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We study a particular family of random trees which exhibit a condensation phenomenon
(identified by Jonsson & Stefánsson in 2011), meaning that a unique vertex with macroscopic
degree emerges. This falls into the more general framework of studying the geometric
behavior of large random discrete structures as their size grows. Trees appear in many
different areas such as computer science (where trees appear in the analysis of random algo-
rithms for instance connected with data allocation), combinatorics (trees are combinatorial
objects by essence), mathematical genetics (as phylogenetic trees), in statistical physics (for
instance in connection with random maps as we will see below) and in probability theory
(where trees describe the genealogical structure of branching processes, fragmentation
processes, etc.).

We shall specifically focus on Bienaymé–Galton–Watson trees (which is the simplest
possible genealogical model, where individuals reproduce in an asexual and stationary
way), whose offspring distribution is subcritical and is regularly varying. The main tool is
to code these trees by integer-valued random walks with negative drift, conditioned on a
late return to the origin. The study of such random walks, which is of independent interest,
reveals a "one-big jump principle" (identified by Armendáriz & Loulakis in 2011), thus
explaining the condensation phenomenon.

Section 1 gives some history and motivations for studying Bienaymé–Galton–Watson
trees.

Section 2 defines Bienaymé–Galton–Watson trees.
Section 3 explains how such trees can be coded by random walks, and introduce several

useful tools, such as cyclic shifts and the Vervaat transformation, to study random walks
under a conditioning involving positivity constraints.

Section 4 contains exercises to manipulate connections between BGW trees and random
walks, and to study ladder times of downward skip-free random walks.

Section 5 gives estimates, such as maximal inequalities, for random walks in order to
establish a "one-big jump principle".

Section 6 transfers results on random walks to random trees in order to identity the
condensation phenomenon.

The goal of these lecture notes is to be as most self-contained as possible.

Acknowledgments. Many thanks to Guillaume Conchon-Kerjan, Mickaël Maazoun and
Cyril Marzouk for useful suggestions and comments.
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1 History and motivations

Bienaymé–Galton–Watson processes. The origin of Bienaymé–Galton–Watson processes
goes back to the middle of the 19th century, where they are introduced to estimate extinction
probabilities of noble names. In 1875, Galton & Watson [69] use an approach based on
generating functions. While the method is correct, a mistake appears in their work (they
conclude that the extinction probability is always 1, see [11, Chapitre 9]), and one has to
wait until 1930 for the first complete published proof by Steffensen [66].

However, in 1972, Heyde & Seneta [38] discover a note written by Bienaymé [15] dated
from 1845, where Bienaymé correctly states that the extinction probability is equal to 1 if
and only if the mean of the offspring distribution is at most 1. Some explanations are given,
but there is no known published proof. Nonetheless it appears to be very plausible that
Bienaymé had found a proof using generating functions (see [43] and [11, Chap 7] for a
historical overview).

Since, there has been a large amount of work devoted to the study of long time asymp-
totics of branching processes; see [55, Section 12] and [10] for a description of results in this
description.

1.1 Scaling limits

The birth of the Brownian tree. Starting from the second half of the 20th century, differ-
ent scientific communities have been interested in the asymptotic behavior of random trees
chosen either uniformly at random among a certain class, or conditioned to be “large”.
At the crossroads of probability, combinatorics and computer science, using generating
functions and analytic combinatorics, various statistics of such trees have been considered,
such as the maximal degree, the number of vertices with fixed degree, or the profile of the
tree. See [26] for a detailed treatment.

Figure 1: From left to right: a tree with 6 vertices, its associated contour func-

tion, and the contour function (appropriately scaled in time and space) of a large

Bienaymé–Galton–Watson tree (with a critical finite variance offspring distribution)

which converges in distribution to the brownian excursion.

