STAGE OLYMPIQUE DE SOPHIA-ANTIPOLIS

Du 23 au 30 août 2006
Stage olympique de Sophia Antipolis, août 2006

Avant-propos

Le stage de Sophia-Antipolis a été organisé par Animath. Son objet a été de rassembler les lauréats de diverses compétitions mathématiques et de les faire travailler sur des exercices en vue de la formation de l’équipe qui représentera la France à l’Olympiade internationale de mathématiques au Vietnam en juillet 2007.

Nous tenons à remercier le Centre International de Valbonne pour son excellent accueil et l’École normale supérieure pour son soutien logistique.
Table des matières

I Le trombinoscope

II Déroulement du stage

1. Emploi du temps ... 9
2. Colles et travaux par enveloppes (TPE) 9

III Les exercices

1. En colle ... 11
 1.1 Jeudi 24 .. 11
 1.2 Vendredi 25 .. 13
 1.3 Samedi 26 ... 14
 1.4 Lundi 28 .. 15
 1.5 Mardi 29 .. 16
 1.6 Corrigés .. 18
2. En TPE ... 44
 2.1 Les énoncés ... 44
 2.2 Les solutions des élèves 52
3. Les tests .. 62
 3.1 Le test de mi-parcours 62
 3.2 Le test final ... 62
 3.3 Corrigés .. 63
I. Le trombinoscope

Les profs

Xavier Caruso François Charles Sandrine Henri

François Lo Jacomo Rémy Oudompheng
Les élèves

<table>
<thead>
<tr>
<th>Samuel Bach</th>
<th>Margaret Bilu</th>
<th>Lionel Cassier</th>
<th>Samuel Collin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin Farran</td>
<td>Mathieu Finas</td>
<td>Juliette Fournier</td>
<td>Alexandra Fraczkiewicz</td>
</tr>
<tr>
<td>Cédric Jeancolas</td>
<td></td>
<td></td>
<td>Vincent Langlet</td>
</tr>
<tr>
<td>Jérôme Manchon</td>
<td>Nicolas Martin</td>
<td>Robin Ngì</td>
<td>Aurélien Pascal</td>
</tr>
<tr>
<td>Michel Rao</td>
<td>Benjamin Scellier</td>
<td>Stanislas Sochacki</td>
<td>Rémi Varloot</td>
</tr>
</tbody>
</table>
II. Déroulement du stage

1 Emploi du temps

Une grande partie de la journée du mercredi 23 août a été consacrée à l’accueil des élèves. Hormis le dimanche, chaque journée du stage était centrée sur un thème donné selon la répartition suivante :
- **Jeudi 24** : stratégie de base (par Sandrine Henri)
- **Vendredi 25** : géométrie I (par Rémy Oudompheng)
- **Samedi 26** : géométrie II (par François Lo Jacomo)
- **Lundi 28** : arithmétique (par Xavier Caruso)
- **Mardi 29** : combinatoire (par François Charles)

Chacune de ces journées était découpée comme suit :

- **de 9h à 12h** : cours
- **de 14h à 17h30** : colles et travaux par enveloppes (TPE).

D’autres activités étaient proposées aux élèves après 18h et également en soirée, notamment des compléments de cours et des séances d’exercices ou de révision.

La journée de dimanche était particulière. Un test en temps limité était soumis aux élèves le matin, alors que l’après-midi a marqué une pause dans le stage puisque nous sommes allés visiter le parc Marienland. Un autre test a été proposé aux élèves le matin de leur départ. On pourra trouver les énoncés et les corrigés des exercices dans le chapitre suivant.

2 Colles et travaux par enveloppes (TPE)

La plage horaire consacrée à cette discipline était découpée en trois créneaux d’une heure séparés par des pauses d’un quart d’heure. Lors d’un tel créneau, un tiers des élèves (c’est-à-dire six élèves, répartis en trois groupes) subissait une colle pendant que les autres planchaient sur les TPE.

Le principe des colles est très semblable à celui pratiqué dans les classes préparatoires : pendant une heure, un groupe d’élèves se retrouvait devant un examinateur (l’un des professeurs du stage) qui lui proposait un exercice très relié au thème de la journée. (La seule différence est que les groupes de colles comprenaient deux élèves, au lieu de trois habituellement). Nous donnons dans le chapitre suivant la liste des exercices de colles résolus.

Les TPE fonctionnaient de la façon suivante. Dans une urne étaient disposées cent enveloppes comportant chacune l’énoncé d’un exercice. Les élèves seuls, ou par groupe de deux ou trois, piochaient au hasard un enveloppe et se concentraient sur la résolution de l’exercice. Une fois la solution écrite, l’enveloppe nous était rendue et nous effectuions la correction. Pendant ce temps, l’élève ou le groupe pouvait s’attaquer à un autre exercice. Nous donnons dans le chapitre suivant la liste complète des exercices proposés, ainsi que les solutions trouvées par les élèves.
II. DÉROULEMENT DU STAGE

Ci-dessous la liste des groupes de colles :

- **Groupe 1** : Aurélien Pascal, Benjamin Scellier
- **Groupe 2** : Samuel Collin, Vincent Langlet
- **Groupe 3** : Lionel Cassier, Michel Rao
- **Groupe 4** : Juliette Fournier, Robin Ngi
- **Groupe 5** : Margaret Bilu, Stanislas Sochacki
- **Groupe 6** : Samuel Bach, Alexandra Fraczkiewicz
- **Groupe 7** : Cédric Jeancolas, Nicolas Martin
- **Groupe 8** : Mathieu Finas, Rémi Varloot
- **Groupe 9** : Benjamin Farran, Jérôme Manchon

et le tableau de répartition des horaires de passage de différents groupes (appelé le colloscope) :

<table>
<thead>
<tr>
<th></th>
<th>14h00</th>
<th>15h15</th>
<th>16h30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeudi 24</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15h15</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>16h30</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Vendredi 25</td>
<td>14h00</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>15h15</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>16h30</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Samedi 26</td>
<td>14h00</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>15h15</td>
<td>8</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>16h30</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Lundi 28</td>
<td>14h00</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>15h15</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16h30</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Mardi 29</td>
<td>14h00</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>15h15</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>16h30</td>
<td>9</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
III. Les exercices

1 En colle

1.1 Jeudi 24

Exercice 1 (Aurélien Pascal). Soient a_1, \ldots, a_{2000} des entiers entre -1000 et 1000 (inclus), tels que $\sum_{i=1}^{2000} a_i = 1$. Montrer qu’on peut trouver un sous-ensemble non vide des a_i dont la somme est nulle.

Exercice 2 (Benjamin Scellier). Soient 18 points dans le plan, 6 rouges, 6 verts, 6 bleus, trois jamais alignés. Soit A la somme des aires des triangles formés par ces points, B la somme des triangles monochromes. Montrer que $4B \leq A$.

Exercice 3 (Robin Ngï). Quels rectangles $m \times n$ peut-on paver par $\text{\ding{77}}$ et $\text{\ding{78}}$?

Exercice 4 (Juliette Fournier). Soient a_1, \ldots, a_n tels que $\sum_{j=i}^{i+6} a_j > 0$, $\sum_{j=i}^{i+11} a_j < 0$ pour tout i. Quelle est la valeur maximale de n ?

Exercice 5 (Nicolas Martin). Un carré 50×50 est colorié en rouge, jaune, vert et bleu. Montrer qu’il existe un carré ayant des carrés de la même couleur en-dessus, en-dessous, à gauche et à droite de lui (pas nécessairement adjacents).

Exercice 6 (Cédric Jeancolas). On a n fermes et n puits dans le plan. Montrer que l’on peut attribuer un puits à chaque ferme de telle sorte que les segments reliant une ferme à son puits soient disjoints.

Exercice 7 (Cédric Jeancolas, Benjamin Scellier). Sur un échiquier 2006×1, deux joueurs écrivent successivement la lettre S et O dans une case de leur choix encore libre. Le premier qui écrit SOS gagne la partie. Montrer que le joueur qui ne commence pas a une stratégie gagnante.

Exercice 8 (Lionel Cassier). On colorie le plan en trois couleurs. Montrer qu’il existe deux points d’une même couleur à distance 1.

Exercice 10 (Lionel Cassier). Soient a_1, \ldots, a_{10} des entiers. Montrer qu’il existe des $\varepsilon_i \in \{0, 1, -1\}$ tels que 1001 divise $\varepsilon_1 a_1 + \cdots + \varepsilon_{10} a_{10}$.

Exercice 11 (Samuel Bach, Benjamin Farran). Soit $f : \mathbb{Z} \to \{0, 1\}$ périodique de période 1987 et telle que : $\sum_{k=1}^{1987} f(k) = 45$.

Montrer qu’il existe un entier t tel que pour tout n vérifiant $f(n) = 1$, on ait $f(n + t) = 0$.

11
Exercice 12 (Samuel Bach, Michel Rao). Pour quelles valeurs de n peut-on découper un carré en n carrés ?

Exercice 13 (Alexandra Fraczkiewicz, Michel Rao). On place 2006 corbeaux sur 2006 arbres. À chaque minute, deux corbeaux changent d’arbre pour aller sur un arbre voisin. Peut-on au bout d’un moment avoir tous les corbeaux dans le même arbre ?

Exercice 14 (Benjamin Farran). La suite a_n vérifie : a_0 n’est pas un multiple de 5, et a_{n+1} est la somme de a_n et du dernier chiffre de a_n. Montrer que la suite contient une infinité de puissances de 2.

Exercice 15 (Vincent Langlet). Démontrer que parmi les stagiaires d’un stage Animath, il y en a au moins deux qui connaissent exactement le même nombre de stagiaires (on suppose que la relation « se connaître » est réciproque : si A connaît B, B connaît A).

Exercice 16 (Vincent Langlet). Montrer que :

$$1^3 + 2^3 + 3^3 + \cdots + n^3 = (1 + 2 + 3 + \cdots + n)^2.$$

Exercice 17 (Samuel Collin). Existe-t-il un entier dont le cube exprimé en système décimal se termine 2006 fois le chiffre 1 ?

Exercice 18 (Margaret Bilu). Sur une île déserte vivent 34 caméléons. Au départ, 7 sont jaunes, 10 sont rouges et 17 sont verts. Lorsque deux caméléons de couleurs différentes se rencontrent, ils prennent tous deux la troisième couleur. Lorsque se rencontrent deux caméléons d’une même couleur, rien ne se passe. Au bout d’un an, tous les caméléons sont devenus de la même couleur. Laquelle ?

Exercice 19 (Margaret Bilu). Montrer que pour tout $n \geq 1$:

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} \leq 2 - \frac{1}{n} < 2.$$

Exercice 20 (Stanislas Sochacki). Soient n points d’un plan, $n \geq 5$. Montrer que parmi tous les triangles ayant leurs sommets parmi ces points, 70% au plus ont tous leurs angles aigus.

Exercice 21 (Mathieu Finas). Montrer que pour tout n, on peut trouver un multiple de 3^n qui ne s’écrit, en système décimal, qu’avec des 1.

Exercice 22 (Rémi Varloot). On dispose d’une pile de 1001 jetons. On utilise la règle suivante : au premier coup, on choisit un jeton, que l’on élimine du jeu, et on sépare la pile en deux piles arbitraires. Puis à chaque coup, on choisit un jeton que l’on élimine, et on sépare une pile (pas forcément celle dont on a extrait le jeton) en deux piles arbitraires. Peut-on se débrouiller pour qu’à un moment donné, on n’ait que des piles de trois jetons ? (Attention : si une pile ne comporte qu’un jeton et qu’on retire ce jeton, on considère qu’on a désormais une pile de zéro jeton, et non que la pile a disparu).

Exercice 23 (Rémi Varloot). Montrer que le produit de n entiers positifs consécutifs est divisible par $n!$ ($n!$ étant le produit $1 \times 2 \times \cdots \times n$).
1.2 Vendredi 25

Exercice 25 (Alexandra Fraczkiewicz). Soit ABC un triangle acutangle. Soit A_1 (resp. C_1) le symétrique de A (resp. C) par rapport à (BC) (resp. (AB)). Montrer que si A_1, B et C_1 sont alignés et si $C_1B = 2A_1B$, alors l’angle C_1A_1B est droit.

Exercice 27 (Benjamin Farran). Soient ABC un triangle et D un point de $[AB]$. Le cercle circonscrit à BCD recoupe (AC) en M et le cercle circonscrit à ACD recoupe (BC) en N. Soit O le centre du cercle circonscrit à CMN. Montrer que (OD) est perpendiculaire à (AB).

Exercice 29 (Alexandra Fraczkiewicz, Michel Rao). Montrer qu’il est possible de relier deux points très éloignés par une règle relativement courte et un compas ayant une ouverture plutôt petite.

Exercice 30 (Samuel Collin). Soient C et C' deux cercles sécants en A et B. Soit O le centre de C. Soit C un point de l’arc \widehat{AB} dans C. Soient D et E les intersections respectives de (BC) et (AC) avec C'. Montrer que (OC) est perpendiculaire à (DE).

Exercice 32 (Mathieu Finas, Stanislas Sochacki). Soit un quadrilatère $ABCD$ inscrit dans un cercle de centre O. Soit P l’intersection des diagonales. Les cercles circonscrits à ABP et CDP se coupent en Q. Montrer que (OQ) est perpendiculaire à (PQ).

Exercice 33 (Samuel Collin). Soit ABC un triangle. Si $M \in [BC]$, on note B' et C' ses projetés respectifs sur (AB) et (AC). Quelle est la position de M qui minimise $B'C'$?

Exercice 36 (Margaret Bilu). Soit ABC un triangle, avec $AB > BC$. On note M et L les points de (AC) tels que (BM) soit une médiane du triangle et (BL) une bissectrice. La parallèle à (AB) (resp. (BC)) passant par M (resp. L) coupe (BL) (resp. (BM)) en D (resp. E). Montrer que (ED) est perpendiculaire à (BL).

Exercice 37 (Nicolas Martin). Soit ABC un triangle équilatéral, M un point intérieur au triangle, D, E, F les projections orthogonales de M sur (BC), (CA), (AB) respectivement. Déterminer le lieu des points M pour lesquels l’angle \overline{DEF} est droit.

Exercice 38 (Juliette Fournier, Cédric Jeancolas). Soit $ABCD$ un parallélogramme, E le milieu de $[AD]$, F la projection orthogonale de B sur (CE). Montrer que le triangle AFB est isocèle.

Exercice 39 (Cédric Jeancolas). Sur le côté $[DC]$ d’un parallélogramme $ABCD$, on trace extérieurement un triangle équilatéral DCE. Soit X un point quelconque. Montrer que $XA + XB + AD \geqXE$.

Exercice 40 (Aurélien Pascal). Soient H_A, H_B, H_C les pieds des hauteurs d’un triangle ABC, H son orthocentre, P l’orthocentre de AH_BH_C et Q celui de CH_AH_B. Montrer que $PQ = H_CH_A$.

Exercice 41 (Robin Ngi, Benjamin Scellier). Sur les côtés $[AC]$ et $[BC]$ d’un triangle ABC, on place alternativement D, E tels que $BC \geq AB$, \overline{ABD}, \overline{DBC} et $BE = AB$. Montrer que \overline{DE} est perpendiculaire à (BO), O étant le centre du cercle circonscrit à ABC.

Exercice 42 (Benjamin Scellier). Soit $ABCD$ un quadrilatère, M et N les milieux de $[AD]$ et $[BC]$. Montrer que si $MN = \frac{AB + CD}{2}$, alors $ABCD$ est un trapèze.

Exercice 43 (Benjamin Scellier). Dans un triangle ABC, la hauteur, la bissectrice et la médiane issues de A coupent l’angle A en quatre angles égaux. Calculer les angles du triangle ABC.

1.3 **Samedi 26**

Exercice 44 (Rémi Varloot). On a plié une feuille rectangulaire $a \times b$ ($a \leq b$) comme le montre la figure ci-dessous :

![Diagramme](image)

Quelle est l’aire de la surface grisée ?

Exercice 45 (Stanislas Sochacki). Soient O (resp. I) le centre du cercle circonscrit (resp. inscrit) d’un triangle, R (resp. r) son rayon. Montrer que $OI^2 = R^2 - 2Rr$.

Exercice 46 (Mathieu Finas). Soit $ABCD$ un quadrilatère. Soient W, X, Y, Z quatre points alternativement d’un côté et de l’autre des côtés, tels que ABW, BCX, CDY et DAZ soient équilatéraux. Montrer que $WXYZ$ est un parallélogramme.

Exercice 47 (Margaret Bilu). Soit ABC un triangle. Soit D le point de $[AC]$ tel que $AD = AB$ et soit E le point de $[AD]$ tel que $BE = EC$. Soit F le milieu de l’arc \hat{BC} du cercle circonscrit à ABC. Montrer que B, D, E et F sont cocycliques.

Exercice 48 (Mathieu Finas). Soit R (resp. r) le rayon du cercle circonscrit (resp. inscrit) à un triangle. Montrer que $R \geq 2r$.
Exercice 49 (Samuel Collin). Soit ABC un triangle. Soient A', B', C' les points de tangence des cercles exinscrits. Montrer que $(AA'), (BB')$ et (CC') sont concourantes.

Exercice 50 (Robin Ngi). Soit ABC un triangle. Soient D et E deux points de $[AB]$ tels que $\frac{AD}{DB} = \frac{AE}{EB} = \left(\frac{AC}{CB}\right)^2$. Montrer que $ACD = BCE$.

Exercice 51 (Juliette Fournier, Nicolas Martin). Soient $ABCD$ un parallélogramme non aplati, M le milieu de $[BC]$ et N le milieu de $[CD]$. Montrer que (AM) et (AN) ne peuvent pas couper \hat{A} en trois angles égaux.

Exercice 53 (Michel Rao). Soient A, B et C des points non alignés. Montrer qu’il existe un unique point X tel que $XA^2 + XB^2 + AB^2 = XB^2 + XC^2 + BC^2 = XC^2 + XA^2 + CA^2$.

Exercice 56 (Benjamin Farran). Montrer que toute droite qui coupe un triangle en deux polygones de même périmètre et de même aire passe par le centre du cercle inscrit.

Exercice 57 (Jérôme Manchon). Soit ABC un triangle rectangle en B, et soit D le point de $[AC]$ tel que $CD = AB$. Montrer que dans le triangle ABD, la médiane issue de B, la bissectrice de l’angle A et la hauteur issue de D sont concourantes.

Exercice 58 (Lionel Cassier). Soit ABC un triangle. Si $M \in [BC]$, on note B' et C' ses projetés respectifs sur (AB) et (AC). Quelle est la position de M qui minimise $B'C'$?

1.4 Lundi 28

Exercice 59 (Lionel Cassier, Juliette Fournier). Trouver tous les entiers naturels x, y et z vérifiant $3^x + 4^y = 5^z$.

Exercice 60 (Robin Ngi). Trouver tous les entiers n pour lesquels pour tout a et b vérifiant ab premier avec n, on ait l’équivalence entre $a \equiv b \pmod{n}$ et $ab \equiv 1 \pmod{n}$.

Exercice 61 (Nicolas Martin). Existe-t-il un polynôme P à coefficients entiers tel que $P(7) = 11$ et $P(11) = 13$?

Exercice 62 (Cédric Jeancolas). Un ensemble S d’entiers naturels est tel que parmi 2006 nombres consécutifs, l’un d’entre eux est dans S. Montrer qu’il existe a et b dans S distincts tels que a divise b.

Exercice 63 (Michel Rao). Parmi les nombres 101, 10101, 1010101, . . ., lesquels sont premiers ?
Exercice 64 (Alexandra Fraczkewicz). Montrer qu’un nombre écrit $abab$ en base 10 (où a et b sont des chiffres) ne peut être un cube parfait. Quelle est le plus petit b telle qu’il existe un cube écrit $xyxy$ en base b ?

Exercice 65 (Benjamin Farran). Soit la suite (a_n) définie par $a_1 = 2004^{2005^{2006}}$ et $a_{n+1} = \frac{a_n}{2}$ si a_n est pair et $a_{n+1} = a_n + 7$ sinon. Quel est le plus petit terme de la suite (a_n) ?

Exercice 66 (Jérôme Manchon). Soient m et n deux entiers premiers entre eux. Calculer le PGCD de $5^m + 7^m$ et $5^n + 7^n$.

Exercice 67 (Samuel Bach). Soit ABC un triangle à côtés entiers vérifiant $\hat{A} = 2\hat{B}$. Quel est son périmètre minimal possible ?

Exercice 68 (Samuel Collin). Soient trois entiers a, b, c tels que $a^2 + b^2 + c^2$ soit divisible par 6 et $ab + bc + ca$ soit divisible par 3. Montrer que $a^3 + b^3 + c^3$ est divisible par 6.

Exercice 69 (Rémi Varloot). Pour quelles valeurs de n, le nombre $P_n = 36^n + 24^n - 7^n - 5^n$ est-il divisible par 899 ?

Exercice 70 (Mathieu Finas). On considère 20 entiers deux à deux distincts choisis dans $\{1, 2, \ldots, 69\}$. Montrer que parmi leurs différences deux à deux, on peut trouver quatre nombres égaux.

Exercice 72 (Stanislas Sochacki). Les entiers a et b sont premiers entre eux, avec $a > b$. Comparer les nombres :

\[m = \left[\frac{a}{b} \right] + \left[\frac{2a}{b} \right] + \cdots + \left[\frac{(b-1)a}{b} \right] \]

et :

\[n = \left[\frac{b}{a} \right] + \left[\frac{2b}{a} \right] + \cdots + \left[\frac{(a-1)b}{a} \right] \]

où $[x]$ désigne la partie entière du réel x.

Exercice 73 (Margaret Bilu). Trouver tous les couples d’entiers a et b tels que $\text{PPCM}(a, a + 5) = \text{PPCM}(b, b + 1)$.

1.5 Mardi 29

Exercice 74 (Michel Rao). Dans une classe, chaque garçon est ami avec au moins une fille. Montrer qu’il existe un groupe constitué d’au moins la moitié des élèves tel que chaque garçon du groupe est ami avec un nombre impair de filles du groupe.

Exercice 75 (Samuel Bach). Pour quelles valeurs de n peut-on placer n dames sur un échiquier torique sans que deux d’entre elles ne soient en prise ?

Exercice 76 (Jérôme Manchon). Soit $f : \mathbb{N} \rightarrow \mathbb{N}$ une fonction telle que $f(n+1) > f(f(n))$. Montrer que f est l’identité.

Exercice 77 (Lionel Cassier). Un ensemble de n personnes fait la queue pour aller dans le train. La première s’assoit à un place au hasard. Ensuite, les gens cherchent à s’assoir à leur place, et s’assoient
au hasard si la place est déjà prise. Quelle est la probabilité que la dernière personne puisse s’asseoir à sa place ?

