
IMO Geomety Problems

• (IMO 1999/1) Determine all finite sets S of at least three points in the plane
which satisfy the following condition:

for any two distinct points A and B in S, the perpendicular bisector
of the line segment AB is an axis of symmetry for S.

• (IMO 1999/5) Two circles G1 and G2 are contained inside the circle G, and are
tangent to G at the distinct points M and N , respectively. G1 passes through
the center of G2. The line passing through the two points of intersection of G1

and G2 meets G at A and B. The lines MA and MB meet G1 at C and D,
respectively. Prove that CD is tangent to G2.

• (IMO 1998/1) In the convex quadrilateral ABCD, the diagonals AC and BD
are perpendicular and the opposite sides AB and DC are not parallel. Suppose
that the point P , where the perpendicular bisectors of AB and DC meet, is
inside ABCD. Prove that ABCD is a cyclic quadrilateral if and only if the
triangles ABP and CDP have equal areas.

• (IMO 1998/5) Let I be the incenter of triangle ABC. Let the incircle of ABC
touch the sides BC, CA, and AB at K, L, and M , respectively. The line
through B parallel to MK meets the lines LM and LK at R and S, respectively.
Prove that angle RIS is acute.

• (IMO 1997/2) The angle at A is the smallest angle of triangle ABC. The
points B and C divide the circumcircle of the triangle into two arcs. Let U
be an interior point of the arc between B and C which does not contain A.
The perpendicular bisectors of AB and AC meet the line AU at V and W ,
respectively. The lines BV and CW meet at T . Show that

AU = TB + TC.

• (IMO 1996/2) Let P be a point inside triangle ABC such that

∠APB − ∠ACB = ∠APC − ∠ABC.

Let D,E be the incenters of triangles APB, APC, respectively. Show that
AP, BD, CE meet at a point.

• (IMO 1996/5) Let ABCDEF be a convex hexagon such that AB is parallel to
DE, BC is parallel to EF , and CD is parallel to FA. Let RA, RC , RE denote
the circumradii of triangles FAB, BCD, DEF , respectively, and let P denote
the perimeter of the hexagon. Prove that

RA + RC + RE ≥ P

2
.



• (IMO 1995/1) Let A,B, C, D be four distinct points on a line, in that order.
The circles with diameters AC and BD intersect at X and Y . The line XY
meets BC at Z. Let P be a point on the line XY other than Z. The line CP
intersects the circle with diameter AC at C and M , and the line BP intersects
the circle with diameter BD at B and N . Prove that the lines AM, DN, XY
are concurrent.

• (IMO 1995/5) Let ABCDEF be a convex hexagon with AB = BC = CD and
DE = EF = FA, such that ∠BCD = ∠EFA = π/3. Suppose G and H are
points in the interior of the hexagon such that ∠AGB = ∠DHE = 2π/3. Prove
that AG + GB + GH + DH + HE ≥ CF .

• (IMO 1994/2) ABC is an isosceles triangle with AB = AC. Suppose that

M is the midpoint of BC and O is the point on the line AM such
that OB is perpendicular to AB;

Q is an arbitrary point on the segment BC different from B and C;

E lies on the line AB and F lies on the line AC such that E, Q, F
are distinct and collinear.

• (IMO 1993/2) Let D be a point inside acute triangle ABC such that ∠ADB =
∠ACB + π/2 and AC ·BD = AD ·BC.

(a) Calculate the ratio (AB · CD)/(AC ·BD).

(b) Prove that the tangents at C to the circumcircles of 4ACD and
4BCD are perpendicular.

• (IMO 1993/4) For three points P, Q, R in the plane, we define m(PQR) as the
minimum length of the three altitudes of 4PQR. (If the points are collinear,
we set m(PQR) = 0.) Prove that for points A,B,C,X in the plane,

m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).

• (IMO 1992/4) In the plane let C be a circle, L a line tangent to the circle
C, and M a point on L. Find the locus of all points P with the following
property: there exists two points Q,R on L such that M is the midpoint of
QR and C is the inscribed circle of triangle PQR.

• (IMO 1991/1) Given a triangle ABC, let I be the center of its inscribed circle.
The internal bisectors of the angles A,B, C meet the opposite sides in A′, B′, C ′

respectively. Prove that

1

4
<

AI ·BI · CI

AA′ ·BB′ · CC ′ ≤
8

27
.

• (IMO 1991/5) Let ABC be a triangle and P an interior point of ABC . Show
that at least one of the angles ∠PAB, ∠PBC, ∠PCA is less than or equal to
30◦.



