Limit theorems for conditioned non-generic Galton-Watson trees

Igor Kortchemski (Université Paris-Sud, Orsay)
PIMS 2012
Goal: understand the structure of large conditioned Galton-Watson trees.
Goal: understand the structure of large *conditioned* Galton-Watson trees.

Typical framework:
- the offspring distribution μ is critical ($\sum_{i \geq 0} i \mu(i) = 1$).
What is this about?

Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:
- the offspring distribution μ is critical ($\sum_{i\geq 0} i \mu(i) = 1$).
- μ has finite variance.
Goal: understand the structure of large *conditioned* Galton-Watson trees.

Typical framework:
- the offspring distribution μ is critical ($\sum_{i \geq 0} i\mu(i) = 1$).
- μ has finite variance.
- one studies GW_μ trees *conditioned* on having a fixed (large) number of vertices (or edges).
Goal: understand the structure of large conditioned Galton-Watson trees.

Typical framework:
- the offspring distribution μ is critical ($\sum_{i \geq 0} i \mu(i) = 1$).
- μ has finite variance.
- one studies GW$_\mu$ trees conditioned on having a fixed (large) number of vertices (or edges).

Two approaches:
- Scaling limits
What is this about?

Goal: understand the structure of large *conditioned* Galton-Watson trees.

Typical framework:
- the offspring distribution μ is critical ($\sum_{i \geq 0} i \mu(i) = 1$).
- μ has finite variance.
- one studies GW_μ trees *conditioned* on having a fixed (large) number of vertices (or edges).

Two approaches:
- Scaling limits
- Local limits
What is this about?

Goal: understand the structure of large *conditioned* Galton-Watson trees.

Typical framework:
- the offspring distribution μ is critical ($\sum_{i \geq 0} i \mu(i) = 1$).
- μ has finite variance.
- one studies GW_μ trees *conditioned* on having a fixed (large) number of vertices (or edges).

Two approaches:
- Scaling limits
- Local limits

What happens when μ is not critical?
Outline

I. State of the art (critical case)

II. Non-generic trees

III. Limit theorems for non-generic trees

IV. One conjecture and one problem
I. State of the art
Recap on Galton-Watson trees

Trees will be planar and rooted.
Recap on Galton-Watson trees

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N} = \{0, 1, 2, \ldots\}$ with $\sum_i i \rho(i) \leq 1$ and $\rho(1) < 1$.
Recap on Galton-Watson trees

Trees will be planar and rooted.

Let \(\rho \) be a probability measure on \(\mathbb{N} = \{0, 1, 2, \ldots\} \) with \(\sum_i i \rho(i) \leq 1 \) and \(\rho(1) < 1 \). A Galton-Watson tree with offspring distribution \(\rho \) is a random tree such that:

1. \(k^\emptyset \) has distribution \(\rho \), where \(k^\emptyset \) is the number of children of the root.
2. for every \(j \geq 1 \) with \(\rho(j) > 0 \), under \(P^\rho(\cdot | k^\emptyset = j) \), the number of children of the \(j \) children of the root are independent with distribution \(\rho \).
Recap on Galton-Watson trees

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N} = \{0, 1, 2, \ldots\}$ with $\sum_i i \rho(i) \leq 1$ and $\rho(1) < 1$. A Galton-Watson tree with offspring distribution ρ is a random tree such that:

1. k_\varnothing has distribution ρ, where k_\varnothing is the number of children of the root.
Recap on Galton-Watson trees

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N} = \{0, 1, 2, \ldots\}$ with $\sum_i i\rho(i) \leq 1$ and $\rho(1) < 1$. A Galton-Watson tree with offspring distribution ρ is a random tree such that:

1. k_{\emptyset} has distribution ρ, where k_{\emptyset} is the number of children of the root.

2. for every $j \geq 1$ with $\rho(j) > 0$, under $\mathbb{P}_\rho(\cdot | k_{\emptyset} = j)$, the number of children of the j children of the root are independent with distribution ρ.

$Igor Kortchemski (Université Paris-Sud, Orsay)
Condensation in Galton-Watson trees$
Recap on Galton-Watson trees

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N} = \{0, 1, 2, \ldots\}$ with $\sum_i i \rho(i) \leq 1$ and $\rho(1) < 1$. A Galton-Watson tree with offspring distribution ρ is a random tree such that:

1. k_\emptyset has distribution ρ, where k_\emptyset is the number of children of the root.
2. for every $j \geq 1$ with $\rho(j) > 0$, under $P_\rho(\cdot | k_\emptyset = j)$, the number of children of the j children of the root are independent with distribution ρ.

