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Goal: give explicit criteria forMarkov chainson the positive integers starting
from large values to have fnctional scaling limit

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation

Goal and motivation

Goal: give explicit criteria forMarkov chainson the positive integers starting
from large values to have fnctional scaling limit

Motivations and applications:

1. extend a result of Haas & Miermont O11 concerning-increasing
Markov-chains
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Goals and motivation

Goal and motivation

Goal: give explicit criteria for Markov chains on the positive integers starting
from large values to have a functional scaling limit.

Motivations and applications:

1. extend a result of Haas & Miermont 11 concerning non-increasing
Markov-chains,

2. recover a result of Caravenna & Chaumont '08 concerning invariance
principles for random walks conditioned to remain positive,

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Goals and motivation

Goal and motivation

Goal: give explicit criteria forMarkov chainson the positive integers starting
from large values to have fnctional scaling limit

Motivations and applications:

1. extend a result of Haas & Miermont O11 concerning-increasing
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principles forrandom walks conditioned to remain positive

3. study Markov chains with asymptotically zero drjft
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Goal and motivation

Goal: give explicit criteria forMarkov chainson the positive integers starting
from large values to have fnctional scaling limit

Motivations and applications:

1. extend a result of Haas & Miermont O11 concerning-increasing
Markov-chains

2. recover a result of Caravenna & Chaumont O08 concerning invariance
principles forrandom walks conditioned to remain positive

3. study Markov chains with asymptotically zero drjft

4. obtain limit theorems for the number of fragments in a
fragmentation-coagulation process
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Goals and motivation

Goal and motivation

Goal: give explicit criteria forMarkov chainson the positive integers starting
from large values to have fnctional scaling limit

Motivations and applications:

1.

extend a result of Haas & Miermont O11 concerning-increasing
Markov-chains

. recover a result of Caravenna & Chaumont O08 concerning invariance

principles forrandom walks conditioned to remain positive

. study Markov chains with asymptotically zero drjft
. obtain limit theorems for the number of fragments in a

fragmentation-coagulation process

. study separating cyclem large random maps (joint project with Jean

Bertoin & Nicolas Curien, which motivated this work)
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Goals and motivation

Goal

et (pij;1! 1) be a sequence of non-negative real numbers such that
1 1Pij = 1foreveryi ! 1.
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Goals and motivation

Goal

Let (pij;i1! 1) be a sequence of non-negative real numbers such that
4 1Pij = 1lforeveryi! 1.

Let (X,.(k); k! 0) be the discrete-time homogeneol4arkov chainstarted at
state n such that the probability transition from staté to state j is p; ; for
i, ! 1.
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Goals and motivation

Goal

Let (pi;;1! 1) be a sequence of non-negative real numbers such that
>1Pij =1foreveryi! 1.

Let (X, (k); k! 0O) be the discrete-time homogeneoi¥arkov chainstarted at
state n such that the probability transition from state to state | is p; ; for

]! 1
! Goal: Pnd explicit conditions onp, « ) yielding the existence of a
sequencea, ! " and a c'dl"g processy such that the convergence
! 11
Xn ("ant#)

e 0 g (Yt o)

holds In distribution
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Goals and motivation

Goal

et (pi ;1> 1) be a sequence of hon-negative real numbers such that
; Pi.j
i>1Pij =1 for everyi > 1.

Let (X, (k); k > 0) be the discrete-time homogeneoi¥arkov chainstarted at
state n such that the probability transition from staté to state j is p; ; for
i,j>1

A~ Goal: bnd explicit conditions oripy, ) yielding the existence of a
sequencer, ! " and a c'dl"g processy such that the convergence

Xn ("ap ¥, >0 nﬁi) (Y(t);t > 0)

n

holds in distribution(in the space of real-valued c"dl"g function®(R; ,R) on
R+ equipped with the Skorokhod topology).
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Goals and motivation

Simple example

|fp1,2 = 1 and Pnn+ti =:

16

14

1.2+

15F

0.8

0.6

0.4

0.5f

0.2

0 | | | | | | | | | |
0 0.5 1 15 2 25 3 % 0.5 1 15 2 25 3

! .
Figure: Linear interpolation of the process *»“"""): 0 131 for n = 50 and
n = 5000
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Goals and motivation

Simple example

f pio=landppns1=x3forn! 2

16
14

1.2+

15f

1
0.8+
0.6
0.4

0.5f

0.2

0 | | | | | | | | | |
0 0.5 1 15 2 25 3 % 0.5 1 15 2 25 3

! .
Figure: Linear interpolation of the process *~“"“):0" t" 3 for n = 50 and
n = 5000.