Exercice 78 (Alexandra Fraczkiewicz). On dispose $2n$ points sur un cercle. De combien de façons peut-on joindre les points deux à deux sans que les diagonales ainsi formées ne s’intersectent ?

Exercice 79 (Benjamin Farran). On considère un langage (c’est-à-dire un ensemble de mots) sur un alphabet à deux lettres A et B. Le langage ne compte aucun mot d’une lettre. Les seuls mots du langage qui ont deux lettres sont AB et BB. Pour construire des mots du langage, on peut remplacer B par un mot du langage. Combien le langage contient-il de mots de n lettres ?

Exercice 80 (Mathieu Finas). Montrer que pour tous réels x et y strictement positifs, vérifiant $x + y = 1$, on a $(1 - x^n)^n + (1 - y^n)^m > 1$. On pourra imaginer qu’on noircit chaque case d’un tableau de taille $m \times n$ avec probabilité x.

Exercice 81 (Margaret Bilu, Samuel Collin). Soit $A = \{1, 2, 3, 4, 5\}$. Dénombrer les fonctions $f : \mathcal{P}(A) \to A$ telles que :
- $\forall B \subseteq A$, $f(B) \in B$
- $\forall B, C \subseteq A$, $f(B \cup C) = f(B) \cup f(C)$
On note $\mathcal{P}(A)$ l’ensemble des parties de A.

Exercice 82 (Rémi Varloot). Soit A un ensemble à n éléments. On choisit certaines parties à 3 éléments, notées A_1, A_2, \ldots, A_k, telles que pour tous $i \neq j$, A_i et A_j ont au plus un élément en commun. Montrer qu’on peut trouver une partie de A contenant au moins $\sqrt{2n}$ éléments et ne contenant aucun des A_i.

Exercice 83 (Stanislas Sochacki). On considère l’équation fonctionnelle $f(m + f(n)) = n + f(m + 4)$. Montrer qu’il existe une unique solution $f : \mathbb{N}^* \to \mathbb{N}^*$ et déterminer la valeur de $f(1) + f(2) + \cdots + f(59)$.

Exercice 84 (Vincent Langlet). Soit f une fonction de \mathbb{N}^* dans \mathbb{N}^* vérifiant $m n + f(n) = f(m) + f(n) - 1$ pour tous entiers m et n. On suppose que $f(1980 \times 2002) = 11$ et qu’il existe un nombre fini de n tels que $f(n) = 1$.
Calculer $f(16!)$.

Exercice 85 (Nicolas Martin). On compte sans utiliser le chiffre 1. Quel est le numéro du millième élément ?

Exercice 86 (Aurélien Pascal). Montrer que parmi sept entiers positifs distincts inférieurs ou égaux à 126, on peut en trouver deux, x et y, tels que $1 < \frac{x}{2} \leq 2$.

Exercice 87 (Juliette Fournier). Soit $n \geq 3$ un entier. Prouver que :

$$\binom{n}{2} + 3 \binom{n + 1}{4} = \binom{n}{2} + 3 \binom{n + 1}{4}.$$

Donner de cette relation une interprétation purement combinatoire en se servant de n points sur un cercle de centre O.

Exercice 88 (Cédric Jeancolas). Combien de nombres peut-on former avec des chiffres choisis dans $\{2, 3, 4, 5\}$, qui ne contiennent pas deux fois le même chiffre ?
Exercice 89 (Robin Ngi). n droites du plan sont telles qu’il n’y a pas deux parallèles ni trois droites concourantes. En combien de régions ces droites partagent-elles le plan ? Combien de ces régions sont bornées ?

Exercice 90 (Benjamin Scellier). Prouver qu’il n’existe pas de fonction $f : \mathbb{Z} \rightarrow \mathbb{Z}$ telle que, pour tous entiers x et y, on ait :

$$f(x + f(y)) = f(x) - y.$$

Exercice 91 (Benjamin Scellier). On considère cinq points d’un plan tels que trois d’entre eux ne soient jamais alignés, quatre d’entre eux jamais cocycliques. Montrer qu’on peut trouver un cercle passant par trois d’entre eux tel que parmi les deux autres, l’un soit intérieur au cercle et l’autre extérieur.

1.6 Corrigés

Solution de l’exercice 1. Quitte à les réordonner, on peut supposer les a_i tels que $a_1, a_1 + a_2, \ldots, a_1 + \cdots + a_{2000}$ sont tous entre -999 et 1000. Si 0 est dedans, c’est bon, sinon on applique le principe des tiroirs.

Solution de l’exercice 3. On doit avoir 8 qui divise mn et $m, n > 1$. En effet, 4 divise nécessairement mn ; donc par exemple m est pair. On colorie le rectangle en bandes horizontales noires et blanches. Une pièce recouvre un nombre impair de cases blanches, qui est en nombre pair ($\frac{mn}{2}$). On a donc un nombre pair de pièces.

Le rectangle 4×2 est évidemment pavable et il en est de même du rectangle 8×3 comme le montre le dessin suivant :

![Diagramme du rectangle 8x3](image)

Solution de l’exercice 4. Montrons que la valeur cherchée est 16. Si $n \geq 17$, on écrit :

$$a_1 + \cdots + a_{11} < 0$$
$$a_2 + \cdots + a_{12} < 0$$
$$\vdots$$
$$a_7 + \cdots + a_{17} < 0.$$

et en sommant les colonnes, on obtient la contradiction. Pour $n = 16$, les nombres :

5, 5, −13, 5, 5, −13, 5, 5, −13, 5, 5, −13, 5, 5

répondent au problème.
Solution de l’exercice 5. Il y a 2500 cases sur le carré, d’où d’après le principe des tiroirs, au moins 625 carrés ont la même couleur, par exemple rouge. Parmi eux, au moins 50 sont les plus hauts de leur colonne, au moins 50 sont les plus bas, au moins 50 sont les plus à gauche de leur ligne et au moins 50 sont les plus à droite. Cela laisse au moins 425 carrés qui conviennent.

Solution de l’exercice 6. Une configuration dont la somme des longueurs des segments est minimale convient.

Solution de l’exercice 7. On dit qu’une case est injouable si jouer dans celle-ci permet à l’adversaire de gagner au tour suivant. Il est facile de voir que les cases injouables sont adjacentes deux par deux et sont entourées par des S. La stratégie du second joueur est alors la suivante : il commence par créer deux cases injouables (s’il joue le premier S au milieu, le premier ne peut pas lui interdire les deux directions). Ensuite, comme les cases injouables vont deux par deux, elles sont en nombre pair et il reste toujours au moins une lorsque c’est au second joueur de jouer. Il joue alors n’importe quelle lettre dans une telle case.

Solution de l’exercice 8. On part de deux points A et B distants de $\sqrt{3}$ et on suppose qu’ils ont des couleurs différentes. On construit les points C et D de telle sorte que CDA et CDB soient équilatéraux de côté 1 comme le montre la figure suivante :

![Diagramme](A B C D)

Comme A et B sont de couleur différente, soit l’un des deux a la couleur de C ou D, soit C et D ont la même couleur. Dans tous les cas on a trouvé deux points à distance 1 de même couleur. On peut donc supposer que deux points quelconques distants de $\sqrt{3}$ ont la même couleur. Ainsi, si O est un point fixé du plan, le cercle de centre O et de rayon $\sqrt{3}$ est unicolore et il est clair que l’on peut trouver deux points à distance 1 sur ce cercle.

Pour trouver un autre triangle unicolore, on procède comme suit. On compte de deux façons différentes les paires de segments adjacents de couleur différente. Il y en a deux dans chaque triangle bicolore. On peut aussi les trier par leur sommet commun : à chaque sommet, il y a x arêtes rouges et $5 - x$ arêtes bleues. Il y a donc $x(5 - x) \leq 6$ couples d’arêtes de couleur différentes. En tout, il y en a donc au plus 36, ce qui fait 18 triangles. On conclut en remarquant qu’il y a 20 triangles en tout.

Solution de l’exercice 10. Considérons l’ensemble des combinaisons de la forme $\sum_{i} \eta_{i}a_{i}$ pour $\eta_{i} \in \{0, 1\}$. Ceci fournit 1024 valeurs (deux choix pour chacun des η_{i}), dont au moins deux sont congrues modulo 1001 d’après le principe des tiroirs. La différence de ces deux valeurs est un multiple de 1001 et s’écrit comme le demande l’énoncé.

Solution de l’exercice 11. Par périodicité, f détermine une application de $\mathbb{Z}/1987\mathbb{Z} \rightarrow \{0, 1\}$ qui est presque constante égale à 0 sauf en 45 valeurs où elle vaut 1. Chaque couple (n, m) d’éléments de $\mathbb{Z}/1987\mathbb{Z}$ pour lesquels $f(n) = f(m) = 1$ interdit une valeur pour l’entier t recherché, à savoir $n - m \pmod{1987}$. Cela fait $45 \times 44 = 1980$ valeurs interdites, il reste donc encore au moins 7 choix possibles pour t.

1. EN COLLE

19
Solution de l’exercice 12. Tout d’abord, ce n’est pas possible pour \(n = 2 \) ou 3. En effet, dans ce cas, par le principe des tiroirs, un des carrés devrait contenir deux coins du grand carré et donc recouvrir à lui tout seul ce grand carré, ne laissant plus de place à ses frères.

Pour \(n = 1 \), c’est bien entendu possible. Aussi, pour tout entier \(k \geq 1 \), les deux configurations suivantes montrent que c’est possible pour les entiers de la forme \(n = 2k + 2 \) et \(n = 2k + 5 \):

\[
\begin{array}{c}
\text{ où il y a } k + 1 \text{ carrés sur la ligne du bas et également } k + 1 \text{ sur la colonne de gauche.}
\end{array}
\]

Il ne reste plus que \(n = 5 \). Dans ce cas, on est contraint de mettre un carré dans chaque coin, et on voit qu’il est impossible que la forme restante soit encore un carré. Le pavage est donc impossible dans ce cas.

Solution de l’exercice 13. On imagine que les arbres sont coloriés alternativement en noir et en blanc. Ainsi dès qu’un corbeau se déplace, la couleur de l’arbre qui l’accueille est modifiée mais la parité du nombre de corbeaux sur des arbres noirs (resp. blancs) ne change pas. Au départ, il y avait 1003 corbeaux sur des arbres blancs et 1003 sur des arbres noirs, donc il y a toujours un nombre impair de corbeaux sur des arbres noirs (resp. blancs). On ne peut donc pas avoir tous les corbeaux sur le même arbre.

Solution de l’exercice 14. Par une étude exhaustive, on montre qu’à partir d’un certain rang, les \(a_n \) se terminent périodiquement par 2, 4, 8, 6, ... Ainsi à partir d’un certain rang, \(a_{n+4} = a_n + 2 + 4 + 8 + 6 = a_n + 20 \). Une suite extraite de \(a_n \) est donc arithmétique de raison 20. Les puissances de 2 modulo 20 sont 2 puis cycliquement 4, 8, 16 et 12. Mais par ce qui précède, les termes sont successivement congrus modulo 20 soit à 2, 4, 8 et 16 (premier cas), soit à 12, 14, 18 et 6 (second cas). Dans le premier cas, il y a à partir d’un moment par exemple tous les entiers congrus à 4 modulo 20 et donc une infinité de puissances de 2. Dans le second cas, on remplace 4 par 12 dans l’argument.

Solution de l’exercice 15. Soit \(n \) le nombre de stagiaires. Chaque stagiaire connaît entre 0 et \(n - 1 \) autres stagiaires. Mais il n’est pas possible qu’un stagiaire \(A \) connaisse 0 stagiaire si un autre \(B \) connaît \(n - 1 \) stagiaires, car \(B \) connaîtrait \(A \) ce qui impliquerait que \(A \) connaîtrait au moins un stagiaire, \(B \). Le nombre de stagiaires connus varie donc soit de 1 à \(n - 1 \), soit de 0 à \(n - 2 \), il ne peut prendre que \(n - 1 \) valeurs alors qu’il y a \(n \) stagiaires : d’après le principe des tiroirs, pour au moins deux stagiaires il prend la même valeur.

Solution de l’exercice 16. Par récurrence : pour \(n = 1 \), il est clair que \(1^3 = 1 \). Le terme \(1 + 2 + \cdots + n = \frac{n(n+1)}{2} \), donc le membre de droite vaut \(\left(\frac{n(n+1)}{2} \right)^2 \). Entre le rang \(n \) et le rang \(n + 1 \), le membre de droite augmente de :

\[
\left(\frac{(n+1)(n+2)}{2} \right)^2 - \left(\frac{n(n+1)}{2} \right)^2
\]

et le membre de gauche augmente de \((n+1)^3 \). Il suffit de vérifier que ces deux termes sont égaux pour prouver que si la relation est vraie au rang \(n \), elle l’est encore au rang \(n + 1 \), donc par récurrence elle est vraie pour tout \(n \).

Solution de l’exercice 17. Oui, par récurrence : \(1^3 = 1 \) se termine par une fois le chiffre 1. Montrons que s’il existe un entier \(a_n \) de \(n \) chiffres dont le cube se termine par \(n \) fois le chiffre 1, on peut en déduire un
entier a_{n+1} de $n+1$ chiffres dont le cube se termine par $n+1$ fois le chiffre 1. Appelons b_n le $(n+1)$-ième chiffre à partir de la droite de a_3^n, tous les chiffres suivants étant des 1. Posons $a_{n+1} = a_n + c_n 10^n$, c_n étant en fait le premier chiffre de a_{n+1} :

$$a_{n+1}^3 = a_n^3 + 3a_n^2c_n10^n + 3a_n c_n^210^{2n} + c_n^310^{3n}.$$

Or le dernier chiffre de a_n est 1 (sinon son cube ne se terminerait pas par 1), le $(n+1)$-ième chiffre de a_{n+1}^3 est le même que le dernier chiffre de $b_n + 3c_n$. Quel que soit b_n, il existe un c_n tel que $b_n + 3c_n$ se termine par 1 car $3c_n$ prend toutes les valeurs modulo 10. Il est ainsi possible, par récurrence, de construire un nombre a_n de n chiffres dont le cube se termine par n chiffres 1, pour tout n.

Solution de l’exercice 18. Vert. En effet, la différence du nombre de caméléons jaunes et du nombre de caméléons rouges est toujours multiple de 3 : si un caméléon jaune rencontre un vert, cette différence diminue de 3, car il y a un jaune de moins et deux rouges de plus ; si un rouge rencontre un vert, elle augmente de 3. Par contre, si un jaune rencontre un rouge, la différence reste inchangée, car le nombre de jaunes et le nombre de rouges diminuent chacun d’un. Et si deux caméléons de même couleur se rencontrent, la différence reste également inchangée. Comme, au départ, la différence $7 - 10 = -3$ est un multiple de 3, elle sera toujours un multiple de 3 : on ne peut pas en dire autant de la différence du nombre de verts et du nombre de rouges, car celle-ci, au départ, n’est pas un multiple de 3 : $17 - 10 = 7$ est de la forme $3k + 1$, donc elle restera toujours de cette forme. Tout comme la différence du nombre de verts et du nombre de jaunes. S’il y avait 34 jaunes et 0 rouge, la différence du nombre de jaunes et du nombre de rouges ne serait pas multiple de 3 ; de même s’il y avait 34 rouges et 0 jaune. Donc la couleur de tous les caméléons après un an ne peut être que le vert. Pour prouver qu’il est possible que tous les caméléons deviennent verts, il faut trouver une suite de rencontres qui mène à cette situation : si les 7 jaunes rencontrent 7 des rouges, il restera 3 rouges et 31 verts. Un des verts rencontre un rouge, il restera 2 jaunes, 2 rouges et 30 verts. Puis les deux rouges rencontrent les deux jaunes.

Solution de l’exercice 19. Simple récurrence : le résultat est vrai pour $n = 1$. Pour passer du rang n au rang $n + 1$, on ajoute à gauche $\frac{1}{(n+1)^2}$ et à droite :

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} > \frac{1}{(n+1)^2}.$$

En réalité, il s’agit de démontrer que la somme est toujours inférieure à 2, mais pour ce faire, le moyen le plus efficace est d’introduire le terme $2 - \frac{1}{n}$ qui, lui, est toujours inférieur à 2 et, par récurrence, toujours supérieur à la somme : son seul rôle est de faciliter la démonstration.

Solution de l’exercice 20. C’est l’un des plus jolis problèmes d’Olympiade des années 1970, époque où ils étaient plus faciles qu’actuellement. On appelle « triangle acutangle »un triangle ayant tous ses angles aigus.

Pour $n = 4$, il est clair que l’un au moins des triangles de sommets dans $\{A, B, C, D\}$ n’a pas tous ses angles aigus. Dans le cas où D est intérieur au triangle ABC, la somme des angles ADB, BDC et CDA vaut 360°, l’un d’eux au moins vaut au moins 120°, donc est obtus. De même si A est intérieur à BCD, ou B intérieur à ACD ou C intérieur à ABD. Et si $ABCD$ est un quadrilatère convexe, les quatre angles ABC, BCD, CDA, DAB ont pour somme 360°, l’un d’eux au moins vaut donc au moins 90°.

Supposons que pour un n donné, la proportion de triangles acutangles soit obligatoirement inférieure ou égale à un réel p_n. Ajoutons un point. Ces $n + 1$ points contiennent $n + 1$ sous-ensembles de n points, et tout triangle ayant ses sommets parmi les $n + 1$ points a ses sommets parmi $n - 2$ de ces sous-ensembles de n points. Chaque sous-ensemble de n points contient $\frac{n(n-1)(n-2)}{6}$ triangles, dont au plus $p_n \cdot \frac{n(n-1)(n-2)}{6}$ triangles acutangles. En additionnant, on prouve qu’il y a au plus $p_n (n+1) \cdot \frac{n(n-1)(n-2)}{6}$ triangles acutangles comptés chacun $n - 2$ fois, ayant leurs sommets parmi les $n + 1$ points, soit au plus
triangles acutangles distincts. On en déduit que la proportion de triangles acutangles ayant leurs sommets parmi les \(n + 1 \) points est majorée elle aussi par \(p_n \).

Notamment, au plus \(\frac{3}{4} \) des triangles ayant leurs sommets parmi \(5 \) points sont acutangles. Or il y a \(10 \) triangles ayant leurs sommets parmi \(5 \) points, et \(10 \times \frac{3}{4} = 7.5 \) : au maximum sept des dix triangles ayant leurs sommets parmi \(5 \) points sont acutangles, soit \(70\% \). Comme, pour \(n > 5 \), la proportion ne peut que décroître, elle est toujours inférieure ou égale à \(70\% \).

Ce même raisonnement (calcul de parties entières) appliqué au-delà de \(5 \) permettrait de réduire encore un peu la proportion, mais avec pour limite \(\frac{2}{3} \).

Solution de l’exercice 21. Par récurrence sur \(n \) : \(111 \) est divisible par \(3 \), donc le résultat est vrai pour \(n = 1 \). Supposons-le vrai pour \(n \) : soit \(k \) le nombre de 1 du nombre \(a_n \), ainsi défini, divisible par \(3^n \). Le nombre constitué de \(3k \) chiffres 1 est le produit de \(a_n \) par \(10^{2k} + 10^k + 1 \). Or \(10^{2k} + 10^k + 1 \) est divisible par \(3 \) (et pas par 9). Donc ce nombre est divisible par \(3^{n+1} \), ce qui achève la démonstration. On peut même en déduire plus précisément que l’entier constitué de \(3^n \) chiffres 1 est toujours divisible par \(3^n \) (et pas par \(3^{n+1} \)).

Solution de l’exercice 22. À chaque coup, on ajoute une pile, et on supprime un jeton : la somme du nombre de piles et du nombre de jetons est donc invariante, égale à 1002. Or si l’on a \(n \) piles de 3 jetons, cela fait \(3n \) jetons et l’invariant vaut \(4n \), qui ne peut pas être égal à 1002, d’où l’impossibilité.

Solution de l’exercice 23. Cela se prouve par récurrence sur \(n \) : il est clair que c’est vrai pour \(n = 1 \), car 1! = 1. Supposons que tout produit de \(n \) entiers consécutifs soit divisible par \(n! \), et prouvons que le résultat est encore vrai au rang \(n + 1 \).

Pour cette démonstration, il faut imbriquer une nouvelle récurrence : soit \(k \) le plus petit des \(n + 1 \) entiers consécutifs. Pour \(k = 1 \), il est clair que \(1 \times 2 \times \cdots \times (n + 1) \) est divisible par \((n + 1)! \), puisqu’il est égal à \((n + 1)! \). Supposons donc que \(a_k = k \times (k + 1) \times \cdots \times (k + n) \) soit divisible par \((n + 1)! \), et prouvons qu’il en va de même au rang \(k + 1 \). On a :

\[
a_{k+1} - a_k = [(k + 1) \times (k + 2) \times \cdots \times (k + n)] \times (n + 1)
\]

et d’après l’hypothèse de la première récurrence, le produit entre crochets est divisible par \(n! \). Ainsi \(a_{k+1} - a_k \) est divisible par \((n + 1)! \), et si \(a_k \) est divisible par \((n + 1)! \), il en va de même pour \(a_{k+1} \), ce qui permet de conclure cette seconde récurrence. Et ceci termine de surcroît la première récurrence et l’exercice et cette journée.

Solution de l’exercice 24.

On va montrer que \(K \), \(L \) et \(M \) sont sur le cercle circonscrit à \(ABC \).

Soit \(\alpha = \widehat{KBC} = \widehat{KCB} \). On a \(\widehat{BK}C = \pi - 2\alpha \). D’autre part, on a :

\[
\widehat{BKI} = \pi - 2\widehat{BKI} = \pi - 2 \left(\frac{\widehat{ABC}}{2} + \alpha \right) = \pi - \frac{\widehat{ABC}}{2} - 2\alpha
\]
et de même $[CKI] = \pi - \widehat{BCA} - 2\alpha$. Il s’ensuit que $\widehat{BKC} = \widehat{BKI} + \widehat{CKI} = \pi - 4\alpha + \widehat{BAC}$. On a donc $2\alpha = \widehat{BAC}$ et $\widehat{BKC} = \pi - \widehat{BAC}$, d’où la cocyclicité des points A, B, C et K. On montre de même que L et M sont cocycliques avec A, B et C.

Solution de l’exercice 25.

Les hypothèses se traduisent par $3\widehat{B} = \pi$ et $BC = 2AB$. Soit M le milieu de $[BC]$. On a $BM = AB$ et $\widehat{B} = \frac{\pi}{3}$, d’où $MA = BM = MC$. Comme $AMC = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$, on a $\widehat{MAC} = \frac{\pi}{6}$ et $\widehat{CA_1B} = \widehat{MAC} + \widehat{BAM} = \frac{\pi}{3} + \frac{\pi}{6} = \frac{\pi}{2}$.