Here, $k_\emptyset = 2$.
Recap on Galton-Watson trees

Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N} = \{0, 1, 2, \ldots\}$ with $\sum_i i \rho(i) \leq 1$ and $\rho(1) < 1$. A Galton-Watson tree with offspring distribution ρ is a random tree such that:

1. k_{\emptyset} has distribution ρ, where k_{\emptyset} is the number of children of the root.
2. for every $j \geq 1$ with $\rho(j) > 0$, under $\mathbb{P}_\rho(\cdot \mid k_{\emptyset} = j)$, the number of children of the j children of the root are independent with distribution ρ.

Here, $k_{\emptyset} = 2$.

Let $\zeta(\tau)$ denote the total number of vertices of τ.
Trees will be planar and rooted.

Let ρ be a probability measure on $\mathbb{N} = \{0, 1, 2, \ldots\}$ with $\sum_i i \rho(i) \leq 1$ and $\rho(1) < 1$. A Galton-Watson tree with offspring distribution ρ is a random tree such that:

1. k_\emptyset has distribution ρ, where k_\emptyset is the number of children of the root.
2. for every $j \geq 1$ with $\rho(j) > 0$, under $\mathbb{P}_\rho(\cdot \mid k_\emptyset = j)$, the number of children of the j children of the root are independent with distribution ρ.

Here, $k_\emptyset = 2$.

Here, $\zeta(\tau) = 5$.

Let $\zeta(\tau)$ denote the total number of vertices of τ.
Scaling limits
Coding trees
Order the vertices in the *lexicographical order*:

\[k_{\emptyset} = u(0) < u(1) < \cdots < u(\zeta(\tau) - 1). \]

Let \(k_u \) be the number of children of the vertex \(u \).
Order the vertices in the \textbf{the lexicographical order:}
\[k_{\varnothing} = u(0) < u(1) < \cdots < u(\zeta(\tau) - 1). \]

Let \(k_u \) be the number of children of the vertex \(u \).
Order the vertices in the *lexicographical order*:
\[k_{\emptyset} = u(0) < u(1) < \cdots < u(\zeta(\tau) - 1). \]

Let \(k_u \) be the number of children of the vertex \(u \).
Coding trees

Definition
The Lukasiewicz path \(W(\tau) = (W_n(\tau), 0 \leq n \leq \zeta(\tau)) \) of a tree \(\tau \) is defined by:

\[
W_0(\tau) = 0, \quad W_{n+1}(\tau) = W_n(\tau) + k_{u(n)}(\tau) - 1.
\]
Coding trees

Definition
The Lukasiewicz path $\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau))$ of a tree τ is defined by:

$$\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.$$
Definition
The Lukasiewicz path $\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau))$ of a tree τ is defined by:

$$\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.$$
Coding trees

Definition

The Lukasiewicz path \(\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau)) \) of a tree \(\tau \) is defined by:

\[
\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.
\]
Definition

The Lukasiewicz path $\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau))$ of a tree τ is defined by:

$$\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_u(n)(\tau) - 1.$$
Definition

The Lukasiewicz path $\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau))$ of a tree τ is defined by:

$$\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.$$
Definition
The Lukasiewicz path $\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau))$ of a tree τ is defined by:

$$\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_u(n)(\tau) - 1.$$
Coding trees

\[\zeta(\tau) = 26 \]

Definition

The Lukasiewicz path \(\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau)) \) of a tree \(\tau \) is defined by:

\[
\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.
\]
Proposition

The Lukasiewicz path of a GW_μ tree has the same distribution as a random walk with jump distribution $\nu(k) = \mu(k + 1)$, $k \geq -1$, started from 0, stopped when it hits -1.
Coding trees

\[\zeta(\tau) = 26 \]

Definition (of the contour function)

A capybara explores the tree at unit speed. For \(0 \leq t \leq 2(\zeta(\tau) - 1) \), \(C_t(\tau) \) is the distance between the beast at time \(t \) and the root.
Definition (of the contour function)

A capybara explores the tree at unit speed. For $0 \leq t \leq 2(\zeta(\tau) - 1)$, $C_t(\tau)$ is the distance between the beast at time t and the root.
Definition (of the contour function)

A capybara explores the tree at unit speed. For $0 \leq t \leq 2(\zeta(\tau) - 1)$, $C_t(\tau)$ is the distance between the beast at time t and the root.
Definition (of the contour function)

A capybara explores the tree at unit speed. For $0 \leq t \leq 2(\zeta(\tau) - 1)$, $C_t(\tau)$ is the distance between the beast at time t and the root.
Coding trees

Figure: The Lukasiewicz path and the contour function.