The scaling limit isrel3ected Brownian motion
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Goals and motivation

Description of the limiting process

! It is well-known (Lamperti O60) thatelf-similar processearise as the
scaling limit of general stochastic processes.
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Goals and motivation

Description of the limiting process

! It is well-known (Lamperti O60) thatelf-similar processearise as the
scaling limit of general stochastic processes.

! In the case ofMarkov chaing one naturally expects the Markov property to
be preserved after convergence: the scaling limit should belong to the class o
self-similar Markov processesm [O,! ).
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Goals and motivation

Nonnegative self-similar Markov processes

Let (! (t))t1 o be a LZvy process with characteristic exponent

1 | L . "
" (#) = | §$2#2+ ib# + e X1 11 iDLy 1 %(dx), #!1 R
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Nonnegative self-similar Markov processes

Let (! (t))t1 o be a LZvy process with characteristic exponent

1 | L . "
" (#) = | §$2#2+ ib# + e X1 11 iDLy 1 %(dx), #!1 R

.e. E#e”" (t)$: et# () fort! 0,#! R.
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Goals and motivation

Nonnegative self-similar Markov processes

Let (! (t))t1 o be a LZvy process with characteristic exponent

1 | L . "
" (#) = | §$2#2+ ib# + e X1 11 iDLy 1 %(dx), #!1 R

.e. E#e”" (t)$: et# () fort! 0,#! R.

Set ..

= e ®ds 1 (0,1
0)
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Goals and motivation

Nonnegative self-similar Markov processes

Let (! (t))t1 o be a Lévy process with characteristic exponent
I

1 | I . | n
" (#) = | §$2#2+|b#+ e X1 11 iy 1 %dx), #! R
.
# o....9%
e, E e (U =¢e#U) fort! 0,#! R.
Set |,
= e ®ds 1 (0,1

0)

It is known that:
— |+ <" as. if ! driftsto! " (i.e. limg « () =1" as.),
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Goals and motivation

Nonnegative self-similar Markov processes

Let (! (t))t1 o be a LZvy process with characteristic exponent
.

1 . ! . . 11
" (#) = | §$2#2+|b#+ e X1 11 iy 1 %dx), #! R
o
.e. E#e”" (t)$: et# () fort! 0,#! R.
Set .
= e ®ds 1 (0,1
0
It IS known that:
bl. <" as.ifl drftsto! " (.e.lim¢, « (1) =1" a.s.),
Pl =" a.s.If! driftsto +" or oscillates
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Goals and motivation

The Lamperti transform

Fix! > 0. For everyt ! 0, set
! " #
"(t)=inf u! 0; € ds>t
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The Lamperti transform

Fix! > 0. For everyt ! 0, set

| " #
"(t)=inf u! 0; e lds>t

(with the conventioninf! = $ ).
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Goals and motivation

The Lamperti transform

Fix! > 0. For everyt ! 0, set

| " #

"(t)=inf u! 0; e lds>t
0)

(with the conventioninf! = $ ). The Lamperti transform of# is dePned by

Y(t) = e F)  for 0" t< Ig, Y(t)=0 for t! lg.
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Goals and motivation

The Lamperti transform

Fix! > 0. For everyt ! 0, set

| " #

"(t)=inf u! 0; e lds>t
0)

(with the conventioninf! = $ ). The Lamperti transform of# is dePned by

Y(t) = e F)  for 0" t< Ig, Y(t)=0 for t! lg.