Solution de l’exercice 26.

Soit D le point d’intersection de (AI) avec le cercle circonscrit à ABC. On a d’après le cours $ID = DB = DC = IDA$, donc (LN) est perpendiculaire à (AI) en D. Comme D est sur le cercle circonscrit, c’est le point de tangence. Le centre du cercle circonscrit est donc sur la droite (AI), ce qui montre que ABC est isocèle en A.

Solution de l’exercice 27.
Soit Δ la perpendiculaire à (AB) passant par D. De la cocyclicité des points B, C, D et M, on déduit $\overline{MDB} = \pi - \hat{C}$. De même $\overline{NDA} = \pi - \hat{C}$, d’où il suit l’égalité de ces deux angles puis le fait que les droites (DM) et (DN) soient échangées par la symétrie par rapport à Δ. Soit N' le symétrique de N par rapport à Δ. C’est un point de (DM) et $\overline{N'MC} = \pi - \hat{B}$. Comme (NN') est parallèle à (AB), il vient $\overline{N'NC} = \hat{B}$. D’où la cocyclicité des points N', N, C et M, puis le fait que $O \in \Delta$.

Solution de l’exercice 28. Le centre de gravité G est l’intersection de la médiane (BL) et de la droite d’Euler (OH). Soit X (resp. Y) le projeté orthogonal de G (resp. L) sur ℓ. On a $\frac{BX}{BK} = \frac{OG}{OH} = \frac{1}{3}$ et $\frac{BY}{BX} = \frac{BL}{BG} = \frac{3}{2}$, d’où $\frac{BY}{BK} = \frac{1}{2}$, ce qui prouve que BKL est isocèle en L.

Solution de l’exercice 29. Avec les instruments dont on dispose, on remarque qu’il est toujours de tracer des réductions ou des augmentations de figures connexes (c’est-à-dire en un seul morceau) : en effet, on peut toujours prolonger les droites et reporter les angles donc connaître les directions.

Pour la construction, on commence par tracer une ligne en zig-zag qui relie les deux points donnés, on réduit la figure obtenue d’un facteur suffisamment grand, on relie les points sur la réduction, et on augmente celle-ci à nouveau pour retrouver la figure d’origine.

Remarque. Il est également possible de faire cette construction à la règle seule. Nous laissons le lecteur réfléchir à cette nouvelle question.
Solution de l’exercice 30. Commençons par faire une figure :

sur laquelle on introduit le point C' diamétralement opposé à C et on a nommé H l’intersection de (OC) et (DE). Il s’agit de montrer que le triangle CHD est rectangle en H et pour cela il suffit d’évaluer la somme de ses deux autres angles. Mais :

$$\hat{HCD} + \hat{HDC} = \hat{C'CB} + \hat{BAE} = \frac{1}{2} \hat{C'OB} + \frac{1}{2} \hat{BOC} = \frac{1}{2} \hat{C'OC} = \frac{\pi}{2}$$

ce qui conclut.

Solution de l’exercice 31. On a tout d’abord les égalités d’angles :

$$\hat{CAF} = \hat{CDF} = \hat{EDB} = \hat{EAB}.$$

On en déduit que les triangles AEB et AFC sont semblables. La similitude qui transforme AEB en AFC envoie N, milieu de $[EF]$, sur M, milieu de $[BC]$. Comme les angles sont conservés dans cette transformation, on en déduit que ANM est droit, comme voulu.

Solution de l’exercice 32. Nous commençons par tracer une jolie grande figure :
Notons α l’angle \overrightarrow{BAC}. On a d’une part $\overrightarrow{BOC} = 2\alpha$. D’autre part, $\overrightarrow{BQP} = \alpha$ par cocyclicité de A, B, P et Q. De même $\overrightarrow{BDC} = \alpha$ puis $\overrightarrow{PQC} = \alpha$. Ainsi, $\overrightarrow{BQC} = 2\alpha$ et les points B, O, Q et C sont aussi cocycliques. On détermine maintenant l’angle \overrightarrow{OQP}. Il vaut $\overrightarrow{OQB} + \alpha$. Or $\overrightarrow{OQB} = \overrightarrow{OCB}$ qui vaut $\frac{\pi}{2} - \alpha$ car OBC est isocèle. Cela conclut.

Solution de l’exercice 33. Notons B'' (resp. C'') le symétrique de M par rapport à (AB) (resp. (AC)). La longueur $B''C''$ est le double de $B'C'$, et donc minimiser $B'C'$ revient à minimiser $B''C''$. Or le triangle $B''AC''$ est isocèle (en A) et son angle au sommet ne dépend pas de la position de M (il vaut deux fois l’angle en A dans ABC). Ainsi la distance $B''C''$ est minimale quand $AB'' = AC'' = AM$ l’est, c’est-à-dire quand M est le pied de la hauteur issue de A.

Solution de l’exercice 34. Nous allons montrer que la droite L_A est l’isogonale de la hauteur issue de A. La même conclusion se démontrant de même pour les points B et C, l’exercice résultera de la propriété de cours sur les isogonales. On se réduit donc à la figure suivante:
où on a appelé \(L \) l’intersection de la droite \(L_A \) avec le côté \([BC]\). Il s’agit de montrer que \(\widehat{BAH} = \widehat{LAC} \). Mais ceci résulte de la suite d’égalités d’angles suivante :

\[
\widehat{LAC} = \widehat{NMA} = \widehat{NAH}
\]

la première égalité résultant de perpendicularités et la seconde de la cocyclicité des points \(A, H, N \) et \(M \).

Solution de l’exercice 35.

La conclusion provient directement d’une chasse aux angles :

\[
\widehat{APB} = \widehat{APQ} - \widehat{BPQ} = \widehat{ACQ} - \widehat{BDQ} = \pi - (\widehat{QCD} + \widehat{CDQ}) = \widehat{CQD}.
\]

Solution de l’exercice 36. Soit \(h \) l’homothétie de centre \(M \) qui transforme \(L \) en \(A \), et donc \(E \) en \(B \). Notons \(D' \) l’image de \(D \) par \(h \) et \(C' \) le milieu de \([AB]\) comme le montre la figure suivante :

Par construction \((DM) \) est parallèle à \((BC)\) donc elle passe par \(C' \). Les droites \((AD')\) et \((BD)\) sont parallèles et donc \(D'AB = \widehat{ABD} = \frac{1}{2}\widehat{B} \). De plus, \((D'C')\) est parallèle à \((BC)\), d’où \(\widehat{AD'C'} = \widehat{LBC} = \frac{1}{2}\widehat{B} \). Il s’ensuit que le triangle \(AC'D' \) est isocèle en \(C' \), soit \(C'D' = C'A = C'B \). Ainsi, \(C' \) est le centre.
du cercle circonscrit à $AD'B$ qui est donc rectangle en D'. Par l’homothétie h, on déduit qu’il y a aussi un angle droit en D comme voulu.

Solution de l’exercice 37.

Le cercle de diamètre $[MC]$ passe par D et E, puisque les angles \widehat{MDC} et \widehat{MEC} sont droits. On en déduit que les angles inscrits \widehat{DEM} et \widehat{DCM} sont égaux. De même, le cercle de diamètre $[AM]$ passe par E et F, et les angles inscrits \widehat{FEM} et \widehat{FAM} sont égaux. L’angle \widehat{DEF} est droit si, et seulement si :

$$\widehat{DCM} + \widehat{MAF} = \widehat{DEM} + \widehat{MEF} = \frac{\pi}{2}$$

soit $\widehat{MCA} + \widehat{CAM} = \frac{\pi}{6}$ car les angles \widehat{DCA} et \widehat{CAF} valent tous deux $\frac{\pi}{3}$, ce qui équivaut à $\widehat{AMC} = \frac{5\pi}{6}$. Ceci caractérise un arc de cercle d’extrémités A et C (sur cet arc de cercle, les angles inscrits \widehat{AMC} sont tous égaux).

Solution de l’exercice 38.

Solution de l’exercice 39. La rotation r de centre E et d’angle $\frac{\pi}{3}$, qui transforme C en D, transformme X en un point X' et B en un point B' :
Le triangle $XX'E$ est équilatéral, donc $XX' =XE$. Par ailleurs, $X'B' =XB$ car la rotation conserve les distances. Si l’on prouve que $AB' =AD$, l’inégalité triangulaire permettra d’écrire $XA +AD + \overrightarrow{BX} = \overrightarrow{XA} + \overrightarrow{AB'} + \overrightarrow{B'X'} \geq XX' = XE$, ce qui achèvera la démonstration. Mais pour prouver que $AB' =AD$, il suffit de remarquer que r transforme $[CB]$ en $[DB']$ de même longueur (donc de même longueur que $[DA]$), et faisant un angle de $\frac{\pi}{3}$ avec $[CB]$, donc avec $[DA]$: le triangle ADB', isocèle avec un angle de $\frac{\pi}{3}$, est donc équilatéral.

Solution de l’exercice 40. Les droites (H_AQ) et (HH_B) sont parallèles, car toutes deux perpendiculaires à (AC). Les droites (H_BQ) et (HH_A), perpendiculaires à (BC), sont eux aussi parallèles. Donc HH_AQH_B est un parallélogramme, d’où l’on déduit que les vecteurs H_AQ et HH_B sont égaux. De même, H_CPH_BH est un parallélogramme : les vecteurs H_CP et HH_B sont égaux. Il en résulte que les vecteurs H_CP et H_AQ le sont aussi et donc que H_CPQH_A est un parallélogramme : les côtés $[PQ]$ et $[H_CH_A]$ sont donc de même longueur.

Solution de l’exercice 41. Comme (BD) est bissectrice de l’angle \overrightarrow{ABC}, la symétrie par rapport à (BD) transforme $[BA]$ en $[BE]$, de même longueur, donc $[DA]$ en $[DE]$. Or elle transforme la droite (BO) en son isogonale, la droite (BH), si l’on appelle H l’orthocentre du triangle : les angles \overrightarrow{ABH} et \overrightarrow{OBC} valent tous deux $\frac{\pi}{2} - \overrightarrow{BAC}$. Comme (BH) est perpendiculaire à (DA), (BO) est perpendiculaire à (DE).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{triangle.png}
\caption{Triangle équilatéral avec point orthocentre et vecteurs.}
\end{figure}
Solution de l'exercice 42. Vectoriellement, on a :
\[\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} = \overrightarrow{MD} + \overrightarrow{DC} + \overrightarrow{CN} = \frac{1}{2}(\overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} + \overrightarrow{MD} + \overrightarrow{DC} + \overrightarrow{CN}) = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{DC}). \]
Si l’on appelle \(O \) le point tel que \(\overrightarrow{MO} = \frac{1}{2}\overrightarrow{AB} \), alors \(\overrightarrow{ON} = \frac{1}{2}\overrightarrow{DC} \) : pour que la longueur de la somme des vecteurs \(\overrightarrow{MO} \) et \(\overrightarrow{ON} \) soit égale à la somme des longueurs, il faut et il suffit que ces deux vecteurs soient colinéaires et de même sens, ce qui équivaut bien à \(ABCD \) trapèze.

Solution de l’exercice 43. Appelons \(H, I \) et \(M \) les pieds desdites hauteur, bissectrice et médiane, et \(O \) le centre du cercle circonscrit :

Les angles \(\widehat{OAC} \) et \(\widehat{HAB} \) valent tous deux \(\frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \), donc l’énoncé nécessite que \(O \) se trouve sur la médiane \((AM) \). Or \(O \) appartient à la médiatrice de \([BC]\), et hormis dans un triangle isocèle (ce qui n’est pas le cas car hauteur, bissectrice et médianes sont supposées distinctes), la médiane et la médiatrice n’ont qu’un point commun : le milieu \(M \) du côté \([BC]\). Le centre du cercle circonscrit étant le milieu de \([BC]\), le triangle est rectangle en \(A \) : les quatre angles qui découpent \(A \) valent donc \(\frac{\pi}{8} \), de même que \(\widehat{ACB} \) puisque \(AOC \) est isocèle. Il en résulte que \(\overrightarrow{ABC} \) vaut \(\frac{3\pi}{8} \).

Solution de l’exercice 44. Nommons les points comme le montre la figure ci-dessous :
où H est le pied de la hauteur issue de E dans AEC et I le milieu de $[AC]$. Notons $c = AC = \sqrt{a^2 + b^2}$.

On a $HC = \frac{b^2}{c}$ (par similitude des triangles CHE et CEA) et $EH = \frac{ab}{c}$ (en exprimant de deux façons différentes l’aire de ACE). Ainsi, une application du théorème de Thalès donne $IM = \frac{ac}{2b}$, d’où on obtient l’aire de ACM qui vaut $\frac{ac^2}{4b}$. L’aire grisée vaut donc :

$$\frac{ab}{2} - \frac{ac^2}{4b} = \frac{2ab^2 - ac^2}{4b} = \frac{a(b^2 - a^2)}{4b}.$$

Solution de l’exercice 45. On a la figure suivante :

![Figure de l’exercice 45](image)

sur laquelle on a ajouté M l’intersection de (AI) avec le cercle, M' le point diamétralement opposé à M, et D le projeté de I sur (AC) de sorte que $ID = r$. La quantité $OI^2 - R^2$ est la puissance de I par rapport au cercle circonscrit et vaut donc aussi $-IA \times IM$. Les triangles AID et $M'MC$ sont semblables, donc $IA \times MC = MM' \times ID = 2Rr$. De plus $MB = MC = MI$ d’après le cours. On en conclut que $R^2 - OI^2 = IA \times IM = IA \times MC = 2Rr$ comme voulu.

Solution de l’exercice 46.
La rotation de centre C et d’angle $\frac{\pi}{3}$ envoie B sur X et D sur Y. Donc les droites (BD) et (XY) font un angle de $\frac{\pi}{3}$ et $BD = XY$. De même, la rotation de centre A et de même angle envoie D sur Z et B sur W. Ainsi la droite (WZ) fait aussi un angle de $\frac{\pi}{3}$ avec (BD), elle est donc parallèle à (XY). Également, $BD = WZ$ donc $WZ = XY$. Le quadrilatère $WXYZ$ a deux côtés parallèles et égaux, c’est donc un parallélogramme.

Solution de l’exercice 47.

![Diagram](image)

Tout d’abord, d’après le cours, les points A, I et F sont alignés. Montrons dans un premier temps que B, I, D et C sont cocycliques. Pour cela, on calcule :

\[
\widehat{BDC} = \pi - \widehat{BDA} = \frac{\pi}{2} + \frac{\hat{A}}{2}
\]
car le triangle ABD est isocèle et :

\[
\widehat{BIC} = \pi - \frac{\hat{B}}{2} - \frac{\hat{C}}{2} = \frac{\pi}{2} + \frac{\hat{A}}{2}
\]

ce qui conclut ce point. On remarque en outre que comme $FI = FB = FC$, le centre du cercle de coïncidence est F.

On est maintenant en mesure de conclure en comparant les angles \widehat{BEF} et \widehat{BDF}. Comme BEC est isocèle, le premier angle vaut aussi $\widehat{FEC} = \frac{\pi}{2} - \hat{C}$. Pour le second, on écrit :

\[
\widehat{BDF} = \pi - \widehat{ADB} - \widehat{FDC} = \pi - \left(\frac{\pi}{2} - \frac{\hat{A}}{2} \right) - \widehat{FCD} = \frac{\pi}{2} + \frac{\hat{A}}{2} - \frac{\hat{A}}{2} + \hat{C} = \frac{\pi}{2} + \hat{C}.
\]

Solution de l’exercice 48. C’est une conséquence directe de l’égalité $R^2 - OI^2 = 2Rr$ démontrée dans un autre exercice.

Solution de l’exercice 49. C’est une application directe du théorème de Céva lorsque l’on remplace les points de tangence des cercles exinscrits par ceux du cercle inscrits, disons A'', B'' et C''. On montre ensuite que A' et A'' sont symétriques par rapport au milieu de $[BC]$, ce qui conclura. Mais cela résulte
plus ou moins directement du fait que les triangles \(IA''B \) et \(BA'I_A \) d’une part et \(IA''C \) et \(CA'I_A \) d’autre part sont semblables (où \(I \) est le centre du cercle inscrit, et \(I_A \) celui du cercle exinscrit).

Solution de l’exercice 50.

La loi des sinus appliquées aux triangles \(ADC \) et \(DCB \) s’écrit :

\[
\frac{AD}{\sin \alpha} = \frac{DC}{\sin A} ; \quad \frac{DB}{\sin(\beta + \gamma)} = \frac{DC}{\sin B}
\]

d’où on tire en multipliant :

\[
\frac{AD}{DB} \times \frac{\sin(\beta + \gamma)}{\sin \alpha} = \frac{\sin B}{\sin A} = \frac{AC}{CB}
\]

De même on obtient :

\[
\frac{AE}{EB} \times \frac{\sin \beta}{\sin(\alpha + \gamma)} = \frac{\sin B}{\sin A} = \frac{AC}{CB}
\]

et en utilisant la condition de l’énoncé il vient \(\sin \alpha \sin(\alpha + \gamma) = \sin \beta \sin(\beta + \gamma) \). On en déduit que \(\alpha = \beta \) car la fonction \(x \mapsto \sin x \sin(x + \gamma) \) est croissante sur le domaine qui nous intéresse.

Solution de l’exercice 51. On raisonne par l’absurde. Soit \(A' \) le point d’intersection de \((AM)\) et \((CD)\).

On note \(\ell = AB \) et \(h = AD \).

La droite \((AN)\) est la bissectrice de \(DAA' \). Par la loi des sinus (ou théorème de la bissectrice), \(\frac{DN}{DA} = \frac{AN}{AA'} \). Par ailleurs, \((MC)\) est parallèle à \((AD)\) et \(AD = 2MC \) donc \(DA' = 2\ell \). Il s’ensuit que \(AA' = 3h \) et \(AM = \frac{3}{2}h \). De la même façon, \(AN = \frac{3}{2}\ell \). L’inégalité triangulaire appliquée à \(ADN \) donne \(\frac{3}{2}\ell \leq h + \frac{3}{2}\ell \), donc \(h \geq \ell \). De même \(\ell \geq h \), d’où l’égalité. Le triangle \(ADN \) a pour côté \(h \), \(\frac{3}{2} \) et \(\frac{3}{2}h \), il est donc plat. Ce qui contredit l’énoncé.

Solution de l’exercice 52.
Soit Q le point d’intersection de (AP) et (BC). D’après le théorème de Ménélaüs, on doit montrer que :

$$\frac{DB}{DC} \times \frac{EC}{EA} \times \frac{FA}{FB} = 1.$$

Or d’après le théorème de Céva appliquée aux céviennes passant par P :

$$\frac{QB}{QC} \times \frac{EC}{EA} \times \frac{FA}{FB} = 1.$$

Il suffit donc de montrer $\frac{DB}{DC} = \frac{QB}{QC}$. Or, si on pose $\gamma = \angle ACD$, comme le triangle ACD est isocèle, $\angle CDA = \angle CAD = \angle CPD = \frac{\gamma}{2}$. De plus, $\angle APC = \pi - \frac{\gamma}{2}$ donc $\angle QBC = \frac{\gamma}{2}$ aussi. La droite (PC) est donc la bissectrice de $\angle QPD$, d’où $\frac{QC}{CD} = \frac{QD}{PD}$. De même, on obtient $\frac{BQ}{PD} = \frac{QD}{PD}$ en appliquant la loi des sinus dans BQP et dans BDP ((PB) est en fait la bissectrice extérieure de QPD).

Remarque (de Benjamin Scellier). Le lecteur savant remarquera qu’il s’agissait de montrer que B, Q, C et D sont en division harmonique. Comme (BP) est perpendiculaire à (PC), elle recoupe le cercle circonscrit à ACD en C' diamétralement opposé à C. En projetant par rapport à P sur ce cercle, on se ramène à démontrer que A, C', C et D sont en division harmonique, ce qui est évident car ACD est isocèle.

Solution de l’exercice 53. On note A', B' et C' les pieds des hauteurs du triangle ABC. Soit X un point du plan. On note A'', B'' et C'' ses projetés sur les côtés de ABC.
La première égalité s’écrit \(XA^2 + AB^2 = XC^2 + BC^2 \) soit :

\[
XB'\gamma^2 + B''A^2 + BB'\gamma^2 + B'A^2 = XB''\gamma^2 + B''C^2 + BB'\gamma^2 + B'C^2
\]

ou encore plus simplement \(B''A^2 - B''C^2 = B'C^2 - B'A^2 \). On factorise en utilisant des mesures algébriques. On obtient \((B''A - B''C)(B''A + B''C) = (B'C - B'A)(B'A + B'C)\). Comme \(B''A - B''C = B'A - B'C \), il reste en notant \(J \) le milieu de \([AC]\), \(JB'' = B'J \), ce qui exprime que \(B'' \) est le symétrique de \(B' \) par rapport à \(J \).

Les droites \((BB')\) et \((B''X)\) sont donc symétriques par rapport à la médiatrice de \([AC]\), et donc aussi par rapport à \(O \) centre du cercle circonscrit. De même pour \((CC')\) et \((C''X)\) d’une part, et \((AA')\) et \((A''X)\) d’autre part. Le point \(X \) cherché est donc le symétrique de l’orthocentre par rapport à \(O \).

Solution de l’exercice 54.

Soit \(Q \) le centre du cercle \(\Gamma \). \((BQ)\) est perpendiculaire à \((OB)\), donc à \((AC)\), et la symétrie par rapport à \((BQ)\) laisse le cercle invariant, transforme \(A \) en \(C \) et \(O \) en un point \(P \). Comparons les triangles \(AKO \) et \(OCP \) : l’angle \(\angle COP \) est égal à l’angle \(\angle ACO \), puisque \((AC)\) et \((OP)\) sont parallèles, lequel est égal à l’angle \(\angle OAK \), car ces deux angles inscrits dans \(\Gamma \) interceptent le même arc \(\widehat{AE} \). D’autre part, par symétrie, les angles \(\angle CPQ \) et \(\angle KOA \) sont égaux. Donc ces triangles \(AKO \) et \(OCP \) sont semblables : \(\frac{OK}{OA} = \frac{PC}{PO} \). Or \(OA = OB \), puisque ce sont les deux tangentes issues de \(O \) à \(\Gamma \), et pour la même raison, \(PC = PB \). Comme, du fait de la symétrie, \(B \) est le milieu de \((OP)\), \(\frac{OK}{OB} = \frac{OK}{OA} = \frac{PC}{PO} = \frac{PB}{PO} = \frac{1}{2} \), d’où \(K \) est bien le milieu de \([OB]\).