- The Lukasiewicz path behaves like a random walk.
Scaling limits

Let μ be a critical offspring distribution with finite variance. Let t_n be a $P_{\mu} [\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large?
Let μ be a critical offspring distribution with finite variance. Let t_n be a $P_\mu [\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large?
Let μ be a critical offspring distribution with finite variance. Let t_n be a $P_{\mu}[\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large?

Theorem (Aldous ’93, Duquesne ’04)

Let σ^2 be the variance of μ. Then:

$$
\left(\frac{1}{\sqrt{n}} W_{[nt]}(t_n), \frac{1}{2\sqrt{n}} C_{2nt}(t_n) \right)_{0 \leq t \leq 1} \overset{(d)}{\underset{n \to \infty}{\longrightarrow}} \left(\sigma \cdot e(t), \frac{1}{\sigma} e(t) \right)_{0 \leq t \leq 1},
$$

where e is the normalized Brownian excursion.
Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large?

Theorem (Aldous '93, Duquesne '04)

Let σ^2 be the variance of μ. Then:

$$
\left(\frac{1}{\sqrt{n}} \mathcal{W}_{nt}(t_n), \frac{1}{2\sqrt{n}} \mathcal{C}_{2nt}(t_n) \right)_{0 \leq t \leq 1} \underset{n \to \infty}{\xrightarrow{(d)}} \left(\sigma \cdot e(t), \frac{1}{\sigma} e(t) \right)_{0 \leq t \leq 1},
$$

where e is the normalized Brownian excursion.
Scaling limits

Let μ be a critical offspring distribution with finite variance. Let t_n be a $P_{\mu}[\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large?

Theorem (Aldous '93, Duquesne '04)

Let σ^2 be the variance of μ. Then:

$$
\left(\frac{1}{\sqrt{n}} W_{nt}(t_n), \frac{1}{2\sqrt{n}} C_{2nt}(t_n) \right)_{0 \leq t \leq 1} \xrightarrow{d} \left(\sigma \cdot e(t), \frac{1}{\sigma} e(t) \right)_{0 \leq t \leq 1},
$$

where e is the normalized Brownian excursion.

Remark:

- Duquesne '04: extension to the case where μ is in the domain of attraction of a stable law.
Scaling limits

Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large?

Theorem (Aldous ’93, Duquesne ’04)

Let σ^2 be the variance of μ. Then:

\[
\left(\frac{1}{\sqrt{n}} W_{n[t]}(t_n), \frac{1}{2\sqrt{n}} C_{2nt}(t_n) \right)_{0 \leq t \leq 1} \quad \xrightarrow{(d)} \quad \left(\sigma \cdot e(t), \frac{1}{\sigma} e(t) \right)_{0 \leq t \leq 1},
\]

where e is the normalized Brownian excursion.

Consequences:

- limit theorem for the height of t_n,
Let μ be a critical offspring distribution with finite variance. Let t_n be a $\mathbb{P}_\mu[\cdot | \zeta(\tau) = n]$ tree. What does t_n look like for n large?

Theorem (Aldous '93, Duquesne '04)

Let σ^2 be the variance of μ. Then:

$$
\left(\frac{1}{\sqrt{n}} W_{[nt]}(t_n), \frac{1}{2\sqrt{n}} C_{2nt}(t_n) \right)_{0 \leq t \leq 1} \xrightarrow{(d) \quad n \to \infty} \left(\sigma \cdot e(t), \frac{1}{\sigma} e(t) \right)_{0 \leq t \leq 1},
$$

where e is the normalized Brownian excursion.

Consequences:
- limit theorem for the height of t_n,
- convergence in the Gromov-Hausdorff sense of t_n, suitably rescaled, towards the Brownian CRT.
II. Non-generic trees
II. 1) Exponential families
Let μ be an offspring distribution with $0 < \mu(0) < 1$.
Exponential families

Let μ be an offspring distribution with $0 < \mu(0) < 1$.