The processy hits O in Pnite time almost surely if, and only i driftsto ! $ .
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Goals and motivation

The Lamperti transform

Fix! > 0. For everyt ! 0, set

| " #

"(t)=inf u! 0; e lds>t
0)

(with the conventioninf! = $ ). The Lamperti transform of# is dePned by

Y(t) = e F)  for 0" t< Ig, Y(t)=0 for t! lg.

The processy hits O in Pnite time almost surely if, and only i driftsto ! $ .

By construction, the procesy¥ Is a self-similar Markov process of indé&k!
started at 1.
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Goals and motivation

The Lamperti transform

Fix! > 0. For everyt ! 0, set

| " #

"(t)=inf u! 0; e lds>t
0)

(with the conventioninf! = $ ). The Lamperti transform of# is dePned by
Y(t) = e F)  for 0" t< Ig, Y(t)=0 for t! lg.

The processy hits O in Pnite time almost surely if, and only i driftsto ! $ .

By construction, the procesy¥ Is a self-similar Markov process of indé&k!
started at 1.

We will write that Y is a pSSME'  ($, b, %).
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Goals and motivation
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Goals and motivation

Main notation

Let ! . be the law ofIn(X, (1)/n)
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Goals and motivation

Main notation

Let ! . be the law ofin(X,, (1)/n ), which is the probability measure oR
|

LX) = Pok & ingan ) (dX).
k! 1
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Goals and motivation

Main notation

Let ! . be the law ofin(X,, (1)/n ), which is the probability measure oR
|

LX) = Pok & ingan ) (dX).
k! 1

Let (an )n1 o be a sequence of positive real numbers with regular variation of
Index# > 0
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Goals and motivation

Main notation

Let ! . be the law ofin(X,, (1)/n ), which is the probability measure oR
|

LX) = Pok & ingan ) (dX).
k! 1

Let (an )n1 o be a sequence of positive real numbers with regular variation of
index# > 0, meaning thata-,, «/a, ! x asn! " for every bxedk > O.
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Goals and motivation

Main notation

Let ! . be the law ofin(X,, (1)/n ), which is the probability measure oR
|

LX) = Pok & ingan ) (dX).
k! 1

Let (an )n1 o be a sequence of positive real numbers with regular variation of
index# > 0, meaning thata-,, «/a, ! x asn! " for every bxedk > O.

Let! be a measure oR\{ 0} such that
#.
(1! x3) ! (dx) <" .

Igor Kortchemski Scaling limits of Markov chains on the positive integers



Transient case

. Goals and motivation

II. Transient case

—=>0 =0 0<=

[Il. Recurrent case

V. Positive recurrent case

V. Applications
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Transient case

(A1). Asn! ! ,vaguely onR\{0}, a, &  (dx) r:flv) | (dx).
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Positive recurrent case

Goals and motivation Transient case Recurrent case

(A1). Asn! ! ,vaguely onR\{0}, a, &  (dx) n'f.V), | (dx).
This means that |
I X, (1) #% ¥
a, & f — 1 f(eX) ! (dx)
N n" | R

for every continuous functiom with compact support in0,! {1}, i.e. a
jump of the process{,/n from 1 to x occurs with a small rate

s exp#l (dx).
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Transient case

(A1). Asn! ! ,vaguely onR\{0}, a, &  (dx) r:f.V), | (dx).

(A2). The following two convergences holds: |
"1 "1 "1

anba x! (dx) " b,and x*! (dx) " "2+ X% (dx)
11 n* ! 11 n* | 11

for someb # Rand"?2! 0.
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A1). Asn! ! ,vaguely onR\{0}, a, &  (dx) 'flv) | (dx).
(A2). The following two convergences holds: |

1 1 1
anba x! . (dx) " b,and x*! (dx) " "2+ x%1 (dx)

11 n" | 1 1 n

for someb # Rand"?2! 0.

(Conditions very close to those giving convergence of inbPnitely divisible
distributions)
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A1). Asn! ! ,vaguely onR\{0}, a, &  (dx) n'f.V), | (dx).