Solution de l’exercice 55. En réalité, l’aire est constante. Avec les notations de la figure suivante :
et en notant a la longueur du côté de la pièce et h la distance de M à (EF), le fait que la colonne soit tangent aux deux demi-diagonales entraîne que P et Q sont obligatoirement sur le segment $[CD]$. Par ailleurs, la distance h est constante car M se déplace sur une parallèle à (EF). Alors l’aire de l’ombre est égale à l’aire de MPQ à laquelle on a soustrait celles de MEF et d’une demi-colonne. Or l’aire de MEF vaut $\frac{h \cdot EF}{2}$, elle est constante. L’aire de MPQ, égale à $\frac{a \cdot PQ}{2}$, est elle aussi constante, car $PQ = \frac{a}{h} EF$ d’après Thalès, et l’aire de la colonne est constante, ce qui conclut.

Solution de l’exercice 56. On commence par faire une figure avec une droite quelconque :

![Figure exemple](image)

La droite coupe deux des côtés en deux points M et N : supposons que M appartient à $[AB]$ et N à $[BC]$, et posons $x = BM$, $y = BN$. On pose aussi $a = BC$, $b = CA$, $c = AB$, $p = \frac{(a + b + c)}{2}$ et r le rayon du cercle inscrit. On note $S = rp$ l’aire du triangle ABC. Pour que les deux polygones aient même périmètre, il faut et il suffit que $x + y + MN = (c - x) + b + (a - y) + MN$, soit $x + y = p$. Or l’aire du triangle BIN vaut $\frac{r \cdot y}{2}$ et l’aire de BIM vaut $\frac{r \cdot x}{2}$, de sorte que si la droite coupe le triangle en deux polygones de même périmètre, la somme de leurs deux aires vaut $\frac{r(x+y)}{2} = \frac{r \cdot p}{2} = \frac{S}{2}$. Si en outre les deux polygones ont même aire, $\frac{S}{2} = ABMN = ABIM + ABIN$, ce qui n’est vérifié que si $AIMN = 0$, donc si I appartient à $[MN]$. Mais il s’agit seulement d’une condition nécessaire : une droite passant par I ne coupe pas obligatoirement le triangle en deux triangles de même périmètre et de même aire, notamment les bissectrices ne conviennent pas.

Solution de l’exercice 57. C’est un bel exemple d’utilisation du théorème de Céva. Appelons A', B', D' les pieds de la bissectrice issue de A, la médiane issue de B et la hauteur issue de D respectivement :

![Figure exemple](image)

D’après Céva, (AA'), (BB') et (DD') sont concourantes si et seulement si, en mesures algébriques :

$$\frac{B' A}{B'D} \times \frac{D' B}{D'A} \times \frac{A' D}{A'B} = -1.$$
Enoncé de l'exercice 61. Soit un polynôme n’existe pas. En effet, s’il existait, on devrait avoir $a = 2$. On n’est ni pair, le prémisse n’est pas réalisé, donc on ne peut rien dire. Sinon, on obtient 4 = 1 (mod n), soit n est divisible 3. Prenons maintenant a = 3. Si n est un multiple de 3, on ne peut rien dire, sinon on obtient de la même façon n divise 8. Avec a = 5, on obtient n multiple de 5 ou n divise 24. Ainsi, si n ne divise pas 24, il est à la fois multiple de 2, 3 et 5 donc de 30. Dans ce cas, on choisit a = 2 (mod 5), a premier avec n. D’après l’hypothèse $a^2 = 1$ (mod n) et donc en particulier $a^2 = 1$ (mod 5), mais on n’est le cas puisque $a^2 = 4$ (mod 5).

Réciproquement, montrons que si n est un diviseur de 24, la condition est vérifiée, ce que l’on peut faire sans trop de douleur par une étude exhaustive.

Solution de l’exercice 63. Soit n le nombre de 1. Le nombre dont on désire tester la primalité est $\frac{100^n - 1}{99}$. Si n est pair, le numérateur est congru à 0 modulo 101, il est donc divisible par 101. Ces nombres-là, hormis 101, ne sont donc pas premiers. Si n est impair, le nombre se factorise sous la forme $\frac{100^n - 1}{99} \times \frac{100^{(n-1)/2} - 1}{100^{(n-1)/2}.}$
(les deux facteurs sont entiers comme on le vérifie facilement en calculant les numérateurs modulo les dénominateurs). Il n’est pas non plus premier. Le seul nombre premier de la liste est donc 101.

Solution de l’exercice 64. On a \((abab)_{10} = (ab)^{10} \times 101\), où \((xyz)_{b}\) désigne le nombre qui s’écrit \(xyz\) en base \(b\). Donc si \(n^3 = (ab)_{10} \times 101\) divise \(n\), et \(n^3 > 10000\), ce qui est absurde.

De manière générale, si \((xyz)_{b} = (xy)_{b} \times (b^2 + 1)\) est un cube, nous noterons \(n^3\), on a \(v_p(b^2 + 1) + v_p((xy)_{b}) = 3v_p(n)\). En particulier, tout diviseur premier de \(b^2 + 1\) divise \(n\), et il existe \(p\) tel que \(p^2\) divise \(b^2 + 1\). Si c’était faux, la valuation \(p\)-adique de \(b^2 + 1\) serait seulement 1, tandis que celle de \((xy)_{b}\) serait au moins 2, et on aurait \(bx + y > b^2 + 1\), ce qui est impossible. Donc \(b^2 + 1\) est divisible par le carré d’un nombre premier, ce qui arrive seulement pour \(b\) au moins égal à 7.

Pour \(b = 7\), on veut que \(50(7x + y) = n^3\), donc \(n\) est multiple de 2 et 5, on peut écrire \(n = 10k\) et \(7x + y = 20k^3\). Comme \(x\) et \(y\) sont inférieurs à 6, on trouve \(x = 2\) et \(y = 6\), et on vérifie que le nombre 1000 (mille) s’écrit 2626 en base 7, qui est le nombre recherché.

Solution de l’exercice 65. Si \(a_n > 7\), alors soit \(a_n\) est pair et alors \(a_{n+1} < a_n\), soit \(a_n\) est impair et alors \(a_{n+2} = \frac{a_n + \sqrt{a_n^2 - 4}}{2} < a_n\). Cela assure que le nombre recherché est plus petit ou égal à 7.

Étudions maintenant la suite modulo 7. Dans le cas où on ajoute 7, cela ne change pas. Diviser par 2 modulo 7 revient à multiplier par 4. Les cycles de la multiplication par 4 modulo 7 sont 1 → 4 → 2 → 1 et 3 → 5 → 6 → 3. Par conséquent, on cherche à calculer la classe de \(a_1\) modulo 7. Par le petit théorème de Fermat 2005\(^6\) ≡ 1 (mod 7), et il s’agit donc de calculer la classe de l’exposant 2006\(^2007\) modulo 6.

C’est une classe paire, et c’est congru modulo 3 à \((-1)^{2007} = -1\). La classe de l’exposant est donc 2 modulo 6 et \(a_1 ≡ 2005^2 ≡ 3^2 ≡ 2\) (mod 7). D’après ce qui précède, on tombe forcément sur un entier congru à 1 modulo 7 plus petit que 7. C’est forcément 1 et c’est la plus petite valeur atteinte.

Solution de l’exercice 66. On note \(S_k = 5^k + 7^k\). On va montrer que le PGCD de \(S_n\) et \(S_m\) est 12 si \(m\) et \(n\) sont impairs et 2 sinon. On note δ le PGCD que l’on cherche à calculer. Pour \(m = n = 1\), on a directement δ = 12. On suppose \(m > n\) et on pose \(m = n + a\); \(a\) et \(n\) sont premiers entre eux. Posons \(U_n = 7^n - 5^n\). Alors \(S_m - 5^nS_n = 7^nU_a\). Or, on a PGCD(δ, 7) = PGCD(δ, 5) = 1, d’où \(δ = \text{PGCD}(U_a, S_n)\).

Si \(a\) est impair, on pose \(S_n = \delta\ell\) et \(U_n = \delta k\) avec \(k\) et \(\ell\) premiers entre eux. Alors \(7^{an} = (\delta\ell - 5^n)^a\) se met sous la forme \(\delta\ell - 5^n\) grâce à la formule du binôme. De même \(7^{an} = \delta K + 5^n\) pour un entier \(K\). Ainsi \(\delta(K - L) = 2 \times 5^n\). D’après le théorème de Gauss, δ est un diviseur de 2. C’est 2 car les deux nombres sont pairs.

Si \(a\) est pair, on pose \(a = 2b\) de sorte que PGCD\((b, n) = 1\) et \(n\) impair. Alors δ divise \((7^n - 5^n)(7^n + 5^n) = 7^{2n} - 5^{2n}\) ainsi que \(U_a = 7^{2b} - 5^{2b}\). Il divise donc leur PGCD qui vaut \(7^2 - 5^2 = 24\) (démonstration analogue à celle vue en cours). Par ailleurs, comme \(m\) et \(n\) sont impairs, on a \(7^m \equiv -1\) (mod 8) et \(5^m \equiv 5\) (mod 8) et ainsi \(S_m \equiv 4\) (mod 8). Par conséquent \(S_n\) et \(S_m\) sont divisibles par 4 mais pas par 8. De même, on montre qu’ils sont divisibles par 3. La valeur de δ est donc 12 comme annoncé.

Solution de l’exercice 67. Notons \(a, b\) et \(c\) les longueurs des triangles et \(\beta\) l’angle en \(\hat{B}\). D’après la loi des sinus, on a :

\[
\frac{a}{\sin(2\beta)} \frac{3}{4} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\pi - 3\beta)}
\]

D’où en notant \(x = \cos(\beta) > \frac{1}{2}\), on trouve en utilisant les formules de trigonométrie \(a = 2bx\) et \(c = b(4x^2 - 1)\). La première relation prouve que \(x\) est un nombre rationnel, notons-le \(x = \frac{\ell}{2}\) sous sa forme irréductible. Pour que \(a\) et \(c\) soient entiers, on doit avoir \(q\) divise \(2b\) et \(q^2\) divise \(4b\). On ne peut retenir que la seconde divisibilité qui est plus forte que la première. En fonction de \(p, q\) et \(b\), le périmètre du triangle (que l’on cherche à minimiser) vaut :

\[
a + b + c = \frac{2bp}{q} + b - b + \frac{4bp^2}{q^2} = \frac{2bp(q + 2p)}{q^2}.
\]
Si \(q = 2q' \) est pair, la condition de divisibilité impose de choisir au minimum \(b = \frac{q}{2} \). Comme on doit aussi avoir \(x > \frac{1}{2} \), la plus petite valeur permise pour \(p \) et \(q' + 1 \). Le périmètre vaut alors \((q' + 1)(2q' + 1)\) qui est minimal lorsque \(q' \) l’est. On ne peut pas choisir \(q' = 1 \) car il n’y a alors aucune valeur permise pour \(p \). Pour \(q' = 2 \), le périmètre vaut 15. Si maintenant \(q = 2q' + 1 \) est impair, on est obligé de choisir au minimum \(b = q' \) et \(p = q' + 1 \) le périmètre vaut alors \(2(q' + 1)(4q' + 3) \) qui vaut au minimum 128 car \(q \) est au minimum égal à 3. Le plus petit triangle a donc pour périmètre 15 et pour longueurs des côtés \(a = 6, b = 4 \) et \(c = 5 \).

Solution de l’exercice 68. On a :

\[
(a + b + c)^2 = (a^2 + b^2 + c^2) + 2(ab + bc + ca)
\]
divisible par 6, ce qui implique \(a + b + c \) divisible par 6. Or pour tout entier \(n, n^3 - n = (n+1)n(n-1) \) est toujours divisible par 6 : l’un des trois entiers \(n+1, n ou n-1 \) est pair, comme \((-7)^n = 7^n \), le terme \(P_n \) est bien divisible par 31, mais pour \(n \) impair, c’est \(36^n + 24^n + 7^n - 5^n \) qui est divisible par 31, donc \(P_n \) n’est pas divisible par 31 (ni a fortiori par 899), car la différence \(2 \times 7^n \) n’est pas divisible par 29. De même, pour \(n \) pair, \(36^n - 7^n \) est divisible par 31, donc \(P_n \) n’est pas divisible par 29. Si maintenant \(q' + 1 \) est impair, \(P_n \) est divisible par 29, alors que si \(n \) est impair, \(36^n - 7^n \) est encore divisible par 29, mais \(24^n - 5^n \) n’est pas divisible par 29 (car 29 ne divise pas \(2 \times 5^n \)), donc \(P_n \) n’est pas divisible par 29. \(P_n \) est divisible par 29 et par 31 (donc par 899) si et seulement si \(n \) est pair.

Solution de l’exercice 70. Appelons \(A \) notre ensemble de 20 entiers, et classons-les dans l’ordre : \(a_1 < a_2 < a_3 < \cdots < a_20 \). Considérons les 19 différences \(b_1 = a_2 - a_1, \ldots, b_{19} = a_{20} - a_1 \leq 69 \). Or les \(b_k \) sont des entiers strictement positifs, et ce sont des différences d’entiers de \(S' \) : si au maximum trois de ces entiers prenaient la même valeur, il y aurait parmi ces dix-neuf \(b_k \) : au plus trois 1, au plus trois 2, … au plus trois 6, et la somme \(b_1 + b_2 + \cdots + b_{19} \) au plus 6 + 6 + 6 + 7 = 70

ci qui n’est pas possible car cette somme est inférieure ou égale à 69. Donc déjà parmi les \(b_k \), on peut trouver quatre nombres égaux, a fortiori parmi l’ensemble dix fois plus vaste des différences d’éléments de \(S \).

Solution de l’exercice 72. \(\lfloor ka/b \rfloor \) est le plus grand entier inférieur ou égal à \(ka/b \) donc \(ka/b - 1 < \lfloor ka/b \rfloor \leq ka/b \). Ce qu’on peut écrire : \(\lfloor ka/b \rfloor = ka/b - u_k, u_k \) étant l’entier compris entre 0 et \(b - 1 \) tel que \(ka - u_k \) soit divisible par \(b \) (le reste de la division euclidienne). Or la somme des \(ka/b \) vaut :

\[
\frac{a}{b} (1 + 2 + \cdots + (b - 1)) = \frac{a}{b} \times \frac{(b(b - 1))}{2} = \frac{a(b - 1)}{2}.
\]
Mais il faut en soustraire la somme des \(\frac{u_k}{b} \) : il n’est pas possible de calculer \(u_k \) pour un \(k \) donné, on peut néanmoins affirmer que les \(u_k \) sont non nuls et ne prennent pas deux fois la même valeur. En effet, si \(u_k = u_{k'} \), cela signifierait que \(ka - u_k \) et \(k'a - u_{k'} \) sont tous deux divisibles par \(b \), donc que \((k - k')a \) est divisible par \(b \) : \(b \) étant premier avec \(a \), il diviserait \(k - k' \) (d’après le théorème de Gauss), ce qui n’est pas possible si \(k \) et \(k' \) sont distincts et tous deux compris entre 0 et \(b - 1 \) (donc \(0 < |k - k'| < b \)). Le même raisonnement prouve que \(u_k \) ne peut pas être nul. Et si \(u_k \) prend \(b - 1 \) valeurs distinctes entre 1 en \(b - 1 \), il prend toutes les valeurs de 1 à \(b - 1 \), de sorte que la somme des \(\frac{u_k}{b} \) vaut :

\[
1 + 2 + \cdots + \frac{b - 1}{b} = \frac{b - 1}{2}.
\]

La somme \(m \) est donc égale à \(\frac{(a - 1)(b - 1)}{2} \). Le même calcul sur la somme \(n \) nous donnera le même résultat, symétrique en \(a \) et \(b \), de sorte qu’on aura obligatoirement \(m = n = \frac{(a - 1)(b - 1)}{2} \).

Solution de l’exercice 73. Les entiers \(b + 1 \) et \(b + 1 \) étant premiers entre eux, \(\text{PPCM}(b, b + 1) = b(b + 1) \). Par contre, \(\text{PGCD}(a, a + 5) \) divise 5, mais peut être égal soit à 5 (si \(a \) est multiple de 5), soit à 1. Si \(\text{PGCD}(a, a + 5) = 1 \), \(\text{PPCM}(a, a + 5) = a(a + 5) \), donc l’équation s’écrit \(a(a + 5) = b(b + 1) \), ou encore :

\[
\left(a + \frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 = \left(b + \frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 \]

soit \((a + \frac{5}{2})^2 - (b + \frac{1}{2})^2 = 6\), ou encore \((a + b + 3)(a - b + 2) = 6\). Deux cas, puisque \(a + b + 3 > a - b + 2 \) : ou bien \(a + b + 3 = 3 \) et \(a - b + 2 = 2 \), soit \(a = b = 0 \) (solution triviale que l’on aurait dû exclure), soit \(a + b + 3 = 6 \), \(a - b + 2 = 1 \), donc \(a = 1 \) et \(b = 2 \). Si \(a \) est multiple de 5, \(a = 5k \), \(\text{PPCM}(a, a + 5) = \frac{a(a+5)}{2} = 5k(k+1) \). Donc \(5k(k+1)^2 - (b + \frac{1}{2})^2 = 1 \). En multipliant par 4 et en posant \(x = 2k + 1 \) et \(y = 2b + 1 \), on est ramené à l’équation \(5x^2 - y^2 = 4 \) (avec \(x \) et \(y \) impair), équation classique mais qui admet une infinité de solutions : si \((x, y)\) est solution, on constate que \((9x + 4y, 9y + 20x)\) est lui aussi solution, ce qui permet de construire, à partir de la solution \((1, 1)\), une infinité de solutions : \((13, 29), (233, 521), \ldots\), soit pour \(a = \frac{5}{2}(x - 1), b = \frac{1}{2}(y - 1) : (30, 14) \) (PPCM = 210), \((580, 260) \) (PPCM = 67860), etc.

Solution de l’exercice 74. On raisonne par récurrence forte sur le nombre \(n \) d’élèves. Si \(n = 2 \), le résultat est évident. On suppose le résultat connu jusqu’à \(n \), et l’on se donne \(n + 1 \) élèves. Il existe au moins une fille, notée \(F \). Soit \(A \) l’ensemble des garçons amis de \(F \). Soit \(B \) l’ensemble des \(b \) autres élèves. Par hypothèse de récurrence, on peut trouver dans \(B \) un groupe de \(b/2 \) élèves qui satisfait à la condition de l’énoncé. Soit \(A_1 \) l’ensemble des élèves dans \(A \) qui sont les amis d’un nombre impair de filles dans \(B \). Deux cas sont possibles : si \(|A_1| \geq (b + 1)/2 \), alors \(B \cup A_1 \) répond au problème. Sinon, si \(A_2 \) est l’ensemble des élèves dans \(A \) qui sont les amis d’un nombre pair de filles dans \(B \), l’ensemble \(B \cup A_1 \cup \{F\} \) convient.

Solution de l’exercice 75. Les cases de l’échiquier sont repérées par leurs coordonnées dans \(\mathbb{Z}/n\mathbb{Z} \). On va montrer que l’on peut placer les dames si et seulement si \(n \) est premier à 6. Supposons les dames placées. Il y a une dame dans chaque colonne, donc leurs coordonnées sont \((1, a_1), \ldots, (n, a_n) \). Le fait que les dames ne sont pas en prise signifie exactement que les \(a_i \) sont deux à deux distincts, ainsi que les \(a_i + i \) et les \(a_i - i \). Comme les \(a_i \) sont deux à deux distincts, leur somme est congrue modulo \(n \) à la somme des entiers de 1 à \(n \), soit \(n(n-1)/2 \). De même, la somme des \(a_i + i \) est congrue à \(n(n-1)/2 \) modulo \(n \). On en déduit par soustraction que \(n(n+1)/2 \) est nul modulo \(n \), c’est-à-dire que \(n \) est impair (regarder la valuation dyadique). De même, sommant les carrés des \(a_i + i \) et des \(a_i - i \), on trouve que \(n(n+1)(2n+1)/3 \) est divisible par \(n \), donc que \(n \) est premier à 3. Ainsi, \(n \) est bien premier à 6.

Réciproquement, si \(n \) est premier à 6, on vérifie que placer les dames en \((1, 1), (1, 3), \ldots, (n, 2n + 1)\) fournit une solution acceptable.
1. EN COLLE

Solution de l’exercice 76. La fonction \(f \) ne peut pas prendre sa plus petite valeur en un entier strictement positif (car cet entier peut s’écrire \(n + 1 \), et \(f(n + 1) > f \circ f(n) \)). Donc elle prend sa plus petite valeur en 0. Par ailleurs, si 0 n’est pas dans l’image, pour tout \(n \) on peut écrire \(f(n) = n + 1 \). Alors \(f \circ f(n) > f \circ f(m) \). Ceci n’est pas possible car la fonction \(f \circ f \) doit atteindre sa plus petite valeur. On en déduit que 0 est dans l’image de \(f \), puis que \(f(0) = 0 \). De plus, si \(n > 0 \), alors \(f(n) > 0 \) car strictement plus grand qu’une autre valeur prise par \(f \). Ainsi \(f \) induit une fonction de \(\mathbb{N}^* \) dans \(\mathbb{N}^* \) qui vériﬁe encore la même hypothèse. Par le même raisonnement, \(f \) prend la valeur 1 en 1, et ainsi de suite, on prouve que \(f \) est l’identité.

Solution de l’exercice 77. On montre par récurrence sur \(n \geq 2 \) que la probabilité est toujours \(\frac{1}{2} \). Si \(n = 2 \), c’est évident. Supposons à présent le résultat pour \(n' \) personnes pour tout \(n' < n \), et considérons un ensemble de \(n \) personnes. Si la première personne s’assoit à sa place, ce qui arrive avec probabilité \(\frac{1}{n} \), chaque personne peut s’assoir à sa place et donc la dernière aussi. Deuxième cas, la première personne s’assoit à la place de la \(k \)-ième personne pour un certain entier \(k < n \). Les personnes dont le rang est compris entre 2 et \(k + 1 \) s’assoient correctement à leur place, et ensuite, tout se passe comme si le « jeu » recommence avec \(n - k \) personnes. Dans ce cas, qui arrive avec probabilité \(\frac{n-2}{n} \), la probabilité que la dernière personne trouve sa place libre est, par hypothèse de récurrence, \(\frac{1}{2} \). Enﬁn, dans le dernier cas, la première personne prend la place de la dernière, qui ne peut pas alors trouver sa place. Ce dernier cas arrive avec probabilité \(\frac{1}{n} \). D’après la formule de probabilité totale, la probabilité recherchée est donc :

\[
\frac{1}{n} + \frac{n-2}{n} \times \frac{1}{2} + 0 = \frac{1}{2}
\]

cela qui achève la récurrence.