In the early 1990’s, instead of only considering statistics, Aldous suggested to study the
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convergence of large random trees (rooted and ordered, see Sec. 2.1 for a definition) globally.
More precisely, Aldous [6] considered random trees as random compact subsets of the space
`1 of summable sequences, and established in this framework that a random Bienaymé–
Galton–Watson tree with Poisson parameter 1 offspring distribution, conditioned on having
n vertices, converges in distribution, as n → ∞, to a random compact subset called
the Continuum Random Tree (in short, the CRT). A bit later, Aldous [7, 8], gave a simple
construction of the CRT from a normalised Brownian excursion e (which can informally be
viewed as a Brownian motion conditioned to be back at 0 at time 1 and conditioned to be
positive on (0, 1)), and showed that the appropriately scaled contour function (see Fig. 1) of
a random Bienaymé–Galton–Watson tree with critical (i.e. mean 1) finite variance offspring
distribution, conditioned to have n vertices, converges (in distribution in the space of real
valued continuous functions on [0, 1] equipped with the topology of uniform convergence),
as n→∞ to e. For this reason, the CRT is usually called the Brownian tree, and appears as
a universal in the sense that BGW trees with various offspring distributions converge to the
same continuous object (see Fig. 2 for a picture of a large Bienaymé–Galton–Watson tree
with a critical finite variance offspring distribution). We mention that the finite variance
condition, reminiscent of the central limit theorem, is crucial.

Figure 2: A realization of a large BGW tree with a critical finite variance offspring

distribution, which approximates the Brownian CRT.

In 2003, Evans, Pitman & Winter [30] suggest to use the formalism of R-trees, introduced
earlier for geometric and algebraic purposes (see for instance [60]), and the Gromov–
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Hausdorff topology, introduced by Gromov [35] to prove the so-called Gromov theorem
of groups with polynomial growth. The Gromov–Hausdorff distance defines a topology
on compact metric spaces (seen up to isometries), which allows to give a meaning to the
notion of convergence of compact metric spaces. This point of view, which consists in
viewing trees as compact metric spaces (by simply equipping their vertex set with the graph
distance) and in studying their scaling limits, is now widely used and gives a natural and
powerful framework for studying abstract converges of random graphs (in particular those
who are not coded by excursion-type functions). By scaling limits we mean the study of
limits of large random discrete objects seen in their globality, after suitable renormalisation.

Universality of the Brownian tree. In the last years, it has been realized that the Brown-
ian tree is also the scaling limit of non-planar random trees [36, 58], non-rooted trees [62]
but also of various models of random graphs with are not trees, such as stack triangula-
tions [5], random dissections [20], random quadrangulations with a large boundary [14],
random outerplanar maps [18, 68], random bipartite maps with one macroscopique face
[40], brownian bridges in hyperbolic spaces [19] or subcritical random graphs [59]. See [67]
for a combinatorial framework and further examples.

Stable Lévy trees. An important step in the generalization of Aldous’ results was made by
Le Gall & Le Jan [53], who considered the case where the offspring distribution µ is critical
but infinite variance, under the assumption that µ has a heavy tail (more precisely, µ([n,∞))

is of order n−α as n → ∞, with α ∈ (1, 2]). In this setting, it was shown [28, 27, 29] that
such a BGWµ tree, conditioned on having n vertices and appropriately scaled, converges
in distribution to another random limiting tree: the random α-stable random tree, who has
roughly speaking vertices with large degrees (see Fig. 3 for simulations).

Stable trees (in particular of index α = 3/2) play an important role in the theory of
scaling limits of random planar maps [49, 23, 56], where one of the motivations is to give a
precise sense to the notion of “canonical two-dimensional surface” [50] (see Fig. 4).

Other types of conditioning. Conditionings that involve other quantities than the total
number of vertices have also been considered in the context of scaling limits, mostly in
view of various applications. For instance, conditionings involving the height have been
studied in [34, 52]. Other types of conditionings involving degrees has recently attracted
attention: Rizzolo [64] introduced the conditioning on having a fixed number of vertices
with given outdegrees (see also [46]), while Broutin & Marckert [17] and Addario-Berry [3]
consider random trees with a given degree sequence.

Non-generic Bienaymé–Galton–Watson trees. Since the study of conditioned non-critical
Bienaymé–Galton–Watson trees can often be reduced to critical ones (see Exercise 1), non-
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Figure 3: Left: a simulation of an approximation of an α-stable with α = 1.1 ; right:

a simulation of an approximation of an α-stable with α = 1.5 (the smaller α is, the

more vertices tend to have more offspring, which explains why the degrees seems to be

bigger for α smaller.