(A2). The following two convergences holds: |
"1 "1 II1

anba x! (dx) " b,and x*! (dx) " "2+ X% (dx)
11 n* ! 11 n* | 11

for someb # Rand"?2! 0.

Theorem (Bertoin & K. O14 N transient case}

Assume that(Al) and (A2) hold, and that# $!' ! ! . Then
| "

a8 g D vt o)
N "

holds in distribution inD(R, , R), whereY is a pSSMP ’ (", b, ! ).
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1.5

0.5

Transient case

0.5

Figure: lllustration of the transient case.
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Transient case

ldea of the proof

! EmbedX, In continuous time: letN, be an independent Poisson process
of parametera, .
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Transient case

ldea of the proof

! EmbedX, In continuous time: letN, be an independent Poisson process
of parametera, .

! Construct a continuous-time Markov proce&g such that the following
equality in distribution holds
I 11

.%Xn(Nn(t));t! 0 2 (expLa.(la())it! 0),
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Transient case

ldea of the proof

! EmbedX, In continuous time: letN, be an independent Poisson process
of parametera, .

! Construct a continuous-time Markov proce&g such that the following
equality in distribution holds
I 11

.%Xn(Nn(t));t! 0 2 (expLa.(la())it! 0),

where! , I1s a Lamperti-type time change df; .
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Transient case

ldea of the proof

! EmbedX, In continuous time: letN, be an independent Poisson process
of parametera, .

! Construct a continuous-time Markov proce&g such that the following
equality in distribution holds
I 11

.%Xn(Nn(t));t! 0 2 (expLa.(la())it! 0),

where! , I1s a Lamperti-type time change df; .

Strategy:

1) L, converges in distribution t6 (characterization of functional convergence
of Feller processes by generators)
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Transient case

ldea of the proof

! EmbedX, In continuous time: letN, be an independent Poisson process
of parametera, .

! Construct a continuous-time Markov proce&g such that the following
equality in distribution holds
I

.%Xn(Nn(t));t! 0 2 (expLa.(la())it! 0),

where! , I1s a Lamperti-type time change df; .

Strategy:

1) L, converges in distribution t6 (characterization of functional convergence
of Feller processes by generators)

2) ', converges in distribution towards (the time changes do not explode).
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Transient case

ldea of the proof

! EmbedX, In continuous time: letN, be an independent Poisson process
of parametera, .

! Construct a continuous-time Markov proce&g such that the following
equality in distribution holds
I

.%Xn(Nn(t));t! 0 2 (expLa.(la())it! 0),

where! , I1s a Lamperti-type time change df; .

Strategy:

1) L, converges in distribution t6 (characterization of functional convergence
of Feller processes by generators)

2) ', converges in distribution towards (the time changes do not explode).
Hence

! 1
KoCan ).y nﬁﬁ) (exg(" (1 ()):t! 0) = Y

n
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Transient case

Difference with the approach of Haas & Miermc

In the case where th&larkov chainis non-increasing, Haas & Miermont:
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Transient case

Difference with the approach of Haas & Miermc

In the case where th&larkov chainis non-increasing, Haas & Miermont:
b Establish tightness,
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Transient case

Difference with the approach of Haas & Miermc

In the case where th&larkov chainis non-increasing, Haas & Miermont:

b Establish tightness,
b Analyze weak limits of convergent subsequences via martingale problems
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Transient case

Detalls

The procesd., Is designed in the following way:
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Transient case

Detalls

The procesd , Is designed in the following wayt nexpglL,)= ! 1, then it
waits a random time distributed as an exponential random variable of paramet
a; and then jumps to statek ! 1 with probability pj .
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Transient case

Detalls

The procesd , Is designed in the following wayt nexpglL,)= ! 1, then it
waits a random time distributed as an exponential random variable of paramet
a; and then jumps to statek ! 1 with probability pj .

f | " #

_ a
() =inf ul 0, R g5
0 An

then X, (N (0)it1 0 € (exp(Ly (1 ()it ! 0)
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Transient case