Solution de l’exercice 78. On va associer à une telle conﬁguration, un chemin qui ne se déplace que vers la droite et vers le haut reliant le point \((0,0)\) au point \((n,n)\) et qui reste toujours au-dessous de la droite d’équation \(y = x \). Pour cela, on part d’une conﬁguration et on la lit de la façon suivante : on choisit un point de départ (ﬁxé) sur le cercle, et on tourne dans le sens des aiguilles du montre à partir de ce point. Lorsque l’on rencontre une diagonale qui part (c’est-à-dire une diagonale que l’on n’a encore jamais rencontré) on ajoute un trait horizontal et lorsque l’on rencontre une diagonale qui arrive, on ajoute un trait vertical. Le chemin obtenu arrive bien à \((n,n)\) car il y a \(n \) diagonales et donc on rencontrera \(n \) débuts et \(n \) ﬁns. Par ailleurs, il ne passe jamais au-dessus de la droite d’équation \(y = x \) car deux diagonales ne se croisent pas. En effet, si ce n’était pas le cas, on aurait à un moment \(v \) plus d’arrivée que de départs.

Il y a donc autant de conﬁgurations que de tels chemins et on a vu en cours que ce nombre est \(\frac{1}{n+1} \binom{2n}{n} \).

Solution de l’exercice 79. On va montrer que les mots du langage sont ceux qui se terminent par \(B \) et qui ont un nombre pair (éventuellement nul) de \(B \) avant le premier \(A \). On vériﬁe directement par récurrence que les mots du langage vériﬁent bien cette condition. Réciproquement, il faut montrer que tous les mots qui vériﬁent la condition sont dans le langage. Pour cela on procède par récurrence sur la longueur \(n \) du mot. Si \(n = 2 \), c’est vrai par hypothèse. Soit \(n > 2 \). On suppose que la conclusion est vériﬁée pour tous les mots de longueur strictement inférieure à \(n \). Soit un mot de longueur \(n \) vériﬁant la condition. Il est soit de la forme \(A\ldots AB \), soit de la forme \(AB\ldots B \), soit de la forme \(B^k AB \ldots B \), soit \(B^n \) (où … remplace une suite quelconque de lettres, et \(B^t \) est le mot formé de \(t \) fois la lettre \(B \)). Le dernier cas ne peut se produire que si \(n \) est pair. Les écrivites suivantes permettent de conclure :

\[
\begin{align*}
AA \ldots B &= A(A \ldots B) ; \\
AB \ldots B &= A(B \ldots B) \text{ ou } AB(\ldots B) \\
B^{2k} \frac{3}{4} A \ldots B &= (B^{2k} \frac{3}{4} A \ldots B) ; \\
B^n &= (BB)(B^{n-2})
\end{align*}
\]
car chaque mot entre parenthèses est dans le langage par hypothèse de récurrence (pour le deuxième cas, on choisit la première écriture si le nombre de \(B \) consécutifs après le premier \(A \) est pair et la seconde écriture sinon).
Il s’agit maintenant de compter ces mots. On note p_n le nombre de mots de longueur n du langage. On montre par récurrence que :

$$p_n = \frac{2^n + 2 \cdot (-1)^n}{3}.$$

C’est clair pour $n = 1$ et $n = 2$. Par ailleurs, on a la relation de récurrence $p_{n+2} = p_n + 2^n$ car un mot du langage de longueur $n + 2$ est soit de la forme $A \ldots B$ (quand il commence par un A) où on peut remplacer les pointillés par une suite quelconque de n lettres, et il y a en 2^n, soit de la forme $BB \ldots$ (quand il commence par un B) où les pointillés représentent un mot de longueur n du langage. La formule close s’obtient directement par récurrence.

Solution de l’exercice 80. Colorions un tableau de taille $m \times n$ en choisissant pour chaque case le noir avec probabilité x et le blanc avec probabilité y. Alors x^m est la probabilité qu’une ligne de m cases soit toute noire. On se convainc facilement que $(1 - x^m)^n$ est la probabilité que dans chacune des n lignes, il y ait une case blanche.

De même, $(1 - y^n)^m$ est la probabilité qu’il existe une case noire dans chaque colonne. S’il n’y a pas une case noire dans chaque colonne, c’est que l’une des colonnes est toute blanche, et en particulier, chaque ligne possède une case blanche. Par ailleurs, il est tout à fait possible que les deux événements soient réalisés, car m et n sont supérieurs à 2. Par conséquent, la somme des probabilités est strictement supérieure à 1.

Solution de l’exercice 81. Ordonnons l’ensemble A en notant ses éléments a_1, a_2, a_3, a_4, a_5. Alors la fonction qui à un ensemble associe son élément d’indice minimal convient.

Réciproquement, soit f une fonction vérifiant les conditions de l’énoncé. On note a_1 l’élément $f(A)$, a_2 l’élément $f(A \setminus \{a_1\})$, etc. On va montrer qu’alors f est effectivement la fonction g obtenue par la construction expliquée ci-dessus. On sait déjà par construction que $f(\{a_1, a_2, a_3, a_4, a_5\}) = g(\{a_1, \ldots, a_5\}) = a_1$, de même que $f(\{a_2, a_3, a_4, a_5\}) = g(\{a_2, a_3, a_4, a_5\}) = a_2$, et ainsi de suite.

Soient B et C des parties de A telles que B est incluse dans C. On a alors si $f(C) \in B$, $f(C) = f(B \cup (C - B)) = f(B) \cup f(C - B)$. Comme $f(C)$ n’est pas dans $C - B$, c’est que $f(C) = f(B)$.

Soit B une partie de A. Soit x l’entier minimal tel que a_x soit dans B. Alors si $C = \{a_1, a_{i+1}, \ldots, a_5\}$, on a $f(C) = a_x \in B$, donc $f(B) = a_x$.

Finalement, on a caractérisé les fonctions convenables, et comme il y a $5! = 120$ façons d’étiqueter les éléments de A par des indices entre 1 et 5, il y a 120 fonctions vérifiant les conditions de l’énoncé.

Solution de l’exercice 82. Soit B une partie de cardinal maximal ne contenant aucun des A_i. Pour tout x se trouvant en dehors de B, il existe un $i(x)$ tel que $B \cup \{x\}$ contienne $A_{i(x)}$ par maximalité. Par conséquent, B contient deux éléments de $A_{i(x)}$, on note B_x cette paire, et les B_x sont distincts, donc les $i(x)$ aussi.

Soit q le cardinal de B. Il y a $\binom{2(q - 1)}{2}$ paires possibles, donc $n - q < \frac{2(q - 1)}{2}$. En particulier, $q^2 + q > 2n$, donc $q \geq \sqrt{2n}$.

Solution de l’exercice 83. Commençons par noter que $f(f(n) + 1) = n + f(5)$ (en choisissant $m = 1$ dans l’équation), et que f est donc injective. Par ailleurs, on peut poser $f(1) = k$, et on obtient la relation $f(m + k) = f(m + 4) + 1(\text{indice})$, en choisissant $n = 1$ dans l’énoncé. On va montrer que $k = 5$. Tout d’abord, $k > 4$. Puisque sinon, on aurait $f(m + 4) = f(m + k) - 1$, ce qui contredirait le fait que $f(x) > 0$ pour tout entier x.

On examine $f(5) = x_0$ et $f(n) = x_1 > x_0$. La relation (indice) permet d’obtenir $f(5 + (k - 4)(x_1 - x_0)) = x_1$, d’où $n = 5 + (k - 4)(x_1 - x_0)$, ou encore $x_1 = x_0 + \frac{5}{k - 4}$, ce qui implique que $k = 5$. On obtient ainsi $f(n) = n + 5$ pour tout $n \geq 5$.

Replaçons $m = n = 5$ dans l’équation : $5 + x_0 - 5 + x_0 = 5 + 9 - 5 + x_0$, d’où $x_0 = 9$, d’où $f(n) = n + 4$ pour tout $n \geq 5$. La première relation trouvée permet d’écrire $f(f(n) + 1) = n + 9 = f(n + 5)$, soit $f(n) = n + 4$, pour tout $n > 0$.

III. LES EXERCICES
La réponse à la question posée est donc $5 + 6 + \cdots + 63 = 2006$.

Solution de l’exercice 84. Soit $g(x) = f(x) - 1$. L’équation devient $g(x + y) = g(x) + g(y)$. Par ailleurs, il existe un nombre fini de zéros de g, donc pour tout nombre premier p, $g(p) > 0$. La valeur particulière fournie permet d’écrire :

$$g(2^3 \times 3^2 \times 5 \times 7 \times 11^2 \times 13) = 3g(2) + 2g(3) + g(5) + g(7) + 2g(11) + g(13) = 10$$

Donc la valeur de g en 2, 3, 5, 7, 11, 13 est 1. Par conséquent, la factorisation $16! = 2^{15}3^65^37^211\cdot 13$ donne $g(16!) = 27$ et puis $f(16!) = 28$.

Solution de l’exercice 85. Compter sans utiliser le chiffre 1 revient à compter en base 9, mais avec pour chiffres 0, 2, 3, 4, 5, 6, 7, 8, 9. Le 1000 décimal vaut $(9 + 1)^3 = 9^3 + 3 \times 9^2 + 3 \times 9 + 1$, soit 1331 en système à base 9 traditionnel, ou encore, avec les neuf chiffres ci-dessus, 2442.

Solution de l’exercice 86. Ordonnons nos sept entiers : $x_1 < x_2 < \cdots < x_7$ et raisonsons par l’absurde. On a $x_1 \geq 1$ et donc avec l’hypothèse absurde, il vient $x_2 > 2$, donc $x_2 \geq 3$. De même, on obtient $x_3 \geq 7$ et ainsi de suite jusqu’à $x_7 \geq 127$, ce qui est contradictoire.

Solution de l’exercice 87. On a $\binom{n}{2} = \frac{n(n-1)}{2}$ et donc $\binom{n}{2} - 1 = \frac{n^2-n+2}{2} = \frac{(n+1)(n-2)}{2}$ si bien que :

$$\frac{n(n-1)}{2} \cdot \frac{(n-2)-1}{2} = \frac{(n+1)n(n-1)(n-2)-1}{8} = 3 \left(\binom{n+1}{4} \right)$$

Interprétation : le membre de droite représente le nombre de paires de cordes formées par ces n points. À quatre points parmi les n, on peut associer trois paires de cordes sans extrémité commune. À trois points parmi les n, on peut associer trois paires de cordes ayant une extrémité commune. Donc si l’on adjoint un $(n+1)$-ième point, par exemple O, à quatre points parmi ces $n+1$ on peut associer trois paires de cordes, sans extrémité commune si O n’est pas parmi les quatre points, ayant une extrémité commune si O est parmi les n points. Et à toute paire de cordes on peut associer un ensemble de quatre points parmi les $n+1$ points : cette application, surjective, prend une même valeur pour trois éléments de l’ensemble de départ, donc l’ensemble de départ contient trois fois plus d’éléments que l’ensemble d’arrivée, d’où la relation.

Solution de l’exercice 88. On peut former 4 nombres d’un chiffre, $12 = 4 \times 3$ de deux chiffres (on choisit le premier parmi quatre, le second parmi les trois restants), $24 = 4 \times 3 \times 2$ de trois chiffres (quatre choix pour le premier, trois pour le second et deux pour le troisième) et $24 = 4 \times 3 \times 2 \times 1$ de quatre chiffres, soit en tout 64 nombres.

Solution de l’exercice 89. Appelons a_n le nombre de régions du plan. On a $a_1 = 2$, $a_2 = 4$, et il est facile de voir que $a_n + 1 = a_n + (n + 1)$. En effet, la $(n + 1)$-ème droite coupe les n autres, par hypothèse, en n points qui partagent la droite en $n + 1$ intervalles. Chacun de ces intervalles (segments ou demi-droites) partage une région du plan précédemment définie en deux, donc ajoute une nouvelle région du plan. L’adjonction de cette $(n + 1)$-ième droite ajoute donc $n + 1$ droites, donc, en prenant garde aux premières valeurs $a_1 = 2 = 1 + (1)$, $a_2 = 4 = 1 + (1 + 2)$ et par récurrence $a_n = 1 + (1 + 2 + \cdots + n) = 1 + \frac{n(n+1)}{2}$. Quant aux régions bornées : considérons un cercle suffisamment grand pour que tous les points d’intersection soient à l’intérieur du cercle. Ce cercle ne coupe que les régions non bornées, et chaque arc de cercle correspond à une région non bornée. Or chaque droite coupe le cercle en deux points, ce qui définit $2n$ arcs de cercle. Il y a donc $2n$ régions non bornées, donc $n^2 - 3n + 2 = \frac{(n-1)(n-2)}{2}$ régions bornées. On remarquera que ce polynôme du second degré s’annule pour $n = 1$ et $n = 2$, ce qui était prévisible car une ou deux droites ne définissent aucune région bornée.
III. LES EXERCICES

Solution de l’exercice 90. L’équation avec $x = 0$ donne $f(f(y)) = f(0) - y$, ce qui montre que $f \circ f$ est une fonction affine de pente -1, donc une bijection. Ceci prouve que f est bijective. Or pour $y = 0$, $f(f(0)) = f(0)$ donc, puisque la fonction f est injective, $f(0) = 0$. On en déduit que $f(f(y)) = -y$. Par ailleurs, f est surjective : un t quelconque est l’image de $f(-t)$, que l’on appellera y. On aura donc $f(x + y) = f(x) + f(t) = f(x) - t = f(x) + f(y)$ car $f(y) = f(f(t)) = -t$. La fonction vérifie donc l’équation de Cauchy : comme elle est définie sur les entiers, on en déduit qu’elle est linéaire, donc f de deux nombres voisins ne soit jamais divisible par 4.

Solution de l’exercice 91. Considérons l’enveloppe convexe de ces cinq points, le plus petit polygone convexe qui contienne ces cinq points soit à l’intérieur soit sur le polygone. Les sommets de cette enveloppe convexe sont parmi les cinq points, et cette enveloppe convexe est soit un triangle (les deux autres points étant intérieurs au triangle), soit un quadrilatère convexe (cinquième point à l’intérieur), soit un pentagone convexe. Choisissons l’un des côtés $[AB]$ de l’enveloppe convexe : les trois autres points, C, D, E sont du même côté de la droite (AB), et les trois angles \hat{ACB}, \hat{ADB}, \hat{AEB} sont distincts (sinon on aurait quatre points cocycliques). Supposons $\hat{ACB} < \hat{ADB} < \hat{AEB}$: du fait de ces inégalités, le cercle circonscrit à ADB contiendra le point E à l’intérieur et le point C à l’extérieur.

2 En TPE

2.1 Les énoncés

Exercice 1 (résolu). Les nombres a_1, a_2, \ldots, a_n sont égaux à 1 ou -1 et vérifient :

$$a_1a_2a_3a_4 + a_2a_3a_4a_5 + \cdots + a_na_1a_2a_3 = 0.$$

Montrer que n est un multiple de 4.

Exercice 2 (résolu). Peut-on disposer les entiers de 1 à 9 autour d’un cercle, de telle sorte que la somme de deux nombres voisins ne soit jamais divisible par 3, 5 ou 7 ?

Exercice 3. Montrer que si a, b et $\sqrt{a} + \sqrt{b}$ sont rationnels, alors \sqrt{a} et \sqrt{b} aussi.

Peut-on déduire de la rationalité de a, b et $\sqrt{a} + \sqrt{b}$ celles de \sqrt{a}, \sqrt{b} et \sqrt{c} ?

Exercice 4. On se donne 50 segments sur une droite. Montrer que, soit 8 d’entre eux ont un point commun, soit 8 d’entre eux sont deux à deux disjoints.

Exercice 5. Soit k un entier. Montrer qu’il existe un réel $r > 1$ tel que k divise la partie entière de r^n pour tout n.

Exercice 6 (résolu). Dans une assemblée de n personnes, on suppose que parmi 4 personnes quelconques, il y en toujours une qui connaît les trois autres. Montrer qu’il existe une personne qui connaît toutes les autres.

Exercice 7. Soit $f : \mathbb{N}^* \to \mathbb{N}^*$ vérifiant $f(f(n)) = 3n$. Calculer $f(2006)$

Exercice 9 (résolu). Soit $f(x) = ax^2 + bx + c$ pour a, b, c réels. On suppose que l’équation $f(x) = x$ n’a pas de solution. Montrer que l’équation $f(f(x)) = x$ n’a pas de solution non plus.
Exercice 10. Les nombres 2^n et 5^n commencent par le même chiffre. Quel est ce chiffre ?

Exercice 11. On se donne quatre entiers a, b, c, d non tous égaux. À partir du quadruplet (a, b, c, d), on forme (a', b', c', d') avec $a' = a - b$, $b' = b - c$, $c' = c - d$ et $d' = d - a$. On répète cette opération à partir de (a', b', c', d') et ainsi de suite un nombre arbitraire de fois. Montrer qu’au bout d’un moment, une des composantes du quadruplet obtenu sera supérieure à 20062007.

Exercice 12 (résolu). Un damier 7×7 est pavé par seize rectangles 3×1 et un petit carré 1×1. Quelles sont les positions possibles du petit carré ?

Exercice 13 (résolu). Soient a, b, c, d, e des entiers vérifiant $a^4 + b^4 + c^4 + d^4 = e^4$. Montrer que parmi les cinq entiers, trois au moins sont pairs, trois au moins sont multiples de 5, et deux au moins sont multiples de 10.

Exercice 14. On définit la suite (a_n) par $a_1 = 2$ et $a_{n+1} = \left[\frac{3}{2}a_n\right]$ pour tout $n \geq 1$. Montrer que la suite (b_n) définie par $b_n = (-1)^{a_n} n$ n’est pas périodique à partir d’un certain rang. (On rappelle que $[x]$ désigne la partie entière de x.)

Exercice 15. On définit la suite (u_n) par $u_0 = 0$, et $u_n = n - u_{u_{n-1}}$ pour $n > 0$. Donner une formule close pour u_n.

Exercice 16. Résoudre l’équation diophantienne :

$$x^2 + xy - y^2 = 1.$$

Exercice 17 (résolu). Trouver toutes les fonctions continues qui transforment trois termes d’une suite arithmétique en trois termes d’une suite arithmétique.

Exercice 18 (résolu). Existe-t-il un polyèdre possédant un nombre impair de faces, chacune ayant un nombre impair de côtés ?

Exercice 19 (résolu). Trouver toutes les fonctions continues $f : \mathbb{R}_+^* \to \mathbb{R}$ vérifiant :

$$f(xy) = xf(y) + yf(x)$$

pour tous $x, y > 0$

Exercice 20 (résolu). Trouver tous les entiers x, y, z vérifiant :

$$5x^3 + 11y^3 + 13z^3 = 0.$$

Exercice 21 (résolu). Montrer qu’étant donnés n points du plan non alignés, il existe au moins n droites distinctes qui passent par au moins deux d’entre eux.

Exercice 22 (résolu). Soit la suite (a_n) définie par $a_1 = 1$ et :

$$a_{n+1} = \frac{1}{16} \left(1 + 4a_n + \sqrt{1 + 24a_n}\right)$$

pour tout $n \geq 1$. Trouver une formule close pour a_n.
Exercice 23 (résolu). La suite \((a_n)\) vérifie \(a_1 = 0, |a_2| = |a_1 + 1|, \ldots, |a_n| = |a_{n-1} + 1|\). Montrer que :
\[
\frac{a_1 + a_2 + \cdots + a_n}{n} \geq - \frac{1}{2}.
\]

Exercice 24 (résolu). Existe-t-il un ensemble \(A \subset \{1, 2, \ldots, 3000\}\) de cardinal 2000, tel que si \(x \in A\) alors \(2x \notin A\) ?

Exercice 25 (résolu). Sur un tableau, on a écrit \(n \geq 12\) entiers consécutifs strictement positifs. Alice et Bob effacent alternativement un des entiers du tableau, jusqu’à ce qu’il en reste seulement deux. On convient qu’Alice gagne le jeu si les deux entiers restant sont premiers entre eux, et qu’elle perd sinon. Alice commence. Qui, en fonction de \(n\), possède une stratégie gagnante ?

Exercice 26. Existe-t-il 1983 entiers strictement positifs et strictement inférieurs à 100000 tels que trois quelconques d’entre eux ne soient pas en progression arithmétique ?

Exercice 27 (résolu). Montrer que le polynôme :
\[
1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots + \frac{x^{2n}}{(2n)!}
\]
n’a pas de racine réelle.

Exercice 28. Peut-on paver un cube par un nombre fini de cubes de tailles toutes différentes ?

Exercice 29 (résolu). La suite \((a_n)\) vérifie \(a_n > 0\) et \(a_{n+1}^2 = a_n + 1\) pour tout \(n\). Montrer que au moins un des \(a_n\) est irrationnel.

Exercice 30 (résolu). Soit un quadrilatère \(ABCD\). On note \(A_1\) (resp. \(B_1\), resp. \(C_1\), resp. \(D_1\)) le symétrique de \(A\) (resp. \(B\), resp. \(C\), resp. \(D\)) par rapport à \(C\) (resp. \(D\), resp. \(A\), resp. \(B\)). Comparer les aires de \(ABCD\) et de \(A_1B_1C_1D_1\).

Exercice 31 (résolu). On appelle \(a, b, c\) les longueurs des côtés d’un triangle et \(A\) son aire. Montrer que :
\[
a^2 + b^2 + c^2 \geq 4A\sqrt{3}.
\]

Exercice 32 (résolu). La fonction \(f : n \mapsto n^2 - n + 41\) prend des valeurs premières pour \(n = 1, 2, \ldots, 40\). Trouver 40 entiers consécutifs \(n\) pour lesquels \(f(n)\) est composé.

Exercice 33 (résolu). Montrer que si \(n\) est somme de deux carrés, alors \(2n\) aussi.

Exercice 34 (résolu). Sur un tableau, on a écrit les uns à côté des autres les nombres de 1 à 100. Alice et Bob placent alternativement un des signes +, – ou \(\times\) dans le premier trou encore libre entre deux nombres. Si c’est Alice qui écrit le premier signe, montrer qu’elle a une stratégie pour obtenir un résultat impair. Bob peut-il empêcher Alice d’obtenir un résultat pair ?

Exercice 35 (résolu). Soit \(n\) un entier. Calculer la somme des \(\frac{1}{xy}\) étendue aux entiers \(x\) et \(y\) vérifiant \(x \leq n, y \leq n, x + y > n\) et \(\text{PGCD}(x, y) = 1\).

Exercice 36 (résolu). Soient \(x_1, \ldots, x_n\) des réels strictement positifs. Montrer que :
\[
x_1^{x_1}x_2^{x_2}\cdots x_n^{x_n} \geq (x_1 \cdots x_n)^{\frac{x_1 + \cdots + x_n}{n}}.
\]
Exercice 37 (résolu). Montrer que parmi neuf personnes, il y en a toujours trois qui se connaissent deux à deux ou quatre qui ne se connaissent pas du tout. Montrer que la conclusion est fausse avec huit personnes.

