (Xn)n>1 be “discrete” objects converging towards a “continuous” object X:

Xn �!
n!1

X.

y In what space do the objects live?

Here, a metric space (Z,d) which will
be complete and separable (there exists a dense countable subset).y What is the sense of the convergence when the objects are random? Here,
convergence in distribution:

E [
F(Xn)] �!

n!1
E [

F(X)]

for every continous bounded function F : Z ! R.
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Outline

I. Models coded by trees

II. Scaling limits of BGW trees

III. Local limits of BGW trees
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Stack triangulations (Albenque, Marckert)
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Dissections (Curien, K.)
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Maps (Schaeffer)
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Maps (Addario-Berry)
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Maps with percolation (Curien, K.)
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Parking functions (Chassaing, Louchard) )
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I. Models coded by trees

II. Local limits of BGW trees

III. Scaling limits of BGW trees
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Recall that in a BGW tree, every individual has a random number of children
(independently of each other) distributed according to µ (offspring distribution).

What does a large BGW tree look like, near the root?

Igor Kortchemski Limits of large random discrete structures 14 / 672



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Recall that in a BGW tree, every individual has a random number of children
(independently of each other) distributed according to µ (offspring distribution).

What does a large BGW tree look like, near the root?

Igor Kortchemski Limits of large random discrete structures 14 / 672



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Local limits: critical case
Let µ be a critical offspring distribution. Let Tn be a BGW tree conditioned on
having n vertices.

Theorem (Kesten ’87, Janson ’12, Abraham & Delmas ’14)

The convergence

Tn
(d)�!

n!1
T1

holds in distribution for the local topology, where T1 is the infinite BGW tree
conditioned to survive.
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Local limits: subcritical case
Let µ be a subcritical offspring distribution and assume that the radius of
convergence of

P
i>0 µiz

i is 1.

Theorem (Jonsson & Stefánsson ’11, Janson ’12, Abraham &

Delmas ’14)

The convergence

Tn
(d)�!

n!1
T⇤
1

holds in distribution for the local topology, where T⇤
1 is a “condensation” tree
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I. Models coded by trees

II. Local limits of BGW trees

III. Scaling limits of BGW trees
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What does a large BGW tree look like, globally?
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

A simulation of a large random critical GW tree
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Coding trees by functions
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Contour function of a tree
Define the contour function of a tree:
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.
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Scaling limits: finite variance
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits : finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a BGW tree conditioned on having n vertices.

Theorem (Aldous ’93)

Let �2 be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.
Then: ✓

1p
n

C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�

· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the
normalized Brownian excursion.

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution
to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.
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where the convergence holds in distribution in C([0, 1],R), where is the
normalized Brownian excursion.

y Consequence: for every a > 0,

P
⇣
�

2
· Height(Tn) > a ·

p
n

⌘
�!
n!1

P (sup > a

)

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution
to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.
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1X

k=1

(4k2a2 - 1)e-2k2a2

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution
to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.

Igor Kortchemski Limits of large random discrete structures 24 / 672



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits : finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a BGW tree conditioned on having n vertices.

Theorem (Aldous ’93)

Let �2 be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.
Then: ✓

1p
n

C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�

· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the
normalized Brownian excursion.

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution
to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.

Igor Kortchemski Limits of large random discrete structures 24 / 672



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits : finite variance
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a BGW tree conditioned on having n vertices.

Theorem (Aldous ’93)

Let �2 be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.
Then: ✓

1p
n

C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�

· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the
normalized Brownian excursion.

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution
to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.
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Do the discrete trees converge to a continuous tree?

Yes, if we view trees as compact metric spaces by equiping the vertices with the
graph distance!
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z.

Let

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

be the r-neighborhoods of X and Y. Set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff
distance between all possible isometric embeddings of X and Y in a same metric
space Z.
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

The Brownian tree
y Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a
compact metric space such that the convergence

�

2
p
n

· Tn
(d)�!

n!1
T ,

holds in distribution in the space of compact metric spaces equiped with the
Gromov–Hausdorff distance.

Notation: for a metric space (Z,d) and a > 0, a · Z is the metric space
(Z,a · d).

The metric space T is called the Brownian continuum random tree (CRT), and
is coded by a Brownian excursion.
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Scaling limits: infinite variance case
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Scaling limits: domain of attraction of a stable law

Fix ↵ 2 (1, 2). Let µ be an offspring distribution such that
X

i>0

iµi = 1 (µ is critical)

µi ⇠
i!1

c

i

1+↵
(µ has a heavy tail)

Let Tn be a BGWµ tree conditioned on having n vertices.

View at Tn as a compact metric space (the vertices of Tn are endowed with the
graph distance).

What does Tn look like for large n?
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Figure: A large ↵ = 1.1 – stable tree
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Figure: A large ↵ = 1.5 – stable tree
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Figure: A large ↵ = 1.9 – stable tree
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that µi ⇠ c/i

1+↵.
Let Tn be a BGWµ tree conditioned on having n vertices.

View Tn as a compact metric space (the vertices of Tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)-1/↵

n

1-1/↵
· Tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarks

y The tree T↵ is called the stable tree of index ↵ (introduced by Le Gall &
Le Jan).y T↵ is coded by the normalized excursion of a spectrally positive stable
Lévy process of index ↵.y The maximal degree of Tn is of order n1/↵.