Figure 4: Simulation of a large random quadrangulation of the sphere.

critical Bienaymé–Galton–Watson trees have been set aside for a long time. However,
Jonsson & Steffánsson [42] have recently considered the case non-generic trees, which are
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subcritical Bienaymé–Galton–Watson BGWµ trees with µ(n) ∼ c · n−β−1 as n → ∞, and
have identified a new phenomenon, called condensation: a unique vertex with macroscopic
degree, comparable to the size of the tree, emerges (see the figure on the first page). More
precise results were then obtained in [47], which show that the second maximal degree is
of order n1/min(2,β) and also that in this case there are no nontrivial scaling limits.

Let us mention a recent result [48] concerning the case of critical Cauchy Bienaymé–
Galton–Watson trees, where µ is critical and µ(n) = L(n)/n2 with L slowly varying. In
such trees a condensation phenomenon also occurs, but at a slightly smaller scale.

In the recent years, it has been realized that BGW trees in which a condensation phe-
nomenon occurs code a variety of random combinatorial structures such as random planar
maps [4, 41, 63], outerplanar maps [65], supercritical percolation clusters of random trian-
gulations [23] or minimal factorizations [32]. These applications are one of the motivations
for the study of the fine structure of such large conditioned BGW trees.

Summary (scaling limits). Let us summarize the previously mentioned results, when
we consider Tn a BGWµ tree conditioned on having n vertices (as we will see in Exercise 1
below, the study of super critical offspring distributions can always be reduced to critical
ones) :

– µ is critical and has finite variance. Then distances in Tn are of order
√
n (up to a

constant), and the scaling limit is the Brownian CRT [6, 7, 8].

– µ is critical, has infinite variance, and µ([n,∞)) = L(n)/nα, with L slowly varying
and 1 < α 6 2. Then distances in Tn are of order n1/α (up to a slowly varying
function), and the scaling limit is the α-stable tree [53, 27].

– µ is subcritical and µ(n) = L(n)/n1+β with β > 1 and L slowly varying. Then
condensation occurs: there is a unique vertex of degree of order n (up to a constant)
[42], the other degrees are of order n1/min(2,β) (up to a slowly varying constant), the
height of the vertex with maximal degree converges in distribution and there are no
nontrivial scaling limits [47].

The goal of these lectures is precisely to study this case.

– µ is critical and µ(n) = L(n)/n2 with L slowly varying. Condensation occurs, but
at a smaller scale, that is n/L1(n) (where L1 is slowly varying), the other degrees
are of order n/L2(n) (where L2 is slowly varying, with L2 = o(L1)), the height of the
vertex with maximal degree converges in probability to∞ and there are no nontrivial
scaling limits [48].
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1.2 Local limits

Kesten [45] initiated the study of “local limits” of large random trees (under the condi-
tioning on having height at least n). In this setting, one is interested in the asymptotic
behavior of balls of fixed radius around the root as the size of the trees grows. Janson [39]
and Abraham & Delmas [2, 1] described the local limits of Tn, a BGWµ tree conditioned on
having n vertices (Jonsson & Stefánsson [42] introduced the so-called condensation tree
with a finite spine), in full generality:

– µ is critical. Then Tn converges locally to a locally finite infinite random tree having
an infinite spine (which is the so-called infinite BGW tree conditioned to survive).

– µ is subcritical and the radius of convergence of
∑
i µ(i)z

i is 1. Then Tn converges
locally to an infinite random tree having a finite spine on top of which sits a vertex
with infinite degree.

It is interesting to note that in the case where µ is critical and µ(n) = L(n)/n2 with L
slowly varying, condensation occurs, but the height of the vertex with maximal degree
converges in probability to∞, thus explaining why the local limit is locally finite.