Exercice 38. Montrer qu’il existe une infinité d’entiers strictement positifs \(n \) tels que l’écriture décimale de \(2^n \) se termine par celle de \(n \).

Exercice 39 (résolu). Soit \((a_n)\) la suite de Fibonacci définie par \(a_1 = a_2 = 1 \) et \(a_{n+1} = a_n + a_{n-1} \) pour \(n > 1 \). Montrer que :
\[
\frac{a_1}{2} + \frac{a_2}{2^2} + \frac{a_3}{3^3} + \cdots + \frac{a_n}{2^n} < 2.
\]

Exercice 40. Montrer que dans un polygone convexe à \(2n \) côtés, il existe une diagonale qui n’est pas parallèle à aucun des côtés.

Exercice 41. On définit la suite \((a_n)\) par \(a_0 = 9 \) et \(a_{n+1} = 3a_n^4 + 4a_n^3 \) pour \(n \geq 0 \). Montrer que \(a_{10} \) contient au moins 1000 neuf dans son écriture décimale.

Exercice 42 (résolu). Montrer que parmi quinze entiers appartenant à \(\{2, 3, \ldots, 1992\} \) et premiers entre deux à deux, il y a au moins un nombre premier.

Exercice 43 (résolu). Résoudre l’équation diophantienne :
\[
y^2 + y = x^4 + x^3 + x^2 + x.
\]

Exercice 44. Montrer qu’un polynôme unitaire à coefficient entiers qui prend quatre fois la valeur 5 (sur des valeurs entières) ne prend pas la valeur 8 (sur une valeur entière).

Exercice 45 (résolu). On remplit un tableau \(25 \times 25 \) par des nombres égaux à 1 ou –1. Pour tout \(i \), on note \(a_i \) le produit des éléments de la \(i \)-ième ligne et \(b_i \) le produit des éléments de la \(i \)-ième colonne. Montrer que \(a_1 + b_1 + \cdots + a_{25} + b_{25} \) est non nul.

Exercice 46. On se donne un ensemble fini \(P \) de \(n \geq 2 \) points du plan. Pour toute droite \(l \), on appelle \(S(l) \) la somme des distances des points de \(P \) à la droite \(l \). Montrer qu’il existe une droite minimisant la fonction \(S \) et passant par deux points de \(P \).

Exercice 47 (résolu). Soient \(a, b, c \) les longueurs des hauteurs d’un triangle. Montrer que :
\[
\frac{3}{2} \leq \frac{bc}{a(b+c)} + \frac{ac}{b(a+c)} + \frac{ab}{c(a+b)} < 2.
\]

Exercice 48. On dispose d’un certain nombre de carrés identiques. Pour quelles valeurs de \(m \) et de \(n \) est-il possible de colorier les côtés de chaque carré en 4 couleurs et d’assembler les carrés pour former un rectangle \(n \times m \) de telle sorte que deux côtés confondus soient de même couleur ?

Même question avec des cubes et six couleurs.

Exercice 49 (résolu). Un ensemble fini \(S \) de points du plan vérifient la propriété suivante : pour tous \(A \) et \(B \) dans \(S \), la droite \((AB) \) rencontre \(S \) en un troisième point. Montrer que tous les points de \(S \) sont alignés.
Exercice 50. Trouver tous les polynômes P vérifiant :

$$P(x)P(x + 1) = P(x^2 + x + 1)$$

pour tout réel x.

Exercice 51 (résolu). Montrer qu’il n’existe aucune courbe qui intersecte une seule fois chacun des segments de la figure suivante :

\[
\begin{array}{cccc}
| & | & | & |
\end{array}
\]

Exercice 52 (résolu). Soient P_1, P_2, \ldots, P_9 neuf points de l’espace à coordonnées entières, trois d’entre eux jamais alignés. Montrer qu’il existe un point à coordonnées entières L sur un des segments $[P_iP_j]$.

Exercice 53. Soient $ABCD$ un carré et P un point intérieur à $ABCD$, tel que $PA = 2$, $PB = 3$ et $PD = 1$. Déterminer l’angle APD.

Exercice 54 (résolu). Soit la fonction f définie par $f(x) = \frac{x\sqrt{3} - 1}{x + \sqrt{3}}$. Calculer $f \circ f \circ \cdots \circ f$ (2006 fois).

Exercice 56. Montrer que :

$$\sum_{k=0}^{n} \binom{n + k}{k} \frac{1}{2^k} = 2^n.$$

Exercice 57. Est-ce que $4^{545} + 545^4$ est premier ?

Exercice 58 (résolu). Montrer que tout polygone convexe d’aire 1 est contenu dans un rectangle d’aire 2.

Exercice 59. Simplifier l’expression :

$$\frac{2}{\sqrt{4 - 3\sqrt{5} + 2\sqrt{5} - \sqrt{125}}}.$$

Exercice 60 (résolu). Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction pour laquelle il existe un réel a tel que :

$$f(x + a) = \frac{1 + f(x)}{1 - f(x)}$$

pour tout réel x. Montrer que f est périodique.

Exercice 61 (résolu). Trouver toutes les solutions strictement positives du système suivant :

$$x_1 + x_2 = x_3^2; \ x_2 + x_3 = x_4^2; \ x_3 + x_4 = x_5^2;$$
\[x_4 + x_5 = x_1^2;\ x_5 + x_1 = x_2^2. \]

Exercice 62. Quelle est la centième décimale de \((\sqrt{50} + 7)^{100}\) ?

Exercice 63. Le polynôme \(x^{105} - 9\) peut-il s’écrire comme produit de deux polynômes non constants à coefficients entiers ?

Exercice 64 (résolu). Les entiers de 1 à 1986 sont écrits bout à bout dans un ordre quelconque. Montrer que le nombre obtenu n’est jamais un cube parfait.

Exercice 65 (résolu). Montrer que pour tous réels \(a, b, c\) et \(d\) strictement positifs, on a :
\[
\sqrt{ab} + \sqrt{cd} \leq \sqrt{(a+d)(b+c)}.
\]

Exercice 66 (résolu). Soient \(P\) et \(P_1, \ldots, P_n\) des points du plan. On suppose que pour tout \(i\), \(P\) est plus proche de \(P_i\) que ne le sont les autres \(P_j\). Montrer que \(n < 15\).

Exercice 67 (résolu). Soit \(ABC\) un triangle. On construit extérieurement à \(ABC\) trois triangles équilatéraux basés sur chacun de ses côtés. Montrer que les centres de ces trois triangles équilatéraux sont les sommets d’un autre triangle équilatéral.

Exercice 68. Soit \(f : \mathbb{R} \rightarrow \mathbb{R}\) vérifiant :
\[
f(x + 1) + f(x - 1) = \sqrt{2} f(x)
\]
pour tout \(x\) dans \(\mathbb{R}\). Montrer que \(f\) est périodique.

Qu’en est-il si on remplace \(\sqrt{2}\) par la solution positive de \(t^3 = t^2 + t + 1\) ?

Exercice 69. Les réels positifs \(x, y, z\) vérifient :
\[
x^2 + xy + \frac{y^2}{3} = 25, \ \frac{y^2}{3} + z^2 = 9, \ z^2 + zx + x^2 = 16.
\]
Calculer \(xy + 2yz + 3zx\).

Exercice 70. Soit la suite \((a_n)\) définie par :
\[
\sum_{d|n} a_d = 2^n.
\]
Montrer que \(n\) divise \(a_n\).

Exercice 71 (résolu). On écrit un nombre dans chaque case d’un échiquier \(8 \times 8\). Une opération consiste à choisir un carré \(3 \times 3\) ou \(4 \times 4\) dans l’échiquier et à ajouter 1 à chacun des nombres du carré choisi. Peut-on toujours, avec de telles opérations, rendre tous les nombres de l’échiquier multiples de 3 ?

Exercice 72 (résolu). Soient \(a_0, \ldots, a_n\) des réels vérifiant \(a_0 = a_n = 0\) et \(a_{k-1} - 2a_k + a_{k+1} \leq 0\) pour \(1 \leq k \leq n - 1\). Montrer que pour tout \(k\), \(a_k\) est positif.

Exercice 73 (résolu). Xavier dispose de 128 cartes portant chacune un réel, ceux-ci étant deux à deux distincts. Sandrine a le droit de désigner deux cartes et de demander à Xavier celle qui porte le nombre le
Exercice 74 (résolu). Combien existe-t-il de mots de \(n\) lettres écrits avec les seules lettres \(a, b, c, d\) tels qu’un \(a\) ne soit jamais à côté d’un \(b\)?

Exercice 75 (résolu). Montrer que parmi \(n + 1\) entiers de \(\{1, 2, \ldots, 2n\}\), il existe deux entiers premiers entre eux.

Exercice 76 (résolu). Dans un disque de rayon 1, il y a sept points, deux à deux distants d’au moins 1. Montrer qu’un des points est le centre du cercle.

Exercice 77 (résolu). Dans l’équation :
\[x^3 + \square x^2 + \square x + \square = 0,\]
François remplace d’abord un des carrés par un entier non nul. Ensuite, Rémy remplace un autre carré par un entier, et finalement François remplace le dernier carré par un entier. Montrer que François peut jouer de façon à ce que les trois solutions de l’équation obtenue soient des entiers.

Exercice 78 (résolu). On considère un pentagone convexe dont tous les points sont à coordonnées entières et dont tous les côtés ont une longueur entière. Montrer que le périmètre de ce pentagone est un entier pair.

Exercice 79. Soit \(n \geq 5\) un entier, et \(a_1, \ldots, a_n\) des entiers strictement positifs. Montrer qu’il est possible d’additionner ou de soustraire certains des \(a_i\) pour obtenir un résultat multiple de \(n^2\).

Exercice 80 (résolu). Dans une pièce noire, on a disposé 2006 pièce sur pile et 2007 sur face. Dolphi doit, sans allumer la lumière, retourner un certain nombre de pièces et séparer les pièces en deux tas, de telle façon qu’il y ait après l’opération autant de pièces sur pile dans chaque tas. Comment peut-il s’y prendre ?

Exercice 81 (résolu). On considère \(n\) chaises disposées en ligne, avec un enfant assis sur chacune d’entre elles. Chacun des enfants est autorisé, soit à rester à sa place, soit à se déplacer sur une chaise voisine. De combien de façons les enfants peuvent-ils se réordonner ?

Exercice 82 (résolu). Montrer que pour tout entier \(n \geq 3\) :
\[\sqrt{2\sqrt{3\sqrt{4 \cdots \sqrt{(n-1)\sqrt{n}}}}} < 3.\]

Exercice 83 (résolu). On liste les nombres de 1 à 1000000, puis on remplace chacun d’eux par la somme de ses chiffres, et on répète l’opération jusqu’à n’obtenir plus que des nombres d’un chiffre. Au final, y a-t-il plus de 1 ou de 2 ?

Exercice 84. Soit \(n > 2\) un entier. On considère l’application \(T\) suivante :
\[(x_1, \ldots, x_n) \mapsto \left(\frac{x_1 + x_2}{2}, \frac{x_2 + x_3}{2}, \ldots, \frac{x_n + x_1}{2}\right).\]
Montrer que pour tout \(x = (x_1, \ldots, x_n) \) où les \(x_i \) ne sont pas tous égaux, il existe un entier \(k \) tel que \(T^k(x) \) ait une composante non entière.

Exercice 85. Trouver tous les couples d’entiers \((x, y)\) pour lesquels :
\[
x^3 + x^2y + xy^2 + y^3 = 8(x^2 + xy + y^2 + 1).
\]

Exercice 86 (résolu). Montrer que parmi \(2n \) personnes, il y en deux qui ont un nombre pair d’amis communs.

Exercice 87 (résolu). Résoudre l’équation diophantienne :
\[
x^3 + 3 = 4y(y + 1).
\]

Exercice 88. Soit \(S \) un ensemble fini de \(n \geq 3 \) points du plan. On suppose que les distances entre deux points quelconques sont deux à deux distinctes et on colorie en rouge \(r \) segments dont les extrémités sont choisies parmi les points de \(S \). Soit \(m \) le plus petit entier supérieur ou égal à \(\frac{2r}{n} \). Montrer qu’il existe un chemin formé par \(m \) segments rouges de plus en plus longs.

Exercice 89 (résolu). Soient \(a, b, c \) des réels vérifiant \([na] + [nb] = [nc]\) pour tout entier \(n \). Montrer que soit \(a \), soit \(b \) est entier.

(On rappelle que \([x]\) désigne la partie entière de \(x \).)

Exercice 90 (résolu). On considère la suite de Fibonacci définie par \(a_1 = a_2 = 1, a_{n+1} = a_n + a_{n-1} \) pour \(n > 1 \). Montrer que pour tout entier \(k \), il existe un terme de la suite de Fibonacci qui se termine par \(k \) zéros.

Exercice 91. Soit \(ABC \) un triangle équilatéral de côté \(a \). On construit \(C_A \) le cercle contenu dans le plan médiateur de \([BC]\), de centre le milieu de \([BC]\), de rayon \(r \) fixé. On construit de même \(C_B \) et \(C_C \) sur les côtés \([AC]\) et \([AB]\). Soit \(A' \) un point de \(C_A \) tel qu’il existe deux points \(B' \) et \(C'' \) de \(C_B \) à distance \(a \) de \(A' \). On note \(C' \) le point de \(C_C \) symétrique de \(C'' \) par rapport au plan médiateur de \([BC]\). Montrer que \(A'B'C' \) est un triangle équilatéral.

Exercice 92 (résolu). Trouver toutes les fonctions \(f : \mathbb{R} \to \mathbb{R} \) vérifiant :
\[
f(x) + f \left(\frac{1}{1-x} \right) = x
\]

pour tout \(x \neq 1 \).

Exercice 93. Soient \(a, b, c \) les longueurs des côtés d’un triangle. Montrer que \(\frac{1}{a+b}, \frac{1}{b+c} \) et \(\frac{1}{c+a} \) sont aussi les longueurs des côtés d’un triangle.

Exercice 94 (résolu). Soient \(n \) points du plan non tous alignés. Montrer qu’il existe une droite passant exactement par deux de ces points.

Exercice 95. Montrer que si \(r > 0 \) est une approximation rationnelle de \(\sqrt{5} \), alors \(\frac{2r+5}{r+2} \) est une approximation encore meilleure.

Exercice 96 (résolu). Soit \(P \) un polynôme à coefficients entiers. On suppose qu’il existe des entiers \(a, b, c \) distincts tels que \(P(a) = P(b) = P(c) = -1 \). Montrer que \(P \) n’a pas de racine entière.
Exercice 97 (résolu). On écrit les entiers de 1 à n dans un ordre quelconque. Montrer qu’il est impossible d’obtenir l’ordre de départ après un nombre impair d’interventions.

Exercice 98 (résolu). Trouver tous les coloriages des entiers strictement positifs en noir et blanc pour lesquels la somme de deux entiers de couleur différente est noire et que leur produit est blanc.

Exercice 99 (résolu). Donner une fonction \(f : \mathbb{R} \to \mathbb{R} \) non constante vérifiant :

\[
f(x + 1) = \frac{1}{2} + \sqrt{f(x) - (f(x))^2}
\]

pour tout réel \(x \).

Exercice 100 (résolu). On divise un cercle en six secteurs et on inscrit les nombres 1, 0, 1, 0, 0, 0 chacun sur un secteur dans le sens des aiguilles d’une montre. Une opération consiste à incrémenter de 1 les nombres inscrits sur deux secteurs adjacents. Peut-on, en appliquant successivement cette opération, obtenir six nombres égaux ?

2.2 Les solutions des élèves

Solution de l’exercice 1 (par Stanislas Sochacki). Notons \(S \) la somme de l’énoncé. Nous allons montrer que \(S \equiv n \pmod{4} \), ce qui permettra directement de conclure. Ceci est vrai lorsque tous les \(a_i \) valent 1 puisqu’alors chaque terme de la somme fait 1 et qu’il y a \(n \) termes. Supposons maintenant donnée une configuration quelconque des \(a_i \) et remplaçons l’un des \(a_i \) par son opposé. Ceci modifie la somme \(S \) en permutant le signe de quatre termes consécutifs. Appelons \(A, B, C \) et \(D \) ces termes. Après modification du \(a_i \), ils deviennent \(-A, -B, -C \) et \(-D \) et donc la valeur de \(S \) diminue de \(2A + 2B + 2C + 2D = 2(A + B + C + D) \). Or, \(A, B, C \) et \(D \) valent 1 ou -1 et donc sont congrus à 1 modulo 2. En particulier, \(A + B + C + D \equiv 0 \pmod{2} \) et donc \(2(A + B + C + D) \) est multiple de 4. Ainsi la valeur de \(S \) ne change pas modulo 4. Il suffit pour conclure de remarquer qu’il est possible d’obtenir en changeant successivement le signe de certains des \(a_i \) n’importe quelle configuration à partir de la configuration où ils sont tous égaux à 1.

Solution de l’exercice 2 (par Margaret Bilu). Oui. Il suffit de les placer comme suit : 1, 7, 4, 9, 2, 6, 5, 8, 3.

Solution de l’exercice 6 (par Samuel Bach, Margaret Bilu). On va démontrer le résultat par récurrence sur \(n \). Le cas \(n = 4 \) est trivial. Pour le cas \(n = 5 \), appelons les points A, B, C, D, E. Par symétrie, on peut supposer que A connaît B, C, D et que B connaît C, D, E. Comme B connaît A, c’est bon.

Maintenant, supposons le résultat connu pour \(n \) et \(n - 1 \), et montrons-le pour \(n + 1 \) personnes, que l’on appelle \(A_1, \ldots, A_{n+1} \). L’hypothèse de récurrence permet de supposer, quitte à réordonner les \(A_i \), supposer que \(A_1 \) connaît \(A_2, \ldots, A_n \). Parmi \(A_2, \ldots, A_{n+1} \), l’un connaît tous les autres. Si c’est \(A_i \), avec \(i \) différent de \(n + 1 \), alors \(A_1 \) connaît tout le monde et c’est fini. On peut donc supposer que \(A_{n+1} \) connaît \(A_2, \ldots, A_n \). Maintenant, l’hypothèse de récurrence au rang \(n - 1 \) permet de supposer, quitte à réordonner, que \(A_2 \) connaît \(A_3, \ldots, A_n \). Comme \(A_2 \) connaît \(A_1 \) et \(A_{n+1} \), \(A_2 \) connaît tout le monde et c’est fini.

Solution de l’exercice 8 (par Benjamin Farran, Stanislas Sochacki). Notons A, B et C les milieux respectifs des côtés [\(PQ \)], [\(QR \)] et [\(PR \)].

Nous allons montrer que l’aire maximale est \(\frac{1}{2} \). Expliquons tout d’abord comment Xavier peut obtenir un triangle de cette aire. Il commence par choisir le point \(X \) en \(A \). Si Sandrine choisit le point \(Y \) plus proche de \(P \) que de \(R \), il choisit au troisième coup le point \(R \), sinon il choisit le point \(Q \). Le triangle \(XYZ \) obtenu a au choix une aire supérieure à celle de \(ABR \) ou celle de \(ABQ \) qui valent toutes les deux \(\frac{1}{2} \).

Nous montrons maintenant que Sandrine peut s’arranger pour que l’aire de \(XYZ \) soit inférieure (ou égale) à \(\frac{1}{2} \). Le point \(X \) étant joué pour [\(PQ \)], elle place le point \(Y \) sur [\(QR \)] de telle sorte que
(XY) soit parallèle à (PR). Quelle que soit la position du point Z sur [PR], on peut calculer l’aire de XYZ comme suit : la base XY est proportionnelle d’après le théorème de Thalès à QX (le facteur étant le rapport constant \(\frac{PR}{PQ} \)) et la hauteur est proportionnelle à PX. Ainsi l’aire est proportionnelle à \(PX \times XQ = PB^2 - XB^2 \). Elle est maximale quand X est placé en B et elle vaut alors \(\frac{1}{4} \) comme on le calcule aisément. Ceci termine l’exercice.

Solution de l’exercice 9 (par Samuel Bach, Robin Ngi, Michel Rao). Montrons tout d’abord le lemme suivant : si \(f \) est un polynôme du second degré tel que \(f(x) \neq x \) pour tout \(x \), alors pour tout \(x, f(x) > x \), soit pour tout \(x, f(x) < x \). Soit \(g \) définie par \(g(x) = f(x) - x \). Supposons qu’il existe \(x \) et \(y \) tels que \(f(x) > x \) et \(f(y) < y \). La fonction \(g \) étant continue, en lui appliquant le théorème des valeurs intermédiaires on obtient l’existence de \(z \) tel que \(g(z) = 0 \), soit \(f(z) = z \). La contradiction démontre le lemme.

Si pour tout \(x, f(x) > x \), alors \(f(f(x)) > f(x) > x \) donc \(f(f(x)) \neq x \). De même dans le cas \(f(x) < x \).

Solution de l’exercice 12 (par Vincent Langlet). Par une étude exhaustive (finalement assez courte à mener), on montre que les seules cases possibles sont celles de coordonnées \((x, y)\) avec \(x, y \in \{1, 4, 7\} \).

Solution de l’exercice 13 (par Benjamin Scellier). Modulo 16, une puissance quatrième vaut 0 ou 1 suivant sa parité. Parmi \(a, b, c, d \), on ne peut donc avoir qu’un nombre impair au plus, ce qui montre que trois au moins des entiers sont pairs.

Modulo 5, une puissance quatrième vaut 0 ou 1. Pour la même raison, trois au moins des entiers sont divisibles par 5 parmi \(a, b, c, d \).

Parmi \(a, b, c, d \), trois au moins sont divisibles par 5, et trois au moins sont pairs. Il y a donc au moins deux multiples de 10 parmi eux.

Solution de l’exercice 17 (par Rémi Varloot). L’énoncé se traduit par l’équation fonctionnelle suivante :

\[
 f \left(\frac{x + y}{2} \right) = \frac{f(x) + f(y)}{2}.
\]

En procédant pareillement que pour la résolution de l’équation de Cauchy, on montre que \(f \) est affine.

Solution de l’exercice 18 (par Stanislas Sochacki). Supposons qu’un tel polyèdre existe. Notons \(a_i \) le nombre de côtés de la \(i \)-ième face. La somme des \(a_i \) est tout d’abord paire car chaque arête compte pour deux faces. Par ailleurs, l’hypothèse de l’énoncé assure qu’elle est impaire. C’est contradictoire, ce qui prouve qu’un tel polyèdre n’existe pas.

Solution de l’exercice 19 (par Lionel Cassier). La fonction \(g \) définie par \(g(x) = \frac{f(x)}{x} \) vérifie l’équation fonctionnelle plus simple \(g(xy) = g(x) + g(y) \). On sait que les solutions continues de cette équation sont de la forme \(g(x) = a \ln x \) pour un réel \(a \) fixé. On en déduit que \(f \) est de la forme \(x \mapsto ax \ln x \).