• (IMO 1990/1) Chords AB and CD of a circle intersect at a point E inside the
circle. Let M be an interior point of the segment EB. The tangent line at E
to the circle through D, E, and M intersects the lines BC and AC at F and
G, respectively. If

AM

AB
= t,

find
EG

EF

in terms of t.

• (IMO 1989/2) In an acute-angled triangle ABC the internal bisector of angle
A meets the circumcircle of the triangle again at A1. Points B1 and C1 are
defined similarly. Let A0 be the point of intersection of the line AA1 with the
external bisectors of angles B and C. Points B0 and C0 are defined similarly.
Prove that:

(i) The area of the triangle A0B0C0 is twice the area of the hexagon AC1BA1CB1.

(ii) The area of the triangle A0B0C0 is at least four times the area of the
triangle ABC.

• (IMO 1989/4) Let ABCD be a convex quadrilateral such that the sides AB,
AD, BC satisfy AB = AD+BC. There exists a point P inside the quadrilateral
at a distance h from the line CD such that AP = h + AD and BP = h + BC.
Show that

1√
h
≥ 1√

AD
+

1√
BC

.

• (IMO 1988/1) Consider two coplanar circles of radii R and r (R > r) with the
same center. Let P be a fixed point on the smaller circle and B a variable
point on the larger circle. The line BP meets the larger circle again at C. The
perpendicular l to BP at P meets the smaller circle again at A. (If l is tangent
to the circle at P then A = P .)

(i) Find the set of values of BC2 + CA2 + AB2.

(ii) Find the locus of the midpoint of BC.

• (IMO 1988/5) ABC is a triangle right-angled at A, and D is the foot of the
altitude from A. The straight line joining the incenters of the triangles ABD,
ACD intersects the sides AB, AC at the points K, L respectively. S and
T denote the areas of the triangles ABC and AKL respectively. Show that
S ≥ 2T .

• (IMO 1987/2) In an acute-angled triangle ABC the interior bisector of the an-
gle A intersects BC at L and intersects the circumcircle of ABC again at N .
From point L perpendiculars are drawn to AB and AC, the feet of these per-
pendiculars being K and M respectively. Prove that the quadrilateral AKNM
and the triangle ABC have equal areas.



• (IMO 1986/2) A triangle A1A2A3 and a point P0 are given in the plane. We
define As = As−3 for all s ≥ 4. We construct a set of points P1, P2, P3, . . . ,
such that Pk+1 is the image of Pk under a rotation with center Ak+1 through
angle 120◦ clockwise (for k = 0, 1, 2, . . . ). Prove that if P1986 = P0, then the
triangle A1A2A3 is equilateral.

• (IMO 1986/4) Let A, B be adjacent vertices of a regular n-gon (n ≥ 5) in the
plane having center at O. A triangle XY Z, which is congruent to and initially
conincides with OAB, moves in the plane in such a way that Y and Z each
trace out the whole boundary of the polygon, X remaining inside the polygon.
Find the locus of X.

• (IMO 1985/5) A circle with center O passes through the vertices A and C
of triangle ABC and intersects the segments AB and BC again at distinct
points K and N, respectively. The circumscribed circles of the triangles ABC
and KBN intersect at exactly two distinct points B and M. Prove that angle
OMB is a right angle.

• (IMO 1984/4) Let ABCD be a convex quadrilateral such that the line CD is a
tangent to the circle on AB as diameter. Prove that the line AB is a tangent to
the circle on CD as diameter if and only if the lines BC and AD are parallel.

• (IMO 1983/2) Let A be one of the two distinct points of intersection of two
unequal coplanar circles C1 and C2 with centers O1 and O2, respectively. One
of the common tangents to the circles touches C1 at P1 and C2 at P2, while the
other touches C1 at Q1 and C2 at Q2. Let M1 be the midpoint of P1Q1,and M2

be the midpoint of P2Q2. Prove that ∠O1AO2 = ∠M1AM2.

• (IMO 1982/2) A non-isosceles triangle A1A2A3 is given with sides a1, a2, a3 (ai

is the side opposite Ai). For all i = 1, 2, 3, Mi is the midpoint of side ai, and
Ti. is the point where the incircle touches side ai. Denote by Si the reflection
of Ti in the interior bisector of angle Ai. Prove that the lines M1S1,M2S2, and
M3S3 are concurrent.

• (IMO 1981/1) P is a point inside a given triangle ABC.D, E, F are the feet of
the perpendiculars from P to the lines BC,CA, AB respectively. Find all P for
which

BC

PD
+

CA

PE
+

AB

PF

is least.

• (IMO 1981/5) Three congruent circles have a common point O and lie inside
a given triangle. Each circle touches a pair of sides of the triangle. Prove that
the incenter and the circumcenter of the triangle and the point O are collinear.