2 Bienaymé–Galton–Watson trees

2.1 Trees

Here, by tree, we will always mean plane tree (sometimes also called rooted ordered tree).
To define this notion, we follow Neveu’s formalism. Let U be the set of labels defined by

U =

∞⋃
n=0

(N∗)n,

where, by convention, (N∗)0 = {∅}. In other words, an element of U is a (possible empty)
sequence u = u1 · · ·uj of positive integers. When u = u1 · · ·uj and v = v1 · · · vk are
elements of U, we let uv = u1 · · ·ujv1 · · · vk be the concatenation of u and v. In particular,
u∅ = ∅u = u. Finally, a plane tree is a finite subset of U satisfying the following three
conditions:

(i) ∅ ∈ τ,

(ii) if v ∈ τ and v = uj for a certain j ∈N∗, then u ∈ τ,

(iii) for every u ∈ τ, there exists an integer ku(τ) > 0 such that for every j ∈N∗, uj ∈ τ if
and only if 1 6 j 6 ku(τ).
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∅

1 2 3

11 21

Figure 5: An example of a tree τ, where τ = {∅, 1, 11, 2, 21, 3}.

In the sequel, by tree we will always mean finite plane tree. We will often view the
elements of τ as the individuals of a population whose τ is the genealogical tree and ∅ is
the ancestor (the root). In particular, for u ∈ τ, we say that ku(τ) is the number of children
of u, and write ku when τ is implicit. The size of τ, denoted by |τ|, is the number of vertices
of τ. We denote by A the set of all trees and by An the set of all trees of size n.

2.2 Bienaymé–Galton–Watson trees

We now define a probability measure on A which describes, roughly speaking, the law of a
random tree which describes the genealogical tree of a population where individuals have a
random number of children, independently, distributed according to a probability measure
µ, called the offspring distribution. Such models were considered by Bienaymé [15] and
Galton & Watson [69], who were interested in estimating the probability of extinction of
noble names.

We will always make the following assumptions on µ:

(i) µ = (µ(i) : i > 0) is a probability distribution on {0, 1, 2, . . .},

(ii)
∑
k>0 kµ(k) 6 1,

(iii) µ(0) + µ(1) < 1.

Theorem 2.1. Set, for every τ ∈A,

Pµ(τ) =
∏
u∈τ

µ(ku). (1)

Then Pµ defines a probability distribution on A.

Before proving this result, let us mention that in principle we should define the σ-field
used for A. Here, since A is countable, we simply take the set of all subsets of A as the
σ-field, and we will never mention again measurability issues (one should however be
careful when working with infinite trees).

Proof of Theorem 2.1. Set c =
∑
τ∈A Pµ(τ). Our goal is to show that c = 1.
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Step 1. We decompose the set of trees according to the number of children of the root
and write

c =
∑
k>0

∑
τ∈A,k∅=k

Pµ(τ) =
∑
k>0

∑
τ1∈A,...,τk∈A

µ(k)Pµ(τ1) · · ·Pµ(τk) =
∑
k>0

µ(k)ck.

Step 2. Set, for 0 6 s 6 1, f(s) =
∑
k>0 µ(k)s

k − s. Then f(0) = µ(0) > 0, f(1) = 0,
f ′(1) = (

∑
i>0 iµ(i)) − 1 < 0 and f ′′ > 0 on [0, 1]. Therefore, the only solution of f(s) = 0 on

[0, 1] is s = 1.
Step 3. We check that c 6 1 by constructing a random variable whose “law” is Pµ. To

this ender, consider a collection (Ku : u ∈ U) of i.i.d. random variables with same law µ

(defined on the same probability space). Then set

T :=
{
u1 · · ·un ∈ U : ui 6 Ku1u2···ui−1 for every 1 6 i 6 n

}
.

(Intuitively, Ku represents the number of children of u ∈ U if u is indeed in the tree. Then T

is a random plane tree, but possible infinite. But for a fixed tree τ ∈ T, we have

P (T = τ) = P (Xu = ku(τ) for every u ∈ τ) =
∏
u∈τ

µ(ku) = Pµ (τ) .

Therefore
c =
∑
τ∈A

Pµ (τ) =
∑
τ∈A

P (T = τ) = P (T ∈ A) 6 1.

By the first two steps, we conclude that c = 1 and this completes the proof.

Remark 2.2. When
∑
i>0 iµ(i) > 1, let us mention that it is possible to define a probability

measure Pµ on the set of all plane (not necessarily finite) trees in such a way that the
formula (1) holds for finite trees. However, since we are only interested in finite trees, we
will not enter such considerations.