Lemma (Kennedy ’75)

Let $\lambda > 0$ be such that

$$Z_\lambda = \sum_{i \geq 0} \mu(i)\lambda^i < \infty.$$

Igor Kortchemski (Université Paris-Sud, Orsay) Condensation in Galton-Watson trees
Exponential families

Let μ be an offspring distribution with $0 < \mu(0) < 1$.

Lemma (Kennedy ’75)

Let $\lambda > 0$ be such that

$$Z_\lambda = \sum_{i \geq 0} \mu(i) \lambda^i < \infty.$$

Set

$$\mu^{(\lambda)}(i) = \frac{1}{Z_\lambda} \mu(i) \lambda^i, \quad i \geq 0.$$
Let μ be an offspring distribution with $0 < \mu(0) < 1$.

Lemma (Kennedy ’75)

Let $\lambda > 0$ be such that

$$Z_\lambda = \sum_{i \geq 0} \mu(i) \lambda^i < \infty.$$

Set

$$\mu^{(\lambda)}(i) = \frac{1}{Z_\lambda} \mu(i) \lambda^i, \quad i \geq 0.$$

Then a GW_μ tree **conditioned** on having n vertices has the same distribution as a $GW_{\mu^{(\lambda)}}$ tree **conditioned** on having n vertices.
Let μ be an offspring distribution with $0 < \mu(0) < 1$.

Lemma (Kennedy '75)

Let $\lambda > 0$ be such that

$$Z_\lambda = \sum_{i \geq 0} \mu(i)\lambda^i < \infty.$$

Set

$$\mu^{(\lambda)}(i) = \frac{1}{Z_\lambda} \mu(i)\lambda^i, \quad i \geq 0.$$

Then a GW_μ tree **conditioned** on having n vertices has the same distribution as a $GW_{\mu^{(\lambda)}}$ tree **conditioned** on having n vertices.

Consequence:

- if there exists $\lambda > 0$ such that $Z_\lambda < \infty$ and $\mu^{(\lambda)}$ is critical, then we are back to the critical case.
Definition

We say that μ is **non-generic** if there exist no $\lambda > 0$ such that $Z_\lambda < \infty$ and $\mu^{(\lambda)}$ is critical.
Exponential families

Definition
We say that μ is non-generic if there exist no $\lambda > 0$ such that $Z_\lambda < \infty$ and $\mu^{(\lambda)}$ is critical.

Example:
- μ is subcritical ($\sum_i i \mu(i) < 1$)
Definition
We say that μ is **non-generic** if there exist no $\lambda > 0$ such that $Z_\lambda < \infty$ and $\mu^{(\lambda)}$ is critical.

Example:
- μ is subcritical ($\sum_i i \mu(i) < 1$)
- and the radius of convergence of $\sum_{i \geq 0} \mu(i) z^i$ is 1.
Exponential families

Definition
We say that μ is non-generic if there exist no $\lambda > 0$ such that $Z_\lambda < \infty$ and $\mu^{(\lambda)}$ is critical.

Example:
- μ is subcritical ($\sum_i i \mu(i) < 1$)
- and the radius of convergence of $\sum_{i \geq 0} \mu(i) z^i$ is 1.

Example: $\mu(i) \sim c/i^\beta$ with $c > 0$ and $\beta > 2$.
II. 2) **Large non-generic trees**
Large non-generic trees

Fix μ non-generic. What does a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree look like for n large (Jonsson & Stefánsson 11’)?
Large non-generic trees

Fix μ non-generic. What does a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree look like for n large (Jonsson & Stefánsson 11’)?
Large non-generic trees

Fix μ non-generic. What does a $\mathbb{P}_\mu \left[\cdot \mid \zeta(\tau) = n \right]$ tree look like for n large (Jonsson & Stefánsson 11')?

Condensation phenomenon
Fix μ non-generic. What does a $P_\mu \cdot | \zeta(\tau) = n]$ tree look like for n large (Jonsson & Stefánsson 11')?

Condensation phenomenon (which also appears in the zero-range process !).
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with $c > 0$, $\beta > 2$.

