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1. Problems

021 Let n be a positive integer. Let T be the set of points (x, y) in the
plane where x and y are non-negative integers and x + y < n. Each
point of T is colored red or blue. If a point (x, y) is red, then so
are all points (x′, y′) of T with both x′ ≤ x and y′ ≤ y. Define an
X-set to be a set of n blue points having distinct x-coordinates, and
a Y -set to be a set of n blue points having distinct y-coordinates.
Prove that the number of X-sets is equal to the number of Y -sets.
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022 Let BC be a diameter of circle ω with center O. Let A be a point
of circle ω such that 0◦ < ∠AOB < 120◦. Let D be the midpoint of
arc AB not containing C. Line ` passes through O and is parallel to
line AD. Line ` intersects line AC at J . The perpendicular bisector
of segment OA intersects circle ω at E and F . Prove that J is the
incenter of triangle CEF .

023 Find all pairs of integers m,n ≥ 3 such that there exist infinitely
many positive integers a for which

am + a− 1
an + a2 − 1

is an integer.

024 Let n be an integer greater than 1. The positive divisors of n are
d1, d2, . . . , dk where 1 = d1 < d2 < · · · < dk = n. Define D =
d1d2 + d2d3 + · · ·+ dk−1dk.
(a) Prove that D < n2.
(b) Determine all n for which D is a divisor of n2.

025 Find all functions f from the set R of real numbers to itself such
that

(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt + yz)

for all x, y, z, t in R.

026 Let Γ1,Γ2, . . . , Γn be circles of radius 1 in the plane, where n ≥ 3.
Denote their centers by O1, O2, . . . , On respectively. Suppose that
no line meets more than two of the circles. Prove that

∑

1≤i<j≤n

1
OiOj

≤ (n− 1)π
4

.

011 Let ABC be an acute-angled triangle with O as its circumcenter.
Let P on line BC be the foot of the altitude from A. Assume that
∠BCA ≥ ∠ABC + 30◦. Prove that ∠CAB + ∠COP < 90◦.

012 Prove that
a√

a2 + 8bc
+

b√
b2 + 8ca

+
c√

c2 + 8ab
≥ 1

for all positive real numbers a, b, and c.
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013 Twenty-one girls and twenty-one boys took part in a mathematical
competition. It turned out that
(a) each contestant solved at most six problems, and
(b) for each pair of a girl and a boy, there was at least one problem

that was solved by both the girl and the boy.
Prove that there is a problem that was solved by at least three girls
and at least three boys.

014 Let n be an odd integer greater than 1 and let c1, c2, . . . , cn be in-
tegers. For each permutation a = (a1, a2, . . . , an) of { 1, 2, . . . , n},
define S(a) =

∑n
i=1 ciai. Prove that there exist permutations b and

c, b 6= c, such that n! divides S(b)− S(c).

015 In a triangle ABC, let segment AP bisect ∠BAC, with P on side
BC, and let segment BQ bisect ∠ABC, with Q on side CA. It is
known that ∠BAC = 60◦ and that AB + BP = AQ + QB. What
are the possible angles of triangle ABC?

016 Let a > b > c > d be positive integers and suppose

ac + bd = (b + d + a− c)(b + d− a + c).

Prove that ab + cd is not prime.

001 Two circles ω1 and ω2 intersect at M and N . Line ` is tangent to
the circles at A and B, respectively, so that M lies closer to ` than
N . Line CD, with C on ω1 and D on ω2, is parallel to ` and passes
through M . Let lines AC and BD meet at E; let lines AN and
CD meet at P ; and let lines BN and CD meet at Q. Prove that
EP = EQ.

002 Let a, b, c be positive real numbers such that abc = 1. Prove that(
a− 1 +

1
b

)(
b− 1 +

1
c

)(
c− 1 +

1
a

)
≤ 1.