Igor Kortchemski Limits of large random discrete structures 34 /

p
17



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that µi ⇠ c/i

1+↵.
Let Tn be a BGWµ tree conditioned on having n vertices.

View Tn as a compact metric space (the vertices of Tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)-1/↵

n

1-1/↵
· Tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarks

y The tree T↵ is called the stable tree of index ↵ (introduced by Le Gall &
Le Jan).y T↵ is coded by the normalized excursion of a spectrally positive stable
Lévy process of index ↵.y The maximal degree of Tn is of order n1/↵.

Igor Kortchemski Limits of large random discrete structures 34 /

p
17



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that µi ⇠ c/i

1+↵.
Let Tn be a BGWµ tree conditioned on having n vertices.

View Tn as a compact metric space (the vertices of Tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)-1/↵

n

1-1/↵
· Tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarks

y The tree T↵ is called the stable tree of index ↵ (introduced by Le Gall &
Le Jan).y T↵ is coded by the normalized excursion of a spectrally positive stable
Lévy process of index ↵.y The maximal degree of Tn is of order n1/↵.

Igor Kortchemski Limits of large random discrete structures 34 /

p
17



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that µi ⇠ c/i

1+↵.
Let Tn be a BGWµ tree conditioned on having n vertices.

View Tn as a compact metric space (the vertices of Tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)-1/↵

n

1-1/↵
· Tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarksy The tree T↵ is called the stable tree of index ↵ (introduced by Le Gall &
Le Jan).

y T↵ is coded by the normalized excursion of a spectrally positive stable
Lévy process of index ↵.y The maximal degree of Tn is of order n1/↵.

Igor Kortchemski Limits of large random discrete structures 34 /

p
17



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that µi ⇠ c/i

1+↵.
Let Tn be a BGWµ tree conditioned on having n vertices.

View Tn as a compact metric space (the vertices of Tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)-1/↵

n

1-1/↵
· Tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarksy The tree T↵ is called the stable tree of index ↵ (introduced by Le Gall &
Le Jan).y T↵ is coded by the normalized excursion of a spectrally positive stable
Lévy process of index ↵.

y The maximal degree of Tn is of order n1/↵.

Igor Kortchemski Limits of large random discrete structures 34 /

p
17



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Scaling limits: domain of attraction of a stable law
Fix ↵ 2 (1, 2). Let µ be a critical offspring distribution such that µi ⇠ c/i

1+↵.
Let Tn be a BGWµ tree conditioned on having n vertices.

View Tn as a compact metric space (the vertices of Tn are endowed with the
graph distance).

Theorem (Duquesne ’03)

There exists a random compact metric space T↵ such that:

(c|�(1- ↵)|)-1/↵

n

1-1/↵
· Tn

(d)�!
n!1

T↵,

where the convergence holds in distribution for the Gromov-Hausdorff distance
on compact metric spaces.

Remarksy The tree T↵ is called the stable tree of index ↵ (introduced by Le Gall &
Le Jan).y T↵ is coded by the normalized excursion of a spectrally positive stable
Lévy process of index ↵.y The maximal degree of Tn is of order n1/↵.

Igor Kortchemski Limits of large random discrete structures 34 /

p
17



Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Condensation : subcritical case
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Condensation (subcritical case)
Let µ be a subcritical offspring distribution such that µi ⇠ c/i

1+� with � > 1.
Let Tn be a BGWµ tree conditioned on having n vertices.

We saw that :
– there is a unique vertex of degree of order n (up to a constant),

– the other degrees are of order ar most n1/min(2,�) (up to a constant),
– the height of the vertex with maximal degree converges in distribution.

It is also possible to show that:
– the height of Tn is of order ln(n);

– there are no nontrivial scaling limits.
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Condensation: critical case
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Condensation (critical Cauchy case, ↵ = 1)
Let µ be a critical offspring distribution such that µi ⇠ L(i)/i2. Let Tn be a
BGWµ tree conditioned on having n vertices.

Theorem (K. & Richier ’19)

– The maximal degree is of order n/L1(n) (where L1 is slowly varying);

– the maximum of the other degrees is of order n/L2(n) (where L2 is slowly
varying, with L2 = o(L1));

– the height of the vertex with maximal degree converges in probability to 1.

For example, if

µi ⇠
1

ln(i)2i2
,

the maximal degree is of order n/ ln(n), the maximum of the other degrees is of
order n/ ln(n)2, and the height of the vertex with maximal degree is of order
ln(n).
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Models coded by trees Local limits of BGW trees Scaling limits of BGW trees

Recap
– µ is critical and has finite variance.

Then distances in Tn are of order
p
n (up to a constant), and the

scaling limit is the Brownian CRT.

– µ is critical, has infinite variance, and µ([n,1)) = L(n)/n↵, with L slowly
varying and 1 < ↵ 6 2.

Then distances in Tn are of order n1/↵ (up to a slowly varying function),
and the scaling limit is the ↵-stable tree.

– µ is subcritical and µ(n) = L(n)/n1+� with � > 1 and L slowly varying.
Then condensation occurs: there is a unique vertex of degree of order n

(up to a constant), the other degrees are of order n1/min(2,�) (up to a
slowly varying constant), the height of the vertex with maximal degree
converges in distribution, the height of the tree is of order ln(n) and there
are no nontrivial scaling limits.

– µ is critical and µ(n) = L(n)/n2 with L slowly varying.
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