Theorem (Jonsson & Stefánsson '11)

Let \(\mu \) be a subcritical offspring distribution such that \(\mu(i) \sim c/i^\beta \) with \(c > 0, \beta > 2 \). Let \(t_n \) be a \(\mathbb{P}_\mu \left[\cdot \mid \zeta(\tau) = n \right] \) tree and \(m \) be the mean of \(\mu \).
Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) Then:

$$t_n \xrightarrow{(d) \quad n \to \infty} \hat{J}$$
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) Then:

$$t_n \xrightarrow{d, n \rightarrow \infty} \hat{F}$$

where the convergence holds for the local convergence
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) Then:

$$t_n \xrightarrow{(d)} \hat{T}$$

where the convergence holds for the local convergence and the tree \hat{T} has the following form:

![Diagram of a tree structure](image-url)

$S = 4$
Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) Then:

$$t_n \xrightarrow{(d) \quad n \to \infty} \hat{T}$$

where the convergence holds for the local convergence and the tree \hat{T} has the following form:

The spine has a finite random length S, where:

$$\mathbb{P}[S = i] = (1 - m)m^i \quad \text{for } i \geq 0$$

$S = 4$
Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu[\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{(d)\quad n \to \infty} \hat{T}$ where \hat{T} is:

![Diagram of tree with GW nodes and S = 4]

$\mathbb{P}(S = i) = (1 - m)m^i$
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu[\cdot|\zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{d} n \to \infty \hat{T}$ where \hat{T} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Questions:
- Do the Lukasiewicz path and contour function of t_n, properly rescaled, converge?
- What are the fluctuations of the maximal degree?
- Where is located the vertex of maximal degree?
- What is the height of t_n?
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu[\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{(d)} \hat{T}$ where \hat{T} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Remarks:
- In the critical case the spine is infinite (Kesten ’86).
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \overset{(d)}{\to} \hat{T}$ where \hat{T} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Remarks:
- In the critical case the spine is infinite (Kesten '86).
- Janson ’12: Assertion 1) holds for every non-generic μ.
Theorem (Jonsson & Stefánsson ’11)

Let \(\mu \) be a subcritical offspring distribution such that \(\mu(i) \sim c/i^\beta \) with \(c > 0 \), \(\beta > 2 \). Let \(t_n \) be a \(\mathbb{P}_\mu [\cdot | \zeta(\tau) = n] \) tree and \(m \) be the mean of \(\mu \).

1) We have \(t_n \xrightarrow{(d)} \hat{T} \) where \(\hat{T} \) is:

2) The maximal degree of \(t_n \), divided by \(n \), converges in probability towards \(1 - m \).

Remarks:
- In the critical case the spine is infinite (Kesten ’86).
- Janson ’12: Assertion 1) holds for every non-generic \(\mu \).
- A \(GW_\mu \) tree has in expectation \(1 + m + m^2 + \cdots = 1/(1 - m) \) vertices.
Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $P_\mu[\cdot|\zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{(d)}\hat{J}$ where \hat{J} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Remarks:

- In the critical case the spine is infinite (Kesten '86).
- Janson '12: Assertion 1) holds for every non-generic μ.
- A GW_μ tree has in expectation $1 + m + m^2 + \cdots = 1/(1 - m)$ vertices. Hence a forest of cn trees GW_μ has in expectation $cn/(1 - m)$ vertices.
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{(d)_{n \to \infty}} \hat{T}$ where \hat{T} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Questions:
- Do the Lukasiewicz path and contour function of t_n, properly rescaled, converge?
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot \mid \zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{d} \tilde{J}$ where \tilde{J} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Questions:
- Do the Lukasiewicz path and contour function of t_n, properly rescaled, converge?
- What are the fluctuations of the maximal degree?
Theorem (Jonsson & Stefánsson ’11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^{\beta}$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu \left[\cdot \mid \zeta(\tau) = n \right]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{d} \hat{T}$ where \hat{T} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Questions:
- Do the Lukasiewicz path and contour function of t_n, properly rescaled, converge?
- What are the fluctuations of the maximal degree?
- Where is located the vertex of maximal degree?
Theorem (Jonsson & Stefánsson '11)

Let μ be a subcritical offspring distribution such that $\mu(i) \sim c/i^\beta$ with $c > 0$, $\beta > 2$. Let t_n be a $\mathbb{P}_\mu [\cdot | \zeta(\tau) = n]$ tree and m be the mean of μ.

1) We have $t_n \xrightarrow{(d)} \hat{T}$ where \hat{T} is:

2) The maximal degree of t_n, divided by n, converges in probability towards $1 - m$.