003 Let n ≥ 2 be a positive integer. Initially, there are n fleas on a
horizontal line, not all at the same point. For a positive real number
λ, define a move as follows:

choose any two fleas, at points A and B, with A to the
left of B; let the flea at A jump to the point C on the
line to the right of B with BC/AB = λ.
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Determine all values of λ such that, for any point M on the line and
any initial positions of the n fleas, there is a finite sequence of moves
that will take all the fleas to positions to the right of M .

004 A magician has one hundred cards numbered 1 to 100. He puts them
into three boxes, a red one, a white one and a blue one, so that each
box contains at least one card. A member of the audience selects
two of the three boxes, chooses one card from each and announces
the sum of the numbers of the chosen cards. Given this sum, the
magician identifies the box from which no card has been chosen.
How many ways are there to put all the cards into the boxes so that
this trick always works? (Two ways are considered different if at
least one card is put into a different box.)

005 Determine if there exists a positive integer n such that n has exactly
2000 prime divisors and 2n + 1 is divisible by n.

006 Let AH1, BH2, and CH3 be the altitudes of an acute triangle ABC.
The incircle ω of triangle ABC touches the sides BC, CA and AB
at T1, T2 and T3, respectively. Consider the symmetric images of the
lines H1H2, H2H3, and H3H1 with respect to the lines T1T2, T2T3,
and T3T1. Prove that these images form a triangle whose vertices lie
on ω.

991 Determine all finite sets S of at least three points in the plane which
satisfy the following condition:

for any two distinct points A and B in S, the perpendicular
bisector of the line segment AB is an axis of symmetry for
S.

992 Let n be a fixed integer, with n ≥ 2.
(a) Determine the least constant C such that the inequality

∑

1≤i<j≤n

xixj(x2
i + x2

j ) ≤ C


 ∑

1≤i≤n

xi




4

holds for all real numbers x1, · · · , xn ≥ 0.
(b) For this constant C, determine when equality holds.
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993 Consider an n × n square board, where n is a fixed even positive
integer. The board is divided into n2 unit squares. We say that two
different squares on the board are adjacent if they have a common
side. N unit squares on the board are marked in such a way that
every square (marked or unmarked) on the board is adjacent to at
least one marked square. Determine the smallest possible value of
N .

994 Determine all pairs (n, p) of positive integers such that

p is a prime,
n not exceeded 2p, and
(p− 1)n + 1 is divisible by np−1.

995 Two circles G1 and G2 are contained inside the circle G, and are
tangent to G at the distinct points M and N , respectively. G1

passes through the center of G2. The line passing through the two
points of intersection of G1 and G2 meets G at A and B. The lines
MA and MB meet G1 at C and D, respectively. Prove that CD is
tangent to G2.

996 Determine all functions f : R −→ R such that

f(x− f(y)) = f(f(y)) + xf(y) + f(x)− 1

for all real numbers x, y.

981 In the convex quadrilateral ABCD, the diagonals AC and BD are
perpendicular and the opposite sides AB and DC are not paral-
lel. Suppose that the point P , where the perpendicular bisectors of
AB and DC meet, is inside ABCD. Prove that ABCD is a cyclic
quadrilateral if and only if the triangles ABP and CDP have equal
areas.

982 In a competition, there are a contestants and b judges, where b ≥ 3
is an odd integer. Each judge rates each contestant as either “pass”
or “fail”. Suppose k is a number such that, for any two judges, their
ratings coincide for at most k contestants. Prove that

k

a
≥ b− 1

2b
.
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983 For any positive integer n, let d(n) denote the number of positive di-
visors of n (including 1 and n itself). Determine all positive integers
k such that

d(n2)
d(n)

= k

for some positive integer n.

984 Determine all pairs (a, b) of positive integers such that ab2 + b + 7
divides a2b + a + b.

985 Let I be the incenter of triangle ABC. Let the incircle of ABC touch
the sides BC, CA, and AB at K, L, and M , respectively. The line
through B parallel to MK meets the lines LM and LK at R and S,
respectively. Prove that angle RIS is acute.

986 Consider all functions f from the set N of all positive integers into
itself satisfying f(t2f(s)) = s(f(t))2 for all s and t in N . Determine
the least possible value of f(1998).