• (IMO 1979/3) Two circles in a plane intersect. Let A be one of the points of
intersection. Starting simultaneously from A two points move with constant
speeds, each point travelling along its own circle in the same sense. The two
points return to A simultaneously after one revolution. Prove that there is a



fixed point P in the plane such that, at any time, the distances from P to the
moving points are equal.

• (IMO 1979/4) Given a plane π, a point P in this plane and a point Q not in π,
find all points R in π such that the ratio (QP + PR)/QR is a maximum.

• (IMO 1978/2) P is a given point inside a given sphere. Three mutually perpen-
dicular rays from P intersect the sphere at points U, V, and W ; Q denotes the
vertex diagonally opposite to P in the parallelepiped determined by PU, PV,
and PW. Find the locus of Q for all such triads of rays from P

• (IMO 1978/4) In triangle ABC,AB = AC. A circle is tangent internally to the
circumcircle of triangle ABC and also to sides AB, AC at P, Q, respectively.
Prove that the midpoint of segment PQ is the center of the incircle of triangle
ABC.

• (IMO 1977/1) Equilateral triangles ABK, BCL, CDM,DAN are constructed
inside the square ABCD. Prove that the midpoints of the four segments KL, LM, MN, NK
and the midpoints of the eight segments AKBK, BL, CL,CM, DM, DN, AN
are the twelve vertices of a regular dodecagon.

• (IMO 1976/1) In a plane convex quadrilateral of area 32, the sum of the lengths
of two opposite sides and one diagonal is 16. Determine all possible lengths of
the other diagonal.

• (IMO 1975/3) On the sides of an arbitrary triangle ABC, triangles ABR, BCP, CAQ
are constructed externally with ∠CBP = ∠CAQ = 45◦,∠BCP = ∠ACQ =
30◦,∠ABR = ∠BAR = 15◦. Prove that ∠QRP = 90◦ and QR = RP.

• (IMO 1974/2) In the triangle ABC, prove that there is a point D on side AB
such that CD is the geometric mean of AD and DB if and only if

sin A sin B ≤ sin2 C

2
.

• (IMO 1972/2) Prove that if n ≥ 4, every quadrilateral that can be inscribed in
a circle can be dissected into n quadrilaterals each of which is inscribable in a
circle.

• (IMO 1971/4) All the faces of tetrahedron ABCD are acute-angled triangles.
We consider all closed polygonal paths of the form XY ZTX defined as follows:
X is a point on edge AB distinct from A and B; similarly, Y, Z, T are interior
points of edges BCCD,DA, respectively. Prove:

(a) If ∠DAB + ∠BCD 6= ∠CDA + ∠ABC, then among the polygonal paths,
there is none of minimal length.

(b) If ∠DAB + ∠BCD = ∠CDA + ∠ABC, then there are infinitely many
shortest polygonal paths, their common length being 2AC sin(α/2), where α =
∠BAC + ∠CAD + ∠DAB.



• (IMO 1970/1) Let M be a point on the side AB of ∆ABC. Let r1, r2 and r be
the radii of the inscribed circles of triangles AMC, BMC and ABC. Let q1, q2

and q be the radii of the escribed circles of the same triangles that lie in the
angle ACB. Prove that

r1

q1

· r2

q2

=
r

q
.

• (IMO 1970/5) In the tetrahedron ABCD, angle BDC is a right angle. Suppose
that the foot H of the perpendicular from D to the plane ABC is the intersection
of the altitudes of ∆ABC. Prove that

(AB + BC + CA)2 ≤ 6(AD2 + BD2 + CD2).

For what tetrahedra does equality hold?

• (IMO 1969/4) A semicircular arc γ is drawn on AB as diameter. C is a point
on γ other than A and B, and D is the foot of the perpendicular from C to AB.
We consider three circles, γ1, γ2, γ3, all tangent to the line AB. Of these, γ1 is
inscribed in ∆ABC, while γ2 and γ3 are both tangent to CD and to γ, one on
each side of CD. Prove that γ1, γ2 and γ3 have a second tangent in common.

• (IMO 1968/4) Prove that in every tetrahedron there is a vertex such that the
three edges meeting there have lengths which are the sides of a triangle.

• (IMO 1967/1) Let ABCD be a parallelogram with side lengths AB = a, AD =
1, and with ∠BAD = α. If ∆ABD is acute, prove that the four circles of radius
1 with centers A,B,C,D cover the parallelogram if and only if

a ≤ cos α +
√

3 sin α.