Detalls

The procesd , Is designed in the following wayt nexpglL,)= ! 1, then it
waits a random time distributed as an exponential random variable of paramet
a; and then jumps to statek ! 1 with probability pj .
|f | n #

) u

_ a
() =inf ul 0, R g5
0 An

! ..
then %Xn(Nn(t));t! 0 @ (exp(L,(1,(t):t! 0), and

1) L, converges in distribution to
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Transient case

Detalls

The procesd , Is designed in the following wayt nexpglL,)= ! 1, then it
waits a random time distributed as an exponential random variable of paramet
a; and then jumps to statek ! 1 with probability pj .
|f | n #

) u

_ a
() =inf ul 0, R g5
0 An

! ..
then %Xn(Nn(t));t! 0 @ (exp(L,(1,(t):t! 0), and

1) L, converges in distribution t0 (characterization of functional convergence
of Feller processes by generators, no boundary issues)
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Transient case

Detalls

The procesd , Is designed in the following wayt nexpglL,)= ! 1, then it
waits a random time distributed as an exponential random variable of paramet
a; and then jumps to statek ! 1 with probability pj .
|f | n #

) u

_ a
() =inf ul 0, R g5
0 An

! ..
then %Xn(Nn(t));t! 0 @ (exp(L,(1,(t):t! 0), and

1) L, converges in distribution t0 (characterization of functional convergence
of Feller processes by generators, no boundary Issues)

2) !, converges In distribution to
! " #

u
I(t)=inf u! 0; € ©lds>t
0)
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Transient case

Detalls

The procesd , Is designed in the following wayt nexpglL,)= ! 1, then it
waits a random time distributed as an exponential random variable of paramet
a; and then jumps to statek ! 1 with probability pj .
|f | n #

) u

_ a
() =inf ul 0, R g5
0 An

! ..
then %Xn(Nn(t));t! 0 @ (exp(L,(1,(t):t! 0), and

1) L, converges in distribution t0 (characterization of functional convergence
of Feller processes by generators, no boundary Issues)

2) !, converges In distribution to
! " #

u
I(t)=inf u! 0; € ©lds>t
0)

(the time changes do not explode sinte = $ ).
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Recurrent case

|. Goals and motivation

II. Transient case

[Il. Recurrent case

——>0 C=0 0

V. Positive recurrent case
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Recurrent case

What happens when driftsto! ! |, in whichcasd, <! andY is absorbed
in0 ?
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Recurrent case

! First step: understand the behavior of tHdarkov chainuntil it reaches a
OneighborhoodO ®f
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Recurrent case

! First step: understand the behavior of tHdarkov chainuntil it reaches a
OneighborhoodO ®f

Fix K! 1 such that the set{l, 2,...,K} Is accessible by, for everyn! 1
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Goals and motivation Transient case Recurrent case Positive recurrent case

! First step: understand the behavior of tHdarkov chainuntil it reaches a
OneighborhoodO ®f

Fix K! 1 such that the set{l, 2,...,K} Is accessible by, for everyn! 1
(meaning thatinf{i ! 0;X, (i) " K}< ! with positive probability for every
n! 1).
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Goals and motivation Transient case Recurrent case Positive recurrent case

! First step: understand the behavior of tHdarkov chainuntil it reaches a
OneighborhoodO ®f

Fix K! 1 such that the set{l, 2,...,K} Is accessible by, for everyn! 1
(meaning thatinf{i ! 0;X, (i) " K}< ! with positive probability for every
n! 1).

Let X, be the Markov chainX,, stopped at its Prst visit tc{1, 2, ... ,K}
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Goals and motivation Transient case Recurrent case Positive recurrent case

! First step: understand the behavior of tHdarkov chainuntil it reaches a
OneighborhoodO ®f

Fix K! 1 such that the set{l, 2,...,K} Is accessible by, for everyn! 1
(meaning thatinf{i ! 0;X, (i) " K}< ! with positive probability for every
n! 1).