971 In the plane the points with integer coordinates are the vertices of
unit squares. The squares are colored alternately black and white (as
on a chessboard). For any pair of positive integers m and n, consider
a right-angled triangle whose vertices have integer coordinates and
whose legs, of lengths m and n, lie along edges of the squares. Let
S1 be the total area of the black part of the triangle and S2 be the
total area of the white part. Let

f(m,n) = |S1 − S2|.
(a) Calculate f(m,n) for all positive integers m and n
which are either both even or both odd.
(b) Prove that f(m,n) ≤ 1

2 max{m,n} for all m and n.
(c) Show that there is no constant C such that f(m,n) < C
for all m and n.

972 The angle at A is the smallest angle of triangle ABC. The points
B and C divide the circumcircle of the triangle into two arcs. Let
U be an interior point of the arc between B and C which does not
contain A. The perpendicular bisectors of AB and AC meet the line
AU at V and W , respectively. The lines BV and CW meet at T .
Show that

AU = TB + TC.
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973 Let x1, x2, . . . , xn be real numbers satisfying the conditions

|x1 + x2 + · · ·+ xn| = 1

and
|xi| ≤ n + 1

2
i = 1, 2, . . . , n.

Show that there exists a permutation y1, y2, . . . , yn of x1, x2, . . . , xn

such that
|y1 + 2y2 + · · ·+ nyn| ≤ n + 1

2
.

974 An n×n matrix whose entries come from the set S = {1, 2, . . . , 2n−
1} is called a silver matrix if, for each i = 1, 2, . . . , n, the ith row
and the ith column together contain all elements of S. Show that

(a) there is no silver matrix for n = 1997;
(b) silver matrices exist for infinitely many values of n.

975 Find all pairs (a, b) of integers a, b ≥ 1 that satisfy the equation

ab2 = ba.

976 For each positive integer n , let f(n) denote the number of ways
of representing n as a sum of powers of 2 with nonnegative integer
exponents. Representations which differ only in the ordering of their
summands are considered to be the same. For instance, f(4) = 4,
because the number 4 can be represented in the following four ways:

4; 2 + 2; 2 + 1 + 1; 1 + 1 + 1 + 1.

Prove that, for any integer n ≥ 3,

2n2/4 < f(2n) < 2n2/2.

961 We are given a positive integer r and a rectangular board ABCD
with dimensions AB = 20, BC = 12. The rectangle is divided into
a grid of 20 × 12 unit squares. The following moves are permitted
on the board: one can move from one square to another only if the
distance between the centers of the two squares is

√
r. The task is to

find a sequence of moves leading from the square with A as a vertex
to the square with B as a vertex.

(a) Show that the task cannot be done if r is divisible by
2 or 3.
(b) Prove that the task is possible when r = 73.
(c) Can the task be done when r = 97?
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962 Let P be a point inside triangle ABC such that

∠APB − ∠ACB = ∠APC − ∠ABC.

Let D, E be the incenters of triangles APB, APC, respectively.
Show that AP , BD, CE meet at a point.

963 Let S denote the set of nonnegative integers. Find all functions f
from S to itself such that

f(m + f(n)) = f(f(m)) + f(n) for all m,n ∈ S.

964 The positive integers a and b are such that the numbers 15a + 16b
and 16a − 15b are both squares of positive integers. What is the
least possible value that can be taken on by the smaller of these two
squares?

965 Let ABCDEF be a convex hexagon such that AB is parallel to DE,
BC is parallel to EF , and CD is parallel to FA. Let RA, RC , RE

denote the circumradii of triangles FAB, BCD,DEF , respectively,
and let P denote the perimeter of the hexagon. Prove that

RA + RC + RE ≥ P

2
.

966 Let p, q, n be three positive integers with p+q < n. Let (x0, x1, . . . , xn)
be an (n + 1)-tuple of integers satisfying the following conditions :

(a) x0 = xn = 0, and
(b) For each i with 1 ≤ i ≤ n, either xi − xi−1 = p or
xi − xi−1 = −q.