Questions:
- Do the Lukasiewicz path and contour function of t_n, properly rescaled, converge?
- What are the fluctuations of the maximal degree?
- Where is located the vertex of maximal degree?
- What is the height of t_n?
III. Limit theorems for non-generic trees
Assumptions

We consider an offspring distribution μ such that:
- μ is subcritical ($0 < \sum_i i \mu(i) < 1$)
- There exists a slowly varying function L such that $\mu(n) = L(n) n^{-1} + \theta, n \geq 1$ with fixed $\theta > 1$.

L is slowly varying if $L(tx)/L(x) \to 1$ when $x \to \infty$, $\forall t > 0$.

Let τ_n be a $P_{\mu}[\cdot | \zeta(\tau) = n]$ tree.
We consider an offspring distribution μ such that:

- μ is subcritical $(0 < \sum_i i\mu(i) < 1)$
- There exists a slowly varying function L such that

\[
\mu(n) = \frac{L(n)}{n^{1+\theta}}, \quad n \geq 1
\]

with fixed $\theta > 1$.

L is slowly varying if $L(tx)/L(x) \to 1$ when $x \to \infty$, $\forall t > 0$.

Let t_n be a $\mathbb{P}_{\mu}[\cdot | \zeta(\tau) = n]$ tree.
We consider an offspring distribution μ such that:
- μ is subcritical ($0 < \sum_i i\mu(i) < 1$)
- There exists a slowly varying function L such that

$$\mu(n) = \frac{L(n)}{n^{1+\theta}}, \quad n \geq 1$$

with fixed $\theta > 1$.

(L is slowly varying if $L(tx)/L(x) \to 1$ when $x \to \infty$, $\forall t > 0$.)
Assumptions

We consider an offspring distribution μ such that:

- μ is subcritical ($0 < \sum_i i \mu(i) < 1$)
- There exists a slowly varying function L such that

$$
\mu(n) = \frac{L(n)}{n^{1+\theta}}, \quad n \geq 1
$$

with fixed $\theta > 1$.

(L is slowly varying if $L(tx)/L(x) \rightarrow 1$ when $x \rightarrow \infty$, $\forall t > 0$.)

Let t_n be a $\mathbb{P}_\mu [\cdot \mid \zeta(\tau) = n]$ tree.
III. 1) **Convergence of the Lukasiewicz path**
Let \(k_u \) be the number of children of the vertex \(u \).

Definition

The Lukasiewicz path \(\mathcal{W}(\tau) = (\mathcal{W}_n(\tau), 0 \leq n \leq \zeta(\tau)) \) of a tree \(\tau \) is defined by:

\[
\mathcal{W}_0(\tau) = 0, \quad \mathcal{W}_{n+1}(\tau) = \mathcal{W}_n(\tau) + k_{u(n)}(\tau) - 1.
\]
Convergence of the Lukasiewicz path

Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.

Theorem (K. 12')

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

(ii) $\sup_{0 \leq i \leq U(t_n)} W_i(t_n)n$ (P) $\to_{n \to \infty} 0$.

(iii) $(W_{\lfloor nt\rfloor}(t_n) \vee (U(t_n)+1))(t_n)n, 0 \leq t \leq 1$ (d) $\to_{n \to \infty} ((1-m)(1-t))$ $0 \leq t \leq 1$.

Igor Kortchemski (Université Paris-Sud, Orsay)
Convergence of the Lukasiewicz path

Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.
Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.

Theorem (K. 12’)

We have:

\[
\frac{W_{t_n}(t_n)}{n} \xrightarrow{n \to \infty} 0.
\]
Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.

Theorem (K. 12')

*We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.*
Convergence of the Lukasiewicz path

Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.

Theorem (K. 12')

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

(ii) $\sup_{0 \leq i \leq U(t_n)} \frac{W_i(t_n)}{n} \xrightarrow{(\mathbb{P})} 0$ as $n \to \infty$.
Convergence of the Lukasiewicz path

Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.

Theorem (K. 12')

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

(ii) $\sup_{0 \leq i \leq U(t_n)} \frac{W_i(t_n)}{n} \overset{(P)}{\longrightarrow} 0$.

(iii) $\left(\frac{W_{[nt]} \vee (U(t_n)+1)(t_n)}{n} , 0 \leq t \leq 1 \right) \overset{(d)}{\longrightarrow} ((1-m)(1-t))_{0 \leq t \leq 1}$.