Let X, be the Markov chainX, stopped at its Prst visit to{1, 2, ... ,K}, that is
Xn (8= X, (& AYY), whereAY™ = inffk I 1:X, (k) " K}.
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Goals and motivation Transient case Recurrent case Positive recurrent case

! First step: understand the behavior of tHdarkov chainuntil it reaches a
OneighborhoodO ®f

Fix K! 1 such that the set{l, 2,...,K} Is accessible by, for everyn! 1
(meaning thatinf{i ! 0;X, (i) " K}< ! with positive probability for every
n! 1).

Let X, be the Markov chainX, stopped at its Prst visit to{1, 2, ... ,K}, that is
Xn (8= X, (& AYY), whereAY™ = inffk I 1:X, (k) " K}.

! First step: study scaling limits of
! 11
Xn (lapt”
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Recurrent case

(A3). There existd > 0 such that

imsupa, & € * " (dx) <
nt |1 1
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A3). There existd > 0 such that

imsupa, & € * " (dx) <
nt |1 1

Theorem (Bertoin & K. O14 N Recurrent case}

Assume that(Al), (A2), (A3) hold and that the LZvy process drifts

to! ! . Then the convergence
! 11
Xn(lapt”
n (2 );t! 0 YY)t o)
N nt !

holds In distribution IND(R- , R).
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A3). There existd > 0 such that

imsupa, & € * " (dx) <
nt |1 1

Theorem (Bertoin & K. O14 N Recurrent case}

Assume that(Al), (A2), (A3) hold and that the LZvy process drifts

to! ! . Then the convergence
! 11
Xn(lapt”
n (2 );t! 0 YY)t o)
N nt !

holds In distribution IND(R- , R).

(established by Haas & Miermont O11 in the non-increasing case)
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Goals and motivation

1.2

0.8

0.6

0.4

0.2

Transient case

Recurrent case Positive recurrent case

0.2 0.4

0.6

0.8 1 1.2

Figure: lllustration of the recurrent case.
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Recurrent case

Proof of the recurrent case

! How does the process behave when reaching low values (when the time
change explodes) ?
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Recurrent case

Proof of the recurrent case

! How does the process behave when reaching low values (when the time
change explodes) ?

! One has to check that thé/larkov chainwill likely be absorbed before
reaching OhighO values (of ondewhen started from OlowO values (of orde).
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Recurrent case

ldea: use Foster-Lyapounov techniques

If X Is Irreducible, it Iis recurrent if and only If
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Recurrent case

ldea: use Foster-Lyapounov techniques

If X Is Irreducible, it Is recurrent if and only there exists a functiorf : N! R;
S.1.
forevery K! 1, theset{i! 1;f(i)" K}is Pnite
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Recurrent case

ldea: use Foster-Lyapounov techniques

If X Is Irreducible, it Is recurrent if and only there exists a functiorf : N! R;
S.1.
forevery K! 1, theset{i! 1;f(i)" K}is Pnite

and

there exists a Pnite setSy " N s.t. for every i #35, pi i f(J) " ().
it 1
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Recurrent case

ldea: use Foster-Lyapounov techniques

If X Is Irreducible, it Is recurrent if and only there exists a functiorf : N! R;
S.1.

forevery K! 1, theset{i! 1;f(i)" K}is Pnite

and

there exists a Pnite setSy " N s.t. for every i #35, pi i f(J) " ().
it 1

! FosterbLyapounov functions allow to construct nonnegative
supermartingales
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Recurrent case

ldea: use Foster-Lyapounov techniques

If X Is Irreducible, it Is recurrent if and only there exists a functiorf : N! R;
S.1.

forevery K! 1, theset{i! 1;f(i)" K}is Pnite
and

there exists a Pnite setSy " N s.t. for every i #35, pi i f(J) " ().
it 1

! FosterbLyapounov functions allow to construct nonnegative
supermartingalesand the criterion may be interpereted as a stochastic drift
condition in analogy with LyapounovOs stability criteria for ordinatyecential

equations.
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Recurrent case

ldea: use Foster-Lyapounov techniques

If X Is Irreducible, it Is recurrent if and only there exists a functiorf : N! R;
S.1.

forevery K! 1, theset{i! 1;f(i)" K}is Pnite
and

there exists a Pnite setS " N s.t. for every i #3S, Y pif()" f(i).
in1

! FosterbLyapounov functions allow to construct nonnegative
supermartingalesand the criterion may be interpereted as a stochastic drift
condition in analogy with LyapounovOs stability criteria for ordinatyecential

equations.