Solution de l’exercice 20 (par Lionel Cassier, Benjamin Scellier). Les résidus cubiques modulo 13 sont 0, 1, -1, 5 et -5, d’où on déduit par une étude exhaustive, que si \(x, y, z \) sont solutions de l’équation, ils sont tous les trois multiples de 13. Par ailleurs, \(\frac{x}{13}, \frac{y}{13} \) et \(\frac{z}{13} \) sont aussi solution. On en déduit par le principe de descente infinie que la seule solution est \(x = y = z = 0 \).

Solution de l’exercice 21 (par Samuel Bach, Margaret Bilu). Nous allons démontrer le résultat par récurrence sur \(n \). Le cas \(n = 3 \) est évident. On utilise le lemme de l’exercice 49 (ou 94) : si \(n \) points du plan ne sont pas tous alignés, il existe une droite passant par exactement deux d’entre eux. On applique ce lemme à \(n + 1 \) points non tous alignés et on note \(A \) et \(B \) les deux points que rencontre la droite. On considère les \(n \) points différents de \(A \). S’ils sont tous alignés, la droite qui les porte ainsi que les \(n \) droites
joignant \(A \) à ces autres points forment un ensemble convenable. Sinon par hypothèse de récurrence, il existe \(n \) droites distinctes reliant les points différents de \(A \) auxquelles on ajoute la droite \((AB)\) pour obtenir un ensemble convenable.

Solution de l’exercice 22 (par Benjamin Scellier). On montre facilement par récurrence que:

\[
a_n = \frac{(2^n + 1)(2^{n-1} + 1)}{3 \times 2^{2n-1}}.
\]

Solution de l’exercice 23 (par Benjamin Scellier). La solution proposée par Benjamin étant bien trop longue, nous préférons en donner une autre. En élevant les égalités au carré, on obtient \(a_{i+1} = a_i^2 + 2a_i + 1\), et en sommant celles-ci on obtient \(a_{n+1}^2 = (a_1 + \cdots + a_n)^2 + n \geq 0\) qui donne la conclusion.

Solution de l’exercice 24 (par Benjamin Farran, Mathieu Finas, Jérôme Manchon). On commence par définir l’ensemble \(B \) comme suit : il contient les nombres impairs, et les nombres congrus à 4 modulo 8, à 16 modulo 32 et ainsi de suite. Il vérifie la propriété de l’énoncé et également la propriété remarquable suivante : si \(x \not\in B \), alors \(x \) est pair et \(\frac{x}{2} \in B \). Par ailleurs son cardinal est:

\[
\left[\frac{3000}{2} \right] - \left[\frac{3000}{4} \right] + \left[\frac{3000}{8} \right] - \left[\frac{3000}{16} \right] - \cdots - \left[\frac{3000}{1024} \right] - \left[\frac{3000}{2048} \right] = 1999.
\]

Supposons maintenant que \(A \) soit tel que pour tout \(x \in A \), on ait \(2x \not\in A \). Alors si \(x \) est un élément de \(A \setminus B \), on a \(\frac{x}{2} \in B \setminus A \). Ceci démontre qu’il y n’a pas plus d’éléments dans \(A \setminus B \) que dans \(B \setminus A \), et par suite qu’il n’y a pas plus d’éléments dans \(A \) que dans \(B \). Ainsi \(A \) ne peut pas contenir 2000 éléments.

Solution de l’exercice 25 (par Benjamin Scellier). Montrons que si \(n \) est pair, Bob a une stratégie gagnante. Celle-ci consiste à retirer dans un premier temps les nombres impairs en laissant le plus possible d’entiers divisibles par 3. Si Alice retire elle aussi un nombre impair, Bob peut s’arranger pour qu’il reste au final deux nombres pairs, ce qui lui assure la victoire. Sinon, après \(n - 4 \) coups, il reste 4 entiers dont deux pairs et deux congrus à 3 modulo 6. Si Alice retire un entier pair, Bob retire l’autre et gagne, si elle retire un entier congru à 3 modulo 6, Bob fait de même et gagne également.

Montrons que si \(n = 2k + 1 \) est impair, c’est Alice qui a une stratégie gagnante. En effet, elle commence par retirer le plus petit nombre de la liste, puis elle regroupe les \(n \) entiers restant en \(k \) groupes de deux entiers consécutifs. Ensuite, après que Bob ait joué, elle retire l’entier associé avec celui de Bob. Ainsi, à la fin, il restera deux entiers consécutifs, donc premiers entre eux, ce qui lui assure la victoire.

Solution de l’exercice 27 (par Samuel Collin, Mathieu Finas, Robin Ngi, Michel Rao). Appelons \(P \) le polynôme en question. Comme \(P \) est de degré pair, il tend vers \(+\infty\) en l’infini. Il suffit donc de montrer que si \(P \) admet un minimum local en \(x \), alors \(P(x) > 0 \). Mais dans ce cas, on a \(P'(x) = 0 \) et donc :

\[
P(x) = \frac{x^{2n}}{(2n)!} = \frac{x^{2n}}{(2n)!} > 0
\]
(car \(x \) ne peut valoir 0 puisque \(P'(0) = 1 \)).

Solution de l’exercice 29 (par Samuel Collin, Mathieu Finas, Jérôme Manchon). Supposons que la suite ne contienne que des valeurs rationnelles. On remarque dans un premier temps que les dénominateurs sont strictement décroissants jusqu’à attendre 1. En effet, si la fraction irréductible \(\frac{p}{q} \) apparait dans la suite, le terme suivant est \(\sqrt{\frac{p+q}{q}} \) et pour que ce nombre soit rationnel, le numérateur et le dénominateur de la simplification de la fraction \(\frac{p+q}{q} \) doit être tous les deux des carrés. En particulier le nouveau dénominateur s’obtient en divisant \(q \) par un nombre puis en prenant la racine carrée du résultat obtenu. Au final, on obtient bien un nombre plus petit dès que \(q > 1 \).
Ainsi, la suite contient au bout d’un moment que des termes entiers. Une fois, ce moment atteint ces entiers diminuent eux aussi strictement jusqu’à atteindre 1 (puisque $\sqrt{x+1} < x$ pour $x \geq 2$). On en déduit que le nombre 1 apparaît nécessairement dans la suite, donnant à l’indice suivant le nombre irrationnel $\sqrt{2}$. Contradiction.

Solution de l’exercice 30 (par Samuel Bach, Margaret Bilu, Benjamin Scellier). L’aire de $ABCD$ est la norme du produit vectoriel de \overrightarrow{AC} et \overrightarrow{BD} et celle de $A_1B_1C_1D_1$ est la norme du produit vectoriel de A_1C_1 et de B_1D_1. Comme $A_1C_1 = 3\overrightarrow{CA}$ et $B_1D_1 = 3\overrightarrow{DB}$, le rapport des aires est $3 \times 3 = 9$.

Solution de l’exercice 31 (par Mathieu Finas, Robin Ngi). Par l’inégalité de réordonnement, on a déjà $a^2 + b^2 + c^2 \geq ab + bc + ca$. Notons α, β et γ les angles du triangle. La loi des sinus permet d’exprimer :

$$ab + bc + ca = 2A \left(\frac{1}{\sin \alpha} + \frac{1}{\sin \beta} + \frac{1}{\sin \gamma} \right).$$

La convexité de la fonction $x \mapsto \frac{1}{\sin x}$ sur l’intervalle $]0, \pi[$ permet d’obtenir finalement la majoration de l’énoncé.

Solution de l’exercice 32 (par Samuel Bach, Margaret Bilu). On souhaite trouver un entier N tel que $f(N + k)$ soit composé pour k compris entre 1 et 40. Or, un calcul donne $f(N + k) = N(N + 2k - 1) + f(k)$. Ainsi, si l’on choisit N multiple de $f(k)$, pour tout k compris entre 1 et 40, on aura gagné. Mais c’est possible : il suffit de prendre $N = f(1)f(2) \cdots f(40)$.

Solution de l’exercice 33 (par Samuel Bach, Margaret Bilu, Robin Ngi). Si n s’écrit $a^2 + b^2$, alors $2n$ s’écrit $(a + b)^2 + (a - b)^2$.

Solution de l’exercice 34 (par Stanislas Sochacki). Voici la stratégie d’Alice : elle marque un + entre le 1 et le 2 et ensuite, plus que des ×. Ainsi le résultat obtenu est 1 plus une somme de termes qui sont le produit d’au moins deux entiers consécutifs. Le résultat est donc impair.

Alice peut aussi se débrouiller pour obtenir un résultat pair en ne mettant que des ×.

Solution de l’exercice 35 (par Benjamin Scellier). On montre par récurrence sur n que la somme vaut 1 quel que soit n. Pour $n = 2$, c’est une vérification simple. Regardons les termes qui disparaissent et ceux qui apparaissent lorsque l’on passe de $n - 1$ à n ; il suffit de prouver qu’ils se compensent exactement. Les termes qui disparaissent sont les $\frac{1}{k(n-k)}$ pour $k \leq n$ et k premier avec $n - k$, et ceux qui apparaissent sont les $\frac{1}{k^2}$ et les $\frac{1}{nk}$ (ce sont les mêmes mais il ne faut pas oublier de les compter deux fois) pour $k' \leq n$ et k' premier avec n.

On remarque qu’un entier d est premier avec n si, et seulement s’il est premier avec $n - d$. On conclut en remarquant que la somme :

$$- \frac{1}{d(n-d)} - \frac{1}{(n-d)d} + \frac{1}{dn} + \frac{1}{(n-d)n} + \frac{1}{na} + \frac{1}{n(n-d)}$$

se simplifie et s’annule.

Solution de l’exercice 36 (par Samuel Bach, Mathieu Finas, Robin Ngi). Comme les x_i jouent un rôle symétrique, on peut supposer qu’ils sont rangés par ordre croissant. Le résultat découle alors de l’application de l’inégalité de Tchebytchev aux suites croissantes (x_1, \ldots, x_n) et $(\ln x_1, \ldots, \ln x_n)$.

Solution de l’exercice 37 (par Samuel Bach, Margaret Bilu). C’est une application directe du théorème de Ramsey et de l’égalité $R(3, 4) = 9$.

Solution de l’exercice 39 (par Margaret Bilu). On peut calculer le terme de gauche qui vaut :

\[2 + \frac{1}{4^{a+1}\sqrt{3}} \left((1 - \sqrt{5})^{n+1}(3 - \sqrt{5}) - (1 + \sqrt{5})^{n+1}(3 + \sqrt{5}) \right). \]

Il suffit donc de montrer que la parenthèse est un nombre négatif, ce qui est évident.

Solution de l’exercice 42 (par Aurélien Pascal). Notons \(a_i \) les entiers, et supposons que tous les \(a_i \) soient composés. Soit \(p_i \) le plus petit facteur premier de \(a_i \). Les \(p_i \) sont nécessairement deux à deux distincts (sinon deux \(a_i \) ne seraient pas premiers entre eux), et donc il y a un \(p_i \) qui est supérieur ou égal à 47 qui est le quinzième nombre premier. Mais alors comme \(a_i \) est composé et \(p_i \) est le plus petit facteur premier de \(a_i \), on a \(a_i \geq p_i^2 \geq 47^2 > 1992 \). Contradiction.

Solution de l’exercice 43 (par Benjamin Scellier). En multipliant l’équation par 4 puis en ajoutant 1, on obtient :

\[(2y + 1)^2 = 4x^4 + 4x^3 + 4x^2 + 4x + 1 = A. \]

Or, pour tout \(x \notin \{ -1, 0, 1, 2 \} \), on a l’encadrement \((2x^2 + x)^2 < A < (2x^2 + x + 1)^2 \), ce qui implique que l’équation n’a pas de solution dans ce cas. On teste les valeurs de \(x \) restantes une par une, et on obtient les couples solutions suivants : \((0, 0), (-1, 0), (2, 5)\).

Solution de l’exercice 45 (par Margaret Bilu). À partir d’une disposition des \(-1\) et des \(1\), on peut obtenir toute autre disposition en changeant un certain nombre de signes. Si l’on change un signe dans le tableau, cela affecte une ligne \(j \) et une colonne \(k \), donc cela change le signe de \(a_{ij} \) et de \(b_{kj} \). Si l’on avait \(a_{ij} = b_{kj} = 1 \), la somme diminue alors de 4. Si l’on avait \(a_{ij} = b_{kj} = -1 \), elle augmente de 4, et si l’on avait \(a_{ij} = -b_{kj} \), elle ne change pas. Finalement, dans toutes les configurations, la somme est la même modulo 4. Or dans le cas où le tableau contient uniquement des \(1\), elle est égale à \(50 \equiv 2 \pmod{4} \), ce qui conclut.

Solution de l’exercice 47 (par Benjamin Scellier). Posons \(x = ab, y = bc \) et \(z = ca \). Ces nombres sont proportionnels à \(\frac{1}{2}, \frac{1}{2} \) et \(\frac{1}{2} \) et donc aux côtés du triangle. Ils vérifient donc l’inégalité triangulaire. L’inégalité que l’on cherche à prouver se réécrit :

\[\frac{3}{2} \leq \frac{x}{y + z} + \frac{y}{x + z} + \frac{z}{x + y} < 2. \]

L’inégalité de gauche est celle de Nesbitt et est valable sans condition sur \(x, y \) et \(z \) (hormis qu’ils doivent être positifs). Pour l’inégalité de droite, on remarque que si \(p = \frac{x+y+z}{2} \), on a \(y + z \geq p \) d’où \(\frac{x+y}{z+y} \leq \frac{p}{y}. \) On majore de même les autres termes pour conclure. L’inégalité stricte provient du fait que l’on ne peut pas avoir \(p = y + z = x + z = x + y \).

Solution de l’exercice 49 (par Benjamin Scellier). Voir exercice 94.

Solution de l’exercice 51 (par Samuel Collin, Mathieu Finas, Stanislas Stochacki).

\[
\begin{array}{ccc}
A & B & C \\
D & & E
\end{array}
\]

Les cases \(B, D \) et \(E \) ont cinq entrées-sorties et donc devraient toutes les trois être utilisées comme point de départ ou point d’arrivée de la courbe, ce qui est impossible.

Solution de l’exercice 52 (par Benjamin Scellier). D’après le principe des tiroirs, il existe deux points \(P_i \) et \(P_j \) dont l’abscisse (resp. l’ordonnée, resp. la côte) ont même parité. Le milieu du segment \([P_iP_j]\) répond alors à la question.
Solution de l’exercice 54 (par Aurélien Pascal). En calculant les premières itérées de f, on se rend compte que $f = f \circ f \circ f : x \mapsto -\frac{1}{x}$. Ainsi $f \circ \cdots \circ f$ (6 fois) est l’identité d’où $f \circ \cdots \circ f$ (2006 fois) est simplement égal à $f \circ f$. C’est donc la fonction :

$$x \mapsto \frac{x - \sqrt{3}}{x\sqrt{3} + 1}$$

Solution de l’exercice 55 (par Vincent Langlet). Supposons par l’absurde que les noirs ont une stratégie gagnante. Alors, les blancs qui entament la partie peuvent commencer par sortir un cavalier puis le remettre en place. Ceci les met dans la position des noirs, c’est-à-dire que désormais ils jouent en deuxième. Ils peuvent alors voler la stratégie gagnante supposée des noirs pour gagner la partie. Ceci constitue une contradiction car les noirs peuvent aussi gagner la partie en utilisant leur stratégie gagnante.

Solution de l’exercice 58 (par Michel Rao, Stanislas Sochacki). Appelons A et B un couple de points du polygone les plus éloignés à distance maximale. Il est alors immédiat que le polygone est entièrement contenu dans l’intersection des disques de centre A et B et de rayon AB. En particulier, il est contenu dans la bande de plan délimitée par les parallèles à (AB) passant par A et B. Montrons que le plus petit rectangle dont les côtés s’appuient sur cette bande dans lequel est contenu le polygone a une aire inférieure à 2, ce qui répondra à la question.

Notons G un point de contact du polygone avec un des côtés du rectangle non porté par la bande, et H un point de contact du polygone avec le dernier côté. Par convexité, les triangles ABH et ABG sont entièrement inclus dans le polygone, et ont pour aire la moitié de celle du rectangle. La conclusion s’ensuit.

Solution de l’exercice 60 (par Lionel Cassier). On a $f(x + 2a) = \frac{1 + f(x + a)}{1 - f(x + a)} = -\frac{1}{f(x)}$, toutes simplifications faites. Ainsi $f(x + 4a) = -\frac{1}{f(x + 2a)} = f(x)$. Donc f est périodique de période $4a$.

Solution de l’exercice 61 (par Samuel Bach). En sommant les équations, on obtient :

$$2(x_1 + \cdots + x_5) = x_1 + \cdots + x_5^2 \geq \frac{1}{5}(x_1 + \cdots + x_5)^2$$

la dernière inégalité étant celle de Cauchy-Schwartz. On en déduit que la somme des x_i est inférieure ou égale à 10. On a aussi que $x_3^2 = x_1 + x_2 \geq 2\sqrt{x_1 x_2}$ et de même cycliquement. En multipliant toutes les inégalités ainsi obtenues, il vient $(x_1 \cdots x_5)^2 \geq 2^5 x_1 \cdots x_5$, d’où $x_1 \cdots x_5 \geq 2^5$. Par l’inégalité arithmétique-géométrique, cela donne $x_1 + \cdots + x_5 \geq 10$ et donc l’égalité. De plus on est dans le cas d’égalité pour l’inégalité arithmétique-géométrique, ce qui assure que tous les x_i sont égaux, nécessairement à 2.

Solution de l’exercice 64 (par Samuel Bach, Margaret Bilu, Stanislas Sochacki). Puisqu’un nombre est toujours congru à la somme de ses chiffres modulo 9, le nombre de l’exercice est congru modulo 9 à $\frac{1986 \times 1987}{2}$, et donc plus simplement à 3. La conclusion résulte du fait qu’un cube ne peut être congru modulo 9 qu’à 0, 1 ou −1.

Solution de l’exercice 65 (par Robin Ngi, Michel Rao). Après élévation au carré, on obtient l’inégalité :

$$2\sqrt{abcd} \leq ac + bd$$

qui est une conséquence immédiate de l’inégalité arithmétique-géométrique.

Solution de l’exercice 66 (par Stanislas Sochacki). Nous allons en fait montrer que $n \leq 6$, et pour cela, nous prouver que pour tous i et j, l’angle P_iPP_j vaut au moins $\frac{\pi}{3}$. En effet, dans le triangle P_iPP_j, on
sait par hypothèse que les côtés PP_j et PP_i sont plus courts que P_iP_j. Cela entraîne par la loi des sinus que les angles en P_i et P_j sont plus petits que l’angle en P. C’est donc que ce dernier fait au moins $\frac{\pi}{3}$ comme annoncé.

Solution de l’exercice 67 (par Benjamin Scellier). Notons A_1, B_1 et C_1 les sommets des triangles équilatéraux et A_2, B_2 et C_2 leurs centres respectifs :

![Diagramme]

Notons r_A (resp. r_B, r_C) la rotation de centre A_2 (resp. B_2, C_2) et d’angle $\frac{2\pi}{3}$. La composée de ces trois rotations $r_C \circ r_A \circ r_B$ est une translation et envoie A sur A ; c’est donc l’identité. On en déduit que X image de C_2 par r_A est envoyé sur C_2 par r_B. Considérons le quadrilatère $A_2XB_2C_2$: ses côtés $[A_2C_2]$ et $[A_2X]$ ont même longueur, ainsi que ses côtés $[B_2C_2]$ et $[B_2X]$. De plus, les angles en A_2 et B_2 valent tous deux $\frac{2\pi}{3}$. On en déduit que c’est un losange et que l’angle en C_2 vaut $\frac{\pi}{3}$. Ceci suffit à conclure.

Solution de l’exercice 71 (par Benjamin Scellier). On peut considérer les entiers comme éléments de $\mathbb{Z}/3\mathbb{Z}$, il s’agit alors de montrer si l’on peut toujours arriver à une configuration où tous les nombres sont nuls. Or, le nombre total de configurations est 3^{64}, et le nombre total de mouvements possibles est majoré par 3^n où n est le nombre de carrés 3×3 ou 4×4 que l’on peut inscrire dans l’échiquier. Il y a en $5^2 + 6^2 = 61$. Ainsi, à partir de la position finale, on ne peut pas atteindre plus de 3^{61} et comme le mouvement est réversible (ajouter 1 à un sous-carré modulo 3, puis appliquer encore deux fois la même opération revient à ne rien faire), il existe au plus 3^{61} configurations pour lesquelles on pourra obtenir un échiquier rempli qu’avec des multiples de 3. Il reste donc des configurations pour lesquelles cette opération est impossible.

Solution de l’exercice 72 (par Benjamin Scellier). On raisonne par l’absurde et on appelle i le plus petit indice pour lequel $a_i < 0$. À partir de l’hypothèse de l’énoncé, on montre par récurrence sur k que :

$$a_n \leq ka_{n-k+1} - (k - 1)a_{n-k}$$

pour tout k. En particulier, pour $k = n - i + 1$, on obtient $(n - i + 1)a_i - (n - i)a_{i-1} \geq 0$, ce qui est en contradiction avec notre hypothèse.

Solution de l’exercice 73 (par Stanislas Szechacki). Nous allons montrer qu’il faut 127 comparaisons pour trouver la plus petite carte. En effet, pour cela, il faut éliminer les 127 autres, et chaque comparaison ne permet d’éliminer qu’un nombre. Il faut donc au minimum 127 comparaisons. Par ailleurs, le protocole suivant montre que 127 comparaisons suffisent : Sandrine compare d’abord successivement la première
et la deuxième carte, la troisième et la quatrième, et ainsi de suite jusqu’à la 127-ième et la 128-ième. Elle conserve à chaque fois la plus petite des deux cartes et élimine la plus grande. Elle recommence ensuite avec les cartes gardées, et ceci jusqu’à ce qu’il ne reste plus qu’une carte, qui est la plus petite. Le nombre de comparaisons effectuées est alors 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127.

Pour déterminer ensuite la deuxième plus petite carte, 6 comparaisons suffisent : en effet cette carte est à chercher parmi celles qui ont été comparées à la plus petite. Celles-ci sont au nombre de 7 ; pour comparer ces 7 cartes, 6 étapes suffisent. Il reste à montrer que 6 est bien le minimum, et donc qu’au moins 7 cartes doivent être comparées à la plus petite, quel que soit le protocole utilisé. Montrons par récurrence que le minimum de

\[2^n \] nombres doit être comparé au moins \(n \) fois. L’initialisation est évidente. Si l’on dispose de \(2^{n+1} \) nombres, et qu’on les sépare en deux groupes de \(2^n \) nombres chacun, il faut trouver le minimum de chaque groupe (que l’on aura par hypothèse de récurrence comparé \(n \) fois), et réalisé une comparaison de plus entre ces deux minima. Finalement le plus petit nombre aura été comparé \(n + 1 \) fois.