![Graph](attachment://graph.png)
Convergence of the Lukasiewicz path

Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.

Theorem (K. 12’)

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

(ii) $\sup_{0 \leq i \leq U(t_n)} \frac{W_i(t_n)}{n} \xrightarrow{\mathbb{P}} 0$.

(iii) $\left(\frac{W_{[nt]} \lor (U(t_n)+1)(t_n)}{n}, 0 \leq t \leq 1 \right) \xrightarrow{(d)} ((1 - m)(1 - t))_{0 \leq t \leq 1}$.

Remarks:

- The limit is deterministic and depends only on m (the mean of μ).
Convergence of the Lukasiewicz path

Let $U(t_n)$ be the index of the first vertex with maximal degree of t_n.

Theorem (K. 12')

We have:

(i) $U(t_n)/n$ converges in probability towards 0 as $n \to \infty$.

(ii) $\sup_{0 \leq i \leq U(t_n)} \frac{W_i(t_n)}{n} \xrightarrow{P} 0$.

(iii) $\left(\frac{W_{\lfloor nt \rfloor \vee U(t_n)+1}(t_n)}{n}, 0 \leq t \leq 1 \right) \xrightarrow{(d)} ((1 - m)(1 - t))_{0 \leq t \leq 1}$.

Remarks:

- The limit is deterministic and depends only on m (the mean of μ).

- With high probability, there is one vertex with degree roughly $(1 - m)n$ and the others have degree $o(n)$.
We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \geq 0}$ with jump distribution $\nu(k) = \mu(k + 1)$, $k \geq -1$.
We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \geq 0}$ with jump distribution $\nu(k) = \mu(k + 1), k \geq -1$, conditioned on $W_1 \geq 0, W_2 \geq 0, \ldots, W_{n-1} \geq 0$ and $W_n = -1$. But $E[W_1] = m - 1 < 0$. By the "one big jump principle", $W(t_n)$ makes one macroscopic jump, and all the other jumps are asymptotically independent (the distribution of W_1 is $(0, 1]$–subexponential).
We know that $\mathcal{W}(t_n)$ has the law of a random walk $(W_n)_{n \geq 0}$ with jump distribution $\nu(k) = \mu(k + 1)$, $k \geq -1$, conditioned on $W_1 \geq 0, W_2 \geq 0, \ldots, W_{n-1} \geq 0$ and $W_n = -1$.

But $\mathbb{E}[W_1] = m - 1 < 0$.
Idea of the proof

- We know that $\mathcal{W}(t_n)$ has the law of a random walk $(W_n)_{n \geq 0}$ with jump distribution $\nu(k) = \mu(k + 1)$, $k \geq -1$, conditioned on $W_1 \geq 0$, $W_2 \geq 0$, \ldots, $W_{n-1} \geq 0$ and $W_n = -1$.

- But $\mathbb{E}[W_1] = m - 1 < 0$.

- By the “one big jump principle”, $\mathcal{W}(t_n)$ makes one macroscopic jump, and all the other jumps are asymptotically independent.
We know that $W(t_n)$ has the law of a random walk $(W_n)_{n \geq 0}$ with jump distribution $\nu(k) = \mu(k + 1)$, $k \geq -1$, conditioned on $W_1 \geq 0$, $W_2 \geq 0$, ..., $W_{n-1} \geq 0$ and $W_n = -1$.

But $\mathbb{E}[W_1] = m - 1 < 0$.

By the “one big jump principle”, $W(t_n)$ makes one macroscopic jump, and all the other jumps are asymptotically independent (the distribution of W_1 is $(0, 1]$–subexponential).
Applications

Let $u_*(t_n)$ be the vertex of maximal degree.
Applications

Let $u_*(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree.
Applications

Let $u_\ast(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_\ast(t_n)|$ its height.
Applications

Let $u_\star(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_\star(t_n)|$ its height.

- The fluctuations of $\Delta(t_n)$ around $(1 - m)n$ are of order n^{2^θ}.
Applications

Let $u_\star(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_\star(t_n)|$ its height.

- The fluctuations of $\Delta(t_n)$ around $(1 - m)n$ are of order n^{2^θ}.
- For $i \geq 0$, $\mathbb{P}[|u_\star(t_n)| = i] \xrightarrow{n \to \infty} (1 - m)m^i$.