• (IMO 1967/4) Let A0B0C0 and A1B1C1 be any two acute-angled triangles. Con-
sider all triangles ABC that are similar to ∆A1B1C1 (so that vertices A1, B1, C1

correspond to vertices A,B, C, respectively) and circumscribed about triangle
A0B0C0 (where A0 lies on BC, B0 on CA, and AC0 on AB). Of all such possible
triangles, determine the one with maximum area, and construct it.

• (IMO 1966/3) The sum of the distances of the vertices of a regular tetrahedron
from the center of its circumscribed sphere is less than the sum of the distances
of these vertices from any other point in space.

• (IMO 1965/3) Given the tetrahedron ABCD whose edges AB and CD have
lengths a and b respectively. The distance between the skew lines AB and CD
is d, and the angle between them is ω. Tetrahedron ABCD is divided into two
solids by plane ε, parallel to lines AB and CD. The ratio of the distances of ε
from AB and CD is equal to k. Compute the ratio of the volumes of the two
solids obtained.

• (IMO 1965/5) Consider ∆OAB with acute angle AOB. Through a point M 6=
O perpendiculars are drawn to OA and OB, the feet of which are P and Q



respectively. The point of intersection of the altitudes of ∆OPQ is H. What is
the locus of H if M is permitted to range over (a) the side AB, (b) the interior
of ∆OAB?

• (IMO 1964/3) A circle is inscribed in triangle ABC with sides a, b, c. Tangents
to the circle parallel to the sides of the triangle are constructed. Each of these
tangents cuts off a triangle from ∆ABC. In each of these triangles, a circle is
inscribed. Find the sum of the areas of all four inscribed circles (in terms of
a, b, c).

• (IMO 1964/6) In tetrahedron ABCD, vertex D is connected with D0 the cen-
troid of ∆ABC. Lines parallel to DD0 are drawn through A,B and C. These
lines intersect the planes BCD, CAD and ABD in points A1, B1 and C1, respec-
tively. Prove that the volume of ABCD is one third the volume of A1B1C1D0.
Is the result true if point D0 is selected anywhere within ∆ABC?

• (IMO 1963/2) Point A and segment BC are given. Determine the locus of
points in space which are vertices of right angles with one side passing through
A, and the other side intersecting the segment BC.

• (IMO 1962/5) On the circle K there are given three distinct points A,B, C.
Construct (using only straightedge and compasses) a fourth point D on K such
that a circle can be inscribed in the quadrilateral thus obtained.

• (IMO 1961/4) Consider triangle P1P2P3 and a point P within the triangle.
Lines P1P, P2P, P3P intersect the opposite sides in points Q1, Q2, Q3 respec-
tively. Prove that, of the numbers

P1P

PQ1

,
P2P

PQ2

,
P3P

PQ3

at least one is ≤ 2 and at least one is ≥ 2.

• (IMO 1961/5) Construct triangle ABC if AC = b, AB = c and ∠AMB = ω,
where M is the midpoint of segment BC and ω < 90◦. Prove that a solution
exists if and only if

b tan
ω

2
≤ c < b.

• (IMO 1960/3) In a given right triangle ABC, the hypotenuse BC, of length a,
is divided into n equal parts (n an odd integer). Let α be the acute angle sub-
tending, from A, that segment which contains the midpoint of the hypotenuse.
Let h be the length of the altitude to the hypotenuse of the triangle. Prove:

tan α =
4nh

(n2 − 1)a
.

• (IMO 1960/5) Consider the cube ABCDA′B′C ′D′ (with face ABCD directly
above face A′B′C ′D′).



(a) Find the locus of the midpoints of segments XY, where X is any point of
AC and Y is any point of B′D′.

(b) Find the locus of points Z which lie on the segments XY of part (a) with
ZY = 2XZ.

• (IMO 1959/5) An arbitrary point M is selected in the interior of the segment
AB. The squares AMCD and MBEF are constructed on the same side of
AB, with the segments AM and MB as their respective bases. The circles
circumscribed about these squares, with centers P and Q, intersect at M and
also at another point N. Let N ′ denote the point of intersection of the straight
lines AF and BC.

(a) Prove that the points N and N ′ coincide.

(b) Prove that the straight lines MN pass through a fixed point S independent
of the choice of M.

(c) Find the locus of the midpoints of the segments PQ as M varies between A
and B.

• (IMO 1959/6) Two planes, P and Q, intersect along the line p. The point A is
given in the plane P, and the point C in the plane Q; neither of these points
lies on the straight line p. Construct an isosceles trapezoid ABCD (with AB
parallel to CD) in which a circle can be inscribed, and with vertices B and D
lying in the planes P and Q respectively.