Show that there exist indices i < j with (i, j) 6= (0, n), such that
xi = xj .

951 Let A,B,C, D be four distinct points on a line, in that order. The
circles with diameters AC and BD intersect at X and Y . The line
XY meets BC at Z. Let P be a point on the line XY other than
Z. The line CP intersects the circle with diameter AC at C and M ,
and the line BP intersects the circle with diameter BD at B and
N . Prove that the lines AM, DN, XY are concurrent.
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952 Let a, b, c be positive real numbers such that abc = 1. Prove that
1

a3(b + c)
+

1
b3(c + a)

+
1

c3(a + b)
≥ 3

2
.

953 Determine all integers n > 3 for which there exist n points A1, . . . , An

in the plane, no three collinear, and real numbers r1, . . . , rn such that
for 1 ≤ i < j < k ≤ n, the area of 4AiAjAk is ri + rj + rk.

954 Find the maximum value of x0 for which there exists a sequence
x0, x1 . . . , x1995 of positive reals with x0 = x1995, such that for i =
1, . . . , 1995,

xi−1 +
2

xi−1
= 2xi +

1
xi

.

955 Let ABCDEF be a convex hexagon with AB = BC = CD and
DE = EF = FA, such that ∠BCD = ∠EFA = π

3 . Suppose G
and H are points in the interior of the hexagon such that ∠AGB =
∠DHE = 2π/3. Prove that AG + GB + GH + DH + HE ≥ CF .

956 Let p be an odd prime number. How many p-element subsets A of
{1, 2, . . . 2p} are there, the sum of whose elements is divisible by p

941 Let m and n be positive integers. Let a1, a2, . . . , am be distinct
elements of {1, 2, . . . , n} such that whenever ai + aj ≤ n for some
i, j, 1 ≤ i ≤ j ≤ m, there exists k, 1 ≤ k ≤ m, with ai + aj = ak.
Prove that

a1 + a2 + · · ·+ am

m
≥ n + 1

2
.

942 ABC is an isosceles triangle with AB = AC. Suppose that
(a) M is the midpoint of BC and O is the point on the line
AM such that OB is perpendicular to AB,
(b) Q is an arbitrary point on the segment BC different
from B and C,
(c) E lies on the line AB and F lies on the line AC such
that E, Q, F are distinct and collinear.

Prove that OQ is perpendicular to EF if and only if QE = QF .

943 For any positive integer k, let f(k) be the number of elements in the
set {k + 1, k + 2, . . . , 2k} whose base 2 representation has precisely
three 1s.
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(a) Prove that, for each positive integer m, there exists at
least one positive integer k such that f(k) = m.
(b) Determine all positive integers m for which there exists
exactly one k with f(k) = m.

944 Determine all ordered pairs (m,n) of positive integers such that

n3 + 1
mn− 1

is an integer.

945 Let S be the set of real numbers strictly greater than −1. Find all
functions f : S → S satisfying the two conditions :

(a) f(x+ f(y)+xf(y)) = y + f(x)+ yf(x) for all x, y ∈ S;
(b) f(x)

x is strictly increasing on each of the intervals −1 <
x < 0 and 0 < x.

946 Show that there exists a set A of positive integers with the following
property: For any infinite set S of primes there exist two positive
integers m ∈ A and n /∈ A each of which is a product of k distinct
elements of S for some k ≥ 2.

931 Let f(x) = xn+5xn−1+3, where n > 1 is an integer. Prove that f(x)
cannot be expressed as the product of two nonconstant polynomials
with integer coefficients.

932 Let D be a point inside acute triangle ABC such that ∠ADB =
∠ACB + π/2 and AC ·BD = AD ·BC.

(a) Calculate the ratio (AB · CD)/(AC ·BD).
(b) Prove that the tangents at C to the circumcircles of
4ACD and 4BCD are perpendicular.