Solution de l’exercice 74 (par Mathieu Finas, Stanislas Sochacki). Soit \(u_k \) le nombre de « mots » de \(k \) lettres vérifiant les conditions, et commençant par \(a \) ou \(b \), et \(w_k \) le nombre de mots de \(k \) lettres commençant par \(c \) ou \(d \). On a \(u_1 = 2 \), \(w_1 = 2 \) et \(w_2 = 8 \). Ces deux suites vérifient également les relations de récurrence suivantes :

\[
\begin{align*}
\quad u_{k+1} & = 2(u_k + w_k) & (\text{III.1}) \\
\quad w_{k+1} & = u_k + 2w_k. & (\text{III.2})
\end{align*}
\]

En effet, un mot de \(k+1 \) lettres peut s’obtenir à partir d’un mot de \(k \) lettres en ajoutant un \(c \) ou un \(d \) devant un mot quelconque, un \(a \) ou un \(b \) devant un mot commençant par \(c \) ou \(d \), un \(a \) devant un mot commençant par \(b \) ou un \(b \) devant un mot commençant par \(a \). En combinant (1) et (2), on tire \(u_{k+1} = 3u_k + 2u_{k-1} \) et \(w_{k+1} = u_k + 2w_k \), qui est la quantité cherchée :

\[
\quad u_k + w_k = \frac{\alpha^k(8 - 2\beta) + \beta^k(8 - 2\alpha)}{\sqrt{17}}
\]

où \(\alpha = 3 - \sqrt{17} \) et \(\beta = 3 + \sqrt{17} \) sont les solutions de l’équation \(x^2 = 3x + 2 \).

Solution de l’exercice 75 (par Samuel Collin, Robin Ngi, Michel Rao). Parmi ces \(n + 1 \) entiers, il y a en deux consécutifs qui sont nécessairement premiers entre eux.

Solution de l’exercice 76 (par Samuel Bach, Margaret Bilu, Juliette Fournier, Rémi Varloot). Soient \(O \) le centre du disque et \(A_i \) les sept points placés sur ce disque. Si aucun des points n’est \(O \), il existe des indices \(i \) et \(j \) tels que \(\overrightarrow{OA_i} \cdot \overrightarrow{OA_j} < \frac{\pi}{2} \). Dans le triangle \(A_i O A_j \), l’angle \(\overrightarrow{OA}_i \cdot \overrightarrow{OA}_j \) n’est pas le plus petit, donc le côté opposé \(A_i A_j \) n’est pas le plus long. Comme les deux autres côtés sont plus petits que 1, il en est de même de \(A_i A_j \), ce qui constitue une contradiction.

Solution de l’exercice 77 (par Samuel Bach, Margaret Bilu). On nomme dans l’ordre \(A \), \(B \) et \(C \) les coefficients du polynôme. La stratégie de François est la suivante : il commence par choisir \(B = -1 \). Si Rémy choisit ensuite la valeur de \(C \), alors François choisit \(A = -C \) et les racines du polynôme sont 1, -1 et -C qui sont bien des entiers. Si au contraire, Rémy choisit la valeur de \(A \), alors François choisit à nouveau \(C = -A \) et on conclut de même.

Solution de l’exercice 78 (par Michel Rao, Stanislas Sochacki). Appelons \(P \) le périmètre du pentagone. D’après le petit théorème de Fermat, on a :

\[
P \\equiv A_1 A_2^2 + \cdots + A_5 A_1^2 \equiv (x_2 - x_1)^2 + \cdots + (x_1 - x_5)^2 + (y_2 - y_1)^2 + \cdots + (y_1 - y_5)^2 \quad (\text{mod } 2).
\]
Après développement, tout se simplifie : les doubles produits sont nuls modulo 2 et les carrés apparaissent chacun deux fois. Le périmètre est donc bien pair.

Solution de l’exercice 80 (par Samuel Collin). On fait un tas avec 2006 pièces et on retourne les pièces de ce tas. En effet, si x désigne le nombre de pièces sur face dans le tas en question, il y aura après retournement x pièces sur pile dans ce tas. Par ailleurs, dans l’autre tas, il y a également x pièces sur pile puisqu’il y a $2006 - x$ pièces sur pile dans le premier tas et 2006 en tout.

Solution de l’exercice 81 (par Samuel Bach, Margaret Bilu, Stanislas Sochacki). Appelons u_n le nombre de possibilités et montrons que (u_n) est la suite de Fibonacci. Il est clair que $u_1 = 1$ et que $u_2 = 2$, il nous reste donc à prouver la relation de récurrence. Pour cela, isolons mentalement le premier enfant de la liste : soit il ne se déplace pas, et dans ce cas il y a u_{n-1} possibilités, qui correspondent au déplacement des n autres enfants, soit il se déplace, et dans ce cas, il échange nécessairement sa place avec son voisin (car sa chaise doit au final être occupée) et il y a alors u_{n-2} possibilités.

Solution de l’exercice 82 (par Benjamin Scellier). On a $\sqrt{(n - 1)}\sqrt{n} < n$ car $\sqrt{n - 1} < \sqrt{n}$ et $\sqrt{n} < \sqrt{n}$. On suppose que $\sqrt{a(a + 1)}\sqrt{\cdots}\sqrt{n} < a + 1$. Alors :

$$\sqrt{(a - 1)}\sqrt{a(a + 1)}\sqrt{\cdots}\sqrt{n} < \sqrt{(a - 1)(a + 1)} < a.$$

Donc par récurrence, on a l’inégalité demandée.

Solution de l’exercice 83 (par Aurélien Pascal, Benjamin Scellier). Comme tout nombre est congru à la somme de ses chiffres modulo 9, tout nombre congru à $i \in \{1, 2, \ldots, 9\}$ modulo 9 donnera i après la réécriture. Ainsi, au final, on aura une répétition de la suite 1, 2, 3, 4, 5, 6, 7, 8, 9. Il y aura donc plus de 1 car le dernier nombre 1000000 est congru à 1 modulo 9 et donc fournit un 1.

Solution de l’exercice 86 (par Benjamin Scellier). On suppose par l’absurde que deux personnes quelconques ont un nombre impair d’amis communs. Soient P une personne, A l’ensemble de ses amis et B l’ensemble des personnes restantes. Par hypothèse, chaque personne de A connait un nombre impair de personnes dans A. Or, le nombre d’amitiés entre personnes de A est pair (car chaque amitié fait intervenir deux personnes), et donc le nombre de personnes dans A ayant un nombre impair d’amis (dans A) est pair. Il s’ensuit que A est de cardinal pair, et que P a un nombre pair d’amis. Notons que cette conclusion vaut pour toute personne.

Soit X une personne de A. Il a un nombre impair d’amis dans A et il connaît P. Donc il a un nombre pair d’amis dans B (d’après le premier point). Il s’ensuit qu’il y a un nombre impair d’amitiés entre les personnes de A et de B. Or, toutes les personnes de B ont un nombre impair d’amis dans A (sinon une telle personne et P auraient un nombre pair d’amis communs). On en déduit que B est lui aussi de cardinal pair. Ainsi, il y a un nombre impair de personnes dans l’assemblée (celles de A, celles de B et P), ce qui constitue la contradiction.

Solution de l’exercice 87 (par Benjamin Scellier). L’équation se factorise sous la forme $x^3 = (2y + 3)(2y - 1)$. Le PGCD des deux facteurs est nécessairement impair et un diviseur de 4, c’est donc 1. Il s’ensuit que ces deux facteurs sont tous deux des cubes. Or il n’existe pas de cubes distants de 4. L’équation n’a donc pas de solution.

Solution de l’exercice 90 (par Benjamin Scellier). On considère la suite de Fibonacci modulo 10^k. Il existe 10^{2k} couples de deux nombres à k chiffres, et donc parmi les $10^{2k} + 1$ premiers termes de la suite, une série de deux termes consécutifs apparaît au moins deux fois. Puisque les termes suivants ne se calculent qu’en fonction de ces deux termes, la suite est périodique à partir d’un certain rang. Comme il est de plus possible de déterminer un terme en fonction de deux suivants, elle est périodique dès le départ. Ainsi si t désigne la période, on aura $F_t ≡ F_0 = 0 \pmod{10^k}$, ce qui résout l’exercice.

Solution de l’exercice 92 (par Benjamin Scellier). En appliquant l’équation fonctionnelle successivement avec x égal $1 - x^{-1}$, $1 - 1/x$, on obtient les équations :

$$
f(x) + f\left(\frac{1}{1-x}\right) = x
$$

$$
f\left(\frac{1}{1-x}\right) + f\left(1 - \frac{1}{x}\right) = \frac{1}{1-x}
$$

$$
f\left(1 - \frac{1}{x}\right) + f(x) = 1 - \frac{1}{x}.
$$

En combinant ces équations, on obtient une formule pour f :

$$
f(x) = \frac{1}{2} \left(x + 1 - \frac{1}{x} - \frac{1}{1-x} \right).
$$

Solution de l’exercice 94 (par Samuel Bach, Margaret Bilu, Juliette Fournier). On raisonne par l’absurde. On considère trois points A, B, C (parmi les n points donnés) tels que $A \notin (BC) = \Delta$ et la distance de A à Δ est minimale. Par hypothèse il existe un autre point D (parmi les n) sur Δ. Notons H le projeté de A sur Δ. Quitte à renommer les points, on peut supposer que B et C sont du même côté de H et même que B, C et H sont alignés dans cet ordre. Mais alors C est plus proche de la droite (AB) que ne l’était A de Δ. C’est une contradiction.

Solution de l’exercice 96 (par Samuel Bach). Le polynôme $P(x) + 1$ admet trois racines entières a, b, c ; on peut donc le factoriser sous la forme :

$$
P(x) + 1 = (x - a)(x - b)(x - c)T(x)
$$

pour un certain polynôme T qui est aussi à coefficients entiers. Il s’agit de prouver que le produit $(x - a)(x - b)(x - c)T(x)$ ne peut pas prendre la valeur -1 sur un entier x (nécessairement différent de a, b et c), ce qui résulte du fait que l’un des trois premiers facteurs est nécessairement en valeur absolue strictement supérieur à 1.

Solution de l’exercice 97 (par Samuel Bach, Stanislas Sochacki). Si a_1, \ldots, a_n forment une permutation de $1, \ldots, n$, on définit son nombre d’inversions comme le nombre de couples (i, j) tels que $i < j$ et $a_i > a_j$. Lorsque l’on effectue une intervention de deux a_i, ce nombre d’inversions change de parité. Comme au début et à la fin, on souhaite avoir la même permutation, le nombre d’inversions doit être le même et donc le nombre d’interventions effectuées doit être pair.

Solution de l’exercice 98 (par Samuel Bach, Juliette Fournier, Rémi Varlout). Deux solutions triviales sont les cas où tous les entiers sont de la même couleur. Sinon, soit $n > 1$ le plus petit entier qui soit d’une couleur différente des précédents. Nous allons montrer qu’il est blanc : s’il est noir, par hypothèse 1 est blanc. Donc $1 \times n = n$ est noir, d’où une contradiction. Ainsi, n est blanc et pour k entre 1 et $n - 1$, k est noir. Donc $n + k$ est également noir. De même pour $n + (n + k)$, et par une récurrence immédiate, si $k \ n$ n’est pas un multiple de n, k est noir.
Montrons à présent que les multiples de \(n \) sont tous blancs. On raisonne par l’absurde en considérant le plus petit \(qn \) noir. Donc \(qn + n \) est noir, et par récurrence, pour tout \(k \geq n \), \(kn \) est noir. Or, \(qn \times q \) est blanc, est un multiple de \(n \) et \(qn \geq n \), d’où la contradiction cherchée.

Finalement, les solutions sont : tous les entiers sont de la même couleur, ou bien pour \(n > 1 \), tous les multiples de \(n \) sont blancs et les autres nombres sont noirs.

Solution de l’exercice 99 (par Samuel Bach, Margaret Bilu). On vérifie facilement que la fonction :

\[
x \mapsto \frac{1}{2} \left| \sin \left(\frac{\pi}{2} x \right) \right| + \frac{1}{2}
\]

convient.

Solution de l’exercice 100 (par Mathieu Finas). Notons \(a, b, c, d, e \) et \(f \) les six nombres écrits (dans l’ordre), et posons \(S = a + c + e \) et \(T = b + d + f \). À chaque opération, \(S \) et \(T \) augmentent de 1 et donc on a toujours \(S > T \) si, au départ, on a étiqueté les secteurs de telle façon à ce que \(S = 2 \) et \(T = 0 \). On ne peut donc jamais avoir six nombres égaux car alors on devrait aussi avoir \(S = T \).

3 Les tests

3.1 Le test de mi-parcours

Exercice 1. On dispose de deux jeux de tarot\(^1\), un à dos bleu et l’autre à dos rouge. On les bat séparément puis on pose le jeu rouge au-dessus du jeu bleu. Pour chaque carte rouge, on compte le nombre de cartes qui la séparent de son homologue dans le jeu bleu (on ne compte pas les cartes extrêmes). Quelle est la somme de tous les nombres ainsi obtenus si on ôte ensuite 4000 ?

Exercice 2. Soient \(\Gamma \) un demi-cercle sur une droite \(\ell \), \(C \) et \(D \) des points de \(\Gamma \). On note \(A \) et \(B \) les intersections des tangentes en \(C \) et \(D \) avec \(\ell \) et on suppose que \(A \) et \(B \) sont de part et d’autre de \(\Gamma \). Soient \(E \) l’intersection de \((AC)\) et de \((BD)\), \(F \) le projeté de \(E \) sur \(\ell \). Montrer que la droite \((FE)\) est bissectrice de \(\angle CF \).

Exercice 3. On dessine au tableau un polygone régulier à \(n \geq 3 \) côtés de côté \(a > 1 \) et on joue au jeu suivant.

Pierre dessine une diagonale (qui n’est pas un côté) du polygone, et Xavier efface un des deux demi-plans ouverts délimités par cette diagonale. On continue ainsi jusqu’à qu’il ne reste sur le tableau qu’un triangle dont on note les longueurs \(x, y \) et \(z \). On convient que Xavier gagne la partie si les nombres \(x^2 - 1, y^2 - 1 \) et \(z^2 - 1 \) sont encore les longueurs d’un triangle non aplati et qu’il la perd sinon.

Déterminer, en fonction de \(n \), quel joueur possède une stratégie gagnante.

3.2 Le test final

Exercice 4. François a tracé au tableau un triangle \(ABC \) et a construit extérieurement à celui-ci trois triangles équilatéraux \(BCD, CAE \) et \(ABF \). Cependant, lors de la bataille de craie, Samuel a malencontreusement effacé tous les traits ainsi que les points \(A, B \) et \(C \), il ne reste plus que les points \(D, E \) et \(F \). Comment François peut-il reconstruire à la règle et au compas les points \(A, B \) et \(C \) à partir des données restantes sur le tableau ?

Exercice 5. Deux entiers strictement positifs sont écrits sur le tableau. Tour à tour chacun des stagiaires vient au tableau, observe les deux nombres \(a \) et \(b \), constate que \(a \) est le plus petit, et le remplace par \(\frac{ab}{b-a} \).

\(^1\)De 78 cartes.
Malheureusement, quand vient le tour de Samuel, il ne peut pas constater que α est le plus petit nombre : les deux nombres sont égaux. Montrer que le nombre lu par Samuel est un entier.

Exercice 6. Les dix-huit participants du stage Animath sont chacun au pied d’une échelle au sommet de laquelle se trouve une enveloppe contenant un précieux exercice. Les animateurs ont tendu un nombre fini de cordes entre certaines échelles. On suppose que deux cordes ne sont jamais accrochées au même barreau. Les stagiaires commencent à monter à leur échelle et empruntent systématiquement les cordes qu’ils rencontrent, qu’elles montent ou qu’elles descendent.

Montrer que tous les exercices seront résolus (car c’est trivialement une formalité pour les élèves d’arriver à bout de ces énoncés subtils).

Exercice 7 (Bonus). Simplifier l’expression suivante :

\[(x - a)(x - b)(x - c) \cdots (x - z)\]

où \(a, b, c, \ldots, z\) sont des nombres deux à deux distincts.

3.3 Corrigés

Solution de l’exercice 1. Notons \(a_i\) (resp. \(b_i\)) le nombre de cartes au-dessous de la carte \(i\) du jeu rouge (resp. bleu). Le nombre compté pour cette carte est \(a_i - b_i - 1\). La somme vaut donc :

\[a_1 + \cdots + a_{78} - b_1 + \cdots - b_{78} - 78\]

Or les \(b_i\) sont à permutation près les entiers de 0 à 77 tandis que les \(a_i\) sont ceux de 78 à 155. Après calcul, la somme vaut 6006. La réponse à la question posée est donc 2006.

Solution de l’exercice 2.

Les angles \(\angle OCE, \angle OFE\) et \(\angle ODE\) sont droits. Donc les points \(O, F, D, E\) et \(C\) sont cocycliques sur le cercle de diamètre \([OE]\). La symétrie d’axe \((OE)\) laisse le cercle invariant (car l’axe passe par le centre), et donc échange les deux tangentes et en particulier \(C\) et \(D\). On en déduit que \((OE)\) est la bissectrice de \(\angle COD\). Par cocyclicité, \((FE)\) est la bissectrice de \(\angle CFD\).

Solution de l’exercice 3. Les nombres \(x^2 - 1, y^2 - 1\) et \(z^2 - 1\) sont les longueurs d’un triangle si et seulement si \(z^2 - 1 \leq x^2 - 1 + y^2 - 1\) et deux autres inégalités analogues. Si l’on note \(\gamma\) l’angle opposé au côté de longueur \(z\), la formule d’Al-Kashi donne \(z^2 = x^2 + y^2 - 2xy\cos\gamma\) et l’inégalité précédente devient \(2xy\cos\gamma \geq 1\).

Une condition nécessaire pour assurer la victoire à Xavier est que le triangle laissé soit (strictement) acutangle, autrement dit que le centre \(O\) du cercle circonscrit au polygone régulier soit (strictement)
intérieur au triangle laissé. Ceci résout directement le cas \(n \) impair puisqu’il suffit alors à Pierre de relier dès le premier coup deux sommets opposés du polygone.

Supposons \(n \) impair et montrons que la condition précédente est suffisante. On est dans la configuration suivante :

\[
\begin{align*}
X & \quad Y \\
\gamma & \quad O \\
Z & \quad x \\
y & \\
x & \\
\end{align*}
\]

où \(X, Y \) et \(Z \) sont des sommets du polygone régulier et où \(O \) est intérieur au triangle \(XYZ \). On veut majorer \(xy \cos \gamma = \overrightarrow{ZX} \cdot \overrightarrow{ZY} \). En fixant \(Y \) et \(Z \) et en faisant varier \(X \) de sorte que la condition reste vérifiée, on remarque que le produit scalaire précédent est minimal lorsque l’angle \(\overrightarrow{XOY} \) vaut \(\pi - \frac{\pi}{n} \). Comme l’on veut majorer le produit scalaire, on peut supposer que c’est le cas. Mais alors en faisant varier \(Z \), on constate que le produit scalaire qui nous intéresse est minimal lorsque soit \(ZX \), soit \(ZY \) est un côté du polygone. On peut donc supposer que \(ZY \) est un côté. Dans ce cas, \(XYZ \) est isocèle en \(X \), \(i.e. y = z \) et \(x = ZY = a \). D’où :

\[
2xy \cos \gamma = x^2 + z^2 - y^2 = a^2 > 1
\]

On a ainsi bien prouvé la réciproque dans le cas \(n \) impair.

On en déduit que dans ce cas, c’est Xavier qui a une stratégie gagnante : il suffit qu’il choisisse à chaque fois le demi-plan contenant le point \(O \). Le triangle qu’il laisse au final est alors acutangle, et donc il gagne la partie d’après ce qui précède.

Solution de l’exercice 4. Supposons que \(A, B \) et \(C \) soient dans le sens des aiguilles d’une montre comme ci-dessous :

\[
\begin{align*}
E & \quad F \\
M & \quad M' \\
D & \quad B \\
C & \quad A \\
\end{align*}
\]

Notons \(r_D, r_E \) et \(r_F \) les rotations de centres respectifs \(D, E \) et \(F \) et d’angle \(\pm \frac{\pi}{3} \). Le point \(B \) est envoyé par \(r_D \) sur \(C \), qui est envoyé par \(r_E \) sur \(A \), qui est envoyé par \(r_F \) sur \(B \). Par conséquent la
3. LES TESTS

composée \(r_F \circ r_E \circ r_D \) est une rotation de centre \(B \) et d’angle \(\pi \) : c’est donc la symétrie de centre \(B \).

Soit \(M \) un point quelconque du plan. On peut tracer à la règle et au compas ses images par les rotations car il suffit de tracer des triangles équilatéraux. Si \(M' \) est l’image finale, on obtient \(B \) comme le milieu de \([MM'] \). On construit de même les points \(A \) et \(C \).

Solution de l’exercice 5. Nommons \(x \) et \(y \) les deux entiers écrits initialement sur le tableau. Soit \(m \) le PPCM de ces entiers. On définit la fonction \(f \) par \(f(t) = \frac{mt}{t} \); c’est une fonction involutive et \(f(x) \) et \(f(y) \) sont des entiers. Si \(a = f(a') \) et \(b = f(b') \) sont les nombres écrits avant le passage d’un élève, il les transforme en \(f(b') \) et \(f(b'-a') \). Ainsi, les stagiaires appliquent l’algorithme d’Euclide aux arguments de la fonction \(f \). Le nombre restant est de fait \(f(d) \) où \(d = \text{PGCD}(f(x), f(y)) \) (car \(f \) est sa propre inverse), et il faut montrer que c’est un entier. Or \(d \) est un diviseur de \(\frac{m}{2} \) et donc de \(m \). La conclusion en résulte.

Solution de l’exercice 6. Montrons d’abord que chaque stagiaire arrivera en haut d’une échelle. Si ce n’est pas le cas, l’un d’eux doit passer deux fois par le même point, mais ce n’est pas possible car un point ne peut être atteint que par un chemin.

Montrons maintenant que deux élèves différents récupèrent deux enveloppes différentes. Pour cela, on imagine que ce sont les enveloppes qui descendent les échelles et vont à la rencontre des élèves. Par le même argument, chaque enveloppe va à la rencontre d’un des élèves, ce qui prouve que toutes les enveloppes sont atteintes.

Solution de l’exercice 7. Le produit contient le facteur \((x - x) \) qui est nul, il est donc nul.