I In our case, we také(x) = x’ °.
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Recurrent case

ldea: use Foster-Lyapounov techniques

If X Is Irreducible, it Is recurrent if and only there exists a functiorf : N! R;
S.1.

forevery K! 1, theset{i! 1;f(i)" K}is Pnite

and

there exists a Pnite setSy " N s.t. for every i #35, pi i f(J) " ().
it 1

! FosterbLyapounov functions allow to construct nonnegative
supermartingalesand the criterion may be interpereted as a stochastic drift
condition in analogy with LyapounovOs stability criteria for ordinahyedéntial
equations.

I In our case, we také(x) = x’ °.

! In particular, if (Al), (A2), (A3) hold and! ! I " almost surely,
A < foreveryi | 1.
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Goals and motivation Transient case Recurrent case Positive recurrent case

When starting from OlowO values (of orde), these FosterDLyapounov
techniques allows to show that indeed tivdéarkov chainwill likely be absorbed
before reaching OhighO values (of onder
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Goals and motivation Transient case

Recurrent case Positive recurrent case

When starting from OlowO values (of orde), these FosterDLyapounov

techniques allows to show that indeed tivdéarkov chainwill likely be absorbed
before reaching OhighO values (of onder

FosterbLyapounov techniqgues also allow to estimate the absorption time
AV = inflk 1 1:X, (k)" K
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Goals and motivation Transient case

Recurrent case Positive recurrent case

When starting from OlowO values (of orde), these FosterDLyapounov

techniques allows to show that indeed tivdéarkov chainwill likely be absorbed
before reaching OhighO values (of onder

FosterbLyapounov techniqgues also allow to estimate the absorption time
AV = inflk 1 1:X, (k)" K

Theorem (Bertoin & K. O14 N Convergence of absorption tim})

Assume that(Al), (A2), (A3) hold and that the LZvy process drifts
to!! . Then

K
AV ey
an nt | 0

e (S)ds.
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Goals and motivation Transient case

Recurrent case Positive recurrent case

When starting from OlowO values (of orde), these FosterDLyapounov

techniques allows to show that indeed tivdéarkov chainwill likely be absorbed
before reaching OhighO values (of onder

FosterbLyapounov techniqgues also allow to estimate the absorption time
AV = inflk 1 1:X, (k)" K

Theorem (Bertoin & K. O14 N Convergence of absorption tim})

Assume that(Al), (A2), (A3) hold and that the LZvy process drifts
to!! . Then

K
AV ey
an nt | 0

e (S)ds.

(established by Haas & Miermont O11 in the non-increasing case)
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Recurrent case

|. Goals and motivation

II. Transient case

[Il. Recurrent case

V. Positive recurrent case

——>0C 0
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Positive recurrent case

Let! be the Laplace exponent df.

1 (#) = $(!i#) = %0/&#2+ b# + el 1 #XLy 1 &(dX),
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Positive recurrent case

Let! be the Laplace exponent df.

1 (#) = $(!i#) = %0/&#2+ b# + el 1 #XLy 1 &(dX),

so that # $
E o () = gt#()
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Positive recurrent case

(A4) . There existdl o > " s.t.

limsupa, & € °* #_(dx) < and $(! o) < O.
nt | 1
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A4) . There existdl o > " s.t.

limsupa, & € °* #_(dx) < and $(! o) < O.
nt | 1
| " #
(A5) . For everyn | 1, we haveE X, (1)'° = k'oapn, x < |
k! 1
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A4) . There existdl o > " s.t.

limsupa, & € °* #_(dx) < and $(! o) < O.
nt | 1
| " #
(A5) . For everyn | 1, we haveE X, (1)'° = k'oapn, x < |
k! 1

Theorem (Bertoin & K. O14 N Positive recurrent cas%)