933 On an infinite chessboard, a game is played as follows. At the start,
n2 pieces are arranged on the chessboard in an n by n block of
adjoining squares, one piece in each square. A move in the game is a
jump in a horizontal or vertical direction over an adjacent occupied
square to an unoccupied square immediately beyond. The piece
which has been jumped over is removed. Find those values of n for
which the game can end with only one piece remaining on the board.
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934 For three points P, Q, R in the plane, we define m(PQR) as the
minimum length of the three altitudes of 4PQR. (If the points are
collinear, we set m(PQR) = 0.) Prove that for points A, B,C, X in
the plane,

m(ABC) ≤ m(ABX) + m(AXC) + m(XBC).

935 Does there exist a function f : N → N such that f(1) = 2, f(f(n)) =
f(n) + n for all n ∈ N, and f(n) < f(n + 1) for all n ∈ N?

936 There are n lamps L0, . . . , Ln−1 in a circle (n > 1), where we denote
Ln+k = Lk. (A lamp at all times is either on or off.) Perform steps
s0, s1, . . . as follows: at step si, if Li−1 is lit, switch Li from on to off
or vice versa, otherwise do nothing. Initially all lamps are on. Show
that

(a) There is a positive integer M(n) such that after M(n)
steps all the lamps are on again, (b) If n = 2k, we can take
M(n) = n2 − 1,
(c) If n = 2k + 1, we can take M(n) = n2 − n + 1.

921 Find all integers a, b, c with 1 < a < b < c such that

(a− 1)(b− 1)(c− 1) is a divisor of abc− 1.

922 Let R denote the set of all real numbers. Find all functions f :
R → R such that

f
(
x2 + f(y)

)
= y + (f(x))2 for all x, y ∈ R.

923 Consider nine points in space, no four of which are coplanar. Each
pair of points is joined by an edge (that is, a line segment) and each
edge is either colored blue or red or left uncolored. Find the smallest
value of n such that whenever exactly n edges are colored, the set
of colored edges necessarily contains a triangle all of whose edges
have the same color.

924 In the plane let C be a circle, L a line tangent to the circle C, and
M a point on L. Find the locus of all points P with the following
property: there exists two points Q,R on L such that M is the
midpoint of QR and C is the inscribed circle of triangle PQR.
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925 Let S be a finite set of points in three-dimensional space. Let
Sx, Sy, Sz be the sets consisting of the orthogonal projections of
the points of S onto the yz-plane, zx-plane, xy-plane, respectively.
Prove that

|S|2 ≤ |Sx| · |Sy| · |Sz|,
where |A| denotes the number of elements in the finite set A. (Note
: The orthogonal projection of a point onto a plane is the foot of the
perpendicular from that point to the plane.)

926 For each positive integer n, S(n) is defined to be the greatest inte-
ger such that, for every positive integer k ≤ S(n), n2 can be written
as the sum of k positive squares.

(a) Prove that S(n) ≤ n2 − 14 for each n ≥ 4.
(b) Find an integer n such that S(n) = n2 − 14.
(c) Prove that there are infintely many integers n such
that S(n) = n2 − 14

911 Given a triangle ABC, let I be the center of its inscribed circle.
The internal bisectors of the angles A,B, C meet the opposite sides
in A′, B′, C ′ respectively. Prove that

1
4

<
AI ·BI · CI

AA′ ·BB′ · CC ′ ≤
8
27

.

912 Let n > 6 be an integer and a1, a2, . . . , ak be all the natural num-
bers less than n and relatively prime to n. If

a2 − a1 = a3 − a2 = · · · = ak − ak−1 > 0,

prove that n must be either a prime number or a power of 2.

913 Let S = {1, 2, 3, . . . , 280}. Find the smallest integer n such that
each n-element subset of S contains five numbers which are pairwise
relatively prime.

914 Suppose G is a connected graph with k edges. Prove that it is
possible to label the edges 1, 2, . . . , k in such a way that at each
vertex which belongs to two or more edges, the greatest common
divisor of the integers labeling those edges is equal to 1.