This is not an immediate consequence of the local convergence!

Recall the local convergence of t_n to Igor Kortchemski (Université Paris-Sud, Orsay)

Condensation in Galton-Watson trees
Applications

Let $u^*(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u^*(t_n)|$ its height.

- The fluctuations of $\Delta(t_n)$ around $(1 - m)n$ are of order n^{2^θ}.
- For $i \geq 0$, $\mathbb{P}[|u^*(t_n)| = i] \xrightarrow{n \to \infty} (1 - m)m^i$.

Recall the local convergence of t_n to

\[
\mathbb{P}(S = i) = (1 - m)m^i
\]
Applications

Let $u_*(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_*(t_n)|$ its height.

- The fluctuations of $\Delta(t_n)$ around $(1 - m)n$ are of order n^{2^θ}.
- For $i \geq 0$, $\mathbb{P}[|u_*(t_n)| = i] \xrightarrow{n \to \infty} (1 - m)m^i$. This is not an immediate consequence of the local convergence!

Recall the local convergence of t_n to

\[\mathbb{P}(S = i) = (1 - m)m^i \]
Let $u_\star(t_n)$ be the vertex of maximal degree, $\Delta(t_n)$ its degree and $|u_\star(t_n)|$ its height.

- The fluctuations of $\Delta(t_n)$ around $(1 - m)n$ are of order n^{2^θ}.
- For $i \geq 0$, $\mathbb{P}[|u_\star(t_n)| = i] \xrightarrow{n \to \infty} (1 - m)m^i$. This is not an immediate consequence of the local convergence!
- For every sequence $(\lambda_n)_{n \geq 1}$ such that $\lambda_n \to +\infty$:
 $$\mathbb{P} \left[\left| \mathcal{H}(t_n) - \frac{\ln(n)}{\ln(1/m)} \right| \leq \lambda_n \right] \xrightarrow{n \to \infty} 1.$$
IV. Extensions
Conjecture

We have:

$$\mathbb{E}[\mathcal{H}(t_n)] \sim \frac{\ln(n)}{\ln(1/m)}.$$
Conjecture

We have:

\[\mathbb{E} \left[\mathcal{H}(t_n) \right] \xrightarrow{n \to \infty} \frac{\ln(n)}{\ln(1/m)}. \]

Question

What happens when \(\mu \) is any non-generic probability distribution?
Conjecture
We have:
\[E[\mathcal{H}(t_n)] \sim \frac{\ln(n)}{\ln(1/m)} \quad \text{as} \quad n \to \infty. \]

Question
What happens when \(\mu \) is any non-generic probability distribution?
Theorem (K. 12')

Let \((r_n)_{n \geq 1} \) be a sequence of positive real numbers.

(i) If \(r_n / \ln(n) \to \infty \), then \((C_{\text{2nt}}(t) / r_n, 0 \leq t \leq 1) \) converges to the function equal to 0 on \([0, 1]\) as \(n \to \infty \).

(ii) Otherwise, the sequence \((C_{\text{2nt}}(t) / r_n, 0 \leq t \leq 1) \) is not tight in the space \(C([0, 1], \mathbb{R}) \).
Contour function of t_n

Theorem (K. 12’)

Let $(r_n)_{n \geq 1}$ be a sequence of positive real numbers.

![Graph showing the contour function of t_n]
Contour function of t_n

Theorem (K. 12’)

Let $(r_n)_{n \geq 1}$ be a sequence of positive real numbers.

(i) If $r_n / \ln(n) \to \infty$, then $(C_{2nt}(t_n)/r_n, 0 \leq t \leq 1)$ converges to the function equal to 0 on $[0, 1]$ as $n \to \infty$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{contour_function}
\caption{Contour function for t_n}
\end{figure}
Contour function of t_n

Theorem (K. 12’)

Let $(r_n)_{n \geq 1}$ be a sequence of positive real numbers.

(i) *If $r_n/\ln(n) \to \infty$, then $(C_{2n}(t_n)/r_n, 0 \leq t \leq 1)$ converges to the function equal to 0 on $[0, 1]$ as $n \to \infty$.*

(ii) *Otherwise, the sequence $(C_{2n}(t_n)/r_n, 0 \leq t \leq 1)$ is not tight in the space $C([0, 1], \mathbb{R})$.***