Assume that(Al), (A2), (A4), and (A5) hold. Then the convergence

#x la,t" $
n(-nn );t! 0 n;élg)l (Y(t);t! O

holds in distribution IND(R+ , R).
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Goals and motivation Transient case Recurrent case Positive recurrent case

(A4) . There existdl o > " s.t.

limsupa, & € °* #_(dx) < and $(! o) < O.
nt | 1
| " #
(A5) . For everyn | 1, we haveE X, (1)'° = k'oapn, x < |
k! 1

Theorem (Bertoin & K. O14 N Positive recurrent cas%)

Assume that(Al), (A2), (A4), and (A5) hold. Then the convergence

#x la,t" $
n(-nn );t! 0 n;élg)l (Y(t);t! O

holds in distribution IND(R+ , R).

(established by Haas & Miermont O11 in the non-increasing case)
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Positive recurrent case

1.2

0.6

0.4~

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure: lllustration of the positive recurrent case.
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Positive recurrent case

Foster-Lyapounov is back

! First step: show that

! 1
E AE,K) # ! $

Adn nt ! 0 B ! (")l.
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Positive recurrent case

Foster-Lyapounov is back

! First step: show that
! 1
E AE,K) 7 $
I E e Olds = .
An nt | 0 b (")

(N.B. This does not necessarily hold in the recurrent but not positive recurrent
case).
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Positive recurrent case

Foster-Lyapounov is back

! First step: show that
! 1
E AE,K) 7 $

I E e ds = .
an nt ! 0 b ()]

(N.B. This does not necessarily hold in the recurrent but not positive recurrent
case).

! Second step: show that that this implies that the maximum ay
excursions starting froml, 2, ...,K} cannot be of orden.
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Positive recurrent case

Questions
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Goals and motivation Transient case Recurrent case Positive recurrent case

Question.

s it true that the “recurrent” case remains valid if (A3) is replaced with
the condition inf{i > 1; X, (1) < K} <! almost surely for every n > 17
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Goals and motivation Transient case Recurrent case Positive recurrent case

Question.j

Is it true that the OrecurrentO case remains val{d®) is replaced with
the conditioninf{i! 1;X,(i)" K} <! almost surely for everpn ! 1?

Question.j

IS it true that the Opositive recurrentO case remains valdiif is replaced
with the condition thatE[inf{i! 1;X,(1)" K}] <! for everyn! 17
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Goals and motivation Transient case Recurrent case Positive recurrent case

Question.j

Is it true that the OrecurrentO case remains val{d®) is replaced with
the conditioninf{i ! 1;X,(i) " K}< ! almost surely for everm ! 1?

Question.j

IS it true that the Opositive recurrentO case remains valdiif is replaced
with the condition thatE[inf{i ! 1;X,(i1)" K}] <! for everyn! 17

Question.j

Assume that(Al) , (A2) (A3) hold, and that there exists an integdr"
n" KsuchthatE[inf{i! 1;X,()" K} =1 .
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Goals and motivation Transient case Recurrent case Positive recurrent case

.

f—[Question.j ~

Is it true that the OrecurrentO case remains val{d®) is replaced with
the conditioninf{i ! 1;X,(i) " K}< ! almost surely for everm ! 1?

.

f—[Question.j ~

IS it true that the Opositive recurrentO case remains valdiif is replaced
with the condition thatE[inf{i ! 1;X,(i1)" K}] <! for everyn! 17

f—[Question.j ~

Assume that(Al) , (A2) (A3) hold, and that there exists an integdr"

n" KsuchthatE[inf{i! 1;X,(i)" K} ="! . Under what conditions
on the probability distributionsX1(1), X5(1), ..., Xk (1) does the Markov
chainX, have a continuous scaling limit (in which ca8es a continuously
rel3ecting boundary)? A discontinuous c dl"g scaling limit (in which cage
O Is a discontinuously rel3ecting boundary)?
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Positive recurrent case

1.2+

0.8
2.5

0.6

04 15

0.5

Figure: lllustration of the null recurrent case with di erent behavior near the boundary.
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