[A graph consists of a set of points, called vertices, together with
a set of edges joining certain pairs of distinct vertices. Each pair of
vertices u, v belongs to at most one edge. The graph G is connected
if for each pair of distinct vertices x, y there is some sequence of
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vertices x = v0, v1, v2, . . . , vm = y such that each pair vi, vi+1 (0 ≤
i < m) is joined by an edge of G.]

915 Let ABC be a triangle and P an interior point of ABC . Show
that at least one of the angles ∠PAB, ∠PBC, ∠PCA is less than
or equal to 30◦.

916 An infinite sequence x0, x1, x2, . . . of real numbers is said to be
bounded if there is a constant C such that |xi| ≤ C for every i ≥ 0.
Given any real number a > 1, construct a bounded infinite sequence
x0, x1, x2, . . . such that

|xi − xj ||i− j|a ≥ 1

for every pair of distinct nonnegative integers i, j.

901 Chords AB and CD of a circle intersect at a point E inside the
circle. Let M be an interior point of the segment EB. The tangent
line at E to the circle through D, E, and M intersects the lines BC
and AC at F and G, respectively. If

AM

AB
= t,

find
EG

EF
in terms of t.

902 Let n ≥ 3 and consider a set E of 2n− 1 distinct points on a circle.
Suppose that exactly k of these points are to be colored black. Such
a coloring is “good” if there is at least one pair of black points such
that the interior of one of the arcs between them contains exactly
n points from E. Find the smallest value of k so that every such
coloring of k points of E is good.

903 Determine all integers n > 1 such that

2n + 1
n2

is an integer.
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904 Let Q+ be the set of positive rational numbers. Construct a function
f : Q+ → Q+ such that

f(xf(y)) =
f(x)

y

for all x, y in Q+.

905 Given an initial integer n0 > 1, two players, A and B, choose inte-
gers n1, n2, n3, . . . alternately according to the following rules :

(a) Knowing n2k, A chooses any integer n2k+1 such that

n2k ≤ n2k+1 ≤ n2
2k.

(b) Knowing n2k+1, B chooses any integer n2k+2 such that
n2k+1

n2k+2

is a prime raised to a positive integer power.

Player A wins the game by choosing the number 1990; player B wins
by choosing the number 1. For which n0 does :

(a) A have a winning strategy?
(b) B have a winning strategy?
(c) Neither player have a winning strategy?

906 Prove that there exists a convex 1990-gon with the following two
properties :

(a) All angles are equal.
(b) The lengths of the 1990 sides are the numbers 12, 22,
32, . . . , 19902 in some order.
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2. Answers and Hints

021
022
023 (m,n) = (5, 3)
024
025 f(x) = 0, 1

2 , x2

026
011
012
013
014
015
016
001
002
003 λ ≥ 1

n−1
004 12
005 Yes
006
991
992 1

8
993
994 (2, 2), (3, 3), (1, p) (p is prime.)
995
996 f(x) = 1− x2

2
981
982
983 n ≡ 1 (mod 2)
984 (11, 1), (49, 1)
985
986 120
971 f(m,n) = 1

2 (m ≡ n ≡ 1 (mod 2)), f(m,n) = 0 (otherwise)
972
973
974
975 (1, 2), (27, 3), (16, 2)
976
961
962
963
964 4812

965
966
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951
952
953 n = 4
954 2997

955
956 1

p

((
2p
p

)− 2
)

941
942
943
944 (2, 2), (1, 2), (1, 3), (2, 5), (3, 5), (2, 1), (3, 1), (5, 2), (5, 3)
945 f(x) = −x

1+x
946
931
932

√
2

933 3 6 |n
934
935 Yes
936
921 (2, 4, 8), (3, 5, 15)
922
923
924
925
926 (b) n = 13
911
912
913 217
914
915
916
901 t

1−t

902 k = n− 1 (3 | 2n− 1), k = n (otherwise)
903 n = 3
904
905
906

3. References

Ir István Reiman, International Mathematical Olympiad 1959-1999,
Anthem Press