In the sequel, by Bienaymé–Galton–Watson tree with offspring distribution µ (or simply
BGWµ tree), we mean a random tree (that is a random variable defined on some probability
space taking values in A) whose distribution is Pµ. We will alternatively speak of a BGW
tree when the offspring distribution is implicit.

2.3 A particular case of Bienaymé–Galton–Watson trees

Goal. The goal of this lecture is to study the geometry of large subcritical BGW trees
whose offspring distribution is regularly varying. Specifically, we shall consider BGWµ

trees conditioned on having n vertices, as n→∞, under the following assumptions: there
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exists β > 1 and a slowly varying function L (that is a function L : R+ → R such that for
every fixed x > 0, L(ux)/L(u)→ 1 as u→∞) such that

∞∑
i=0

iµ(i) < 1 and µ(n) =
L(n)

n1+β for n > 1.

See Section 6.

3 Coding Bienaymé–Galton–Watson trees by random walks

The most important tool in the study of BGW trees is their coding by random walks, which
are usually well understood. The idea of coding BGW trees by functions goes back to Harris
[37], and was popularized by Le Gall & Le Jan [53] et Bennies & Kersting [12]. We start by
explaining the coding of deterministic trees. We refer to [51] for further applications.

3.1 Coding trees

To code a tree, we first define an order on its vertices. To this end, we use the lexicographic
order ≺ on the set U of labels, for which v ≺ w if there exists z ∈ U with v = z(a1, . . . ,an),
w = z(b1, . . . ,bm) and a1 < b1.

If τ ∈A, let u0,u1, . . . ,u|τ|−1 be the vertices of τ ordered in lexicographic order, an recall
that ku is the number of children of a vertex u.

Definition 3.1. The Łukasiewicz path W(τ) = (Wn(τ), 0 6 n 6 |τ|) of τ is defined by
W0(τ) = 0 and, for 0 6 n 6 |τ|− 1:

Wn+1(τ) = Wn(τ) + kun(τ) − 1.

0

1

2

3

4

5

6 7

8

9 10

11 12

1 2 3 4 5 6 7 8 9 10 11 12 13

−1

0

1

2

3

Figure 6: A tree (with its vertices numbered according to the lexicographic order)

and its associated  Lukasiewicz path.
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See Fig. 6 for an example. Before proving that the Łukasiewicz path codes bijectively
trees, we need to introduce some notation. For n > 1, set

Sn = {(x1, . . . , xn) ∈ {−1, 0, 1, . . .} : x1 + · · ·+ xn = −1

and x1 + · · ·+ xj > −1 for every 1 6 j 6 n− 1}.

Proposition 3.2. For every n > 1, the mapping Φn defined by

Φn : An −→ Sn

τ 7−→
(
kui−1 − 1 : 1 6 i 6 n

)
is a bijection.

For τ ∈ A, set Φ(τ) = Φ|τ|(τ). Proposition 3.2 shows that the Łukasiewicz indeed
bijectively codes trees (because the increments of the Łukasiewicz path of τ are the elements
of Φ(τ)) and that W|τ|(τ) = −1.

Proof. For k,n > 1, set

S
(k)
n = {(x1, . . . , xn) ∈ {−1, 0, 1, . . .} : x1 + · · ·+ xn = −k

and x1 + · · ·+ xj > −k for every 1 6 j 6 n− 1}

so that S
(1)
n = Sn. If x = (x1, . . . , xn) ∈ S

(k)
n and y = (y1, . . . ,ym) ∈ S

(k ′)
m , we write

xy = (x1, . . . , xn,y1, . . . ,ym) for the concatenation of x and y. In particular, xy ∈ S
(k+k ′)
n+m . If

x ∈ S
(k), we may write x = x1x2 · · · xk with xi ∈ S

(1) for every 1 6 i 6 k in a unique way.
We now turn to the proof of Proposition 3.2. Fix τ ∈An. We first check thatΦn(τ) ∈ Sn.

For every 1 6 j 6 n, we have

j∑
i=1

(
kui−1 − 1

)
=

j∑
i=1

kui−1 − j. (2)

Note that the sum
∑j
i=1 kui−1 counts the number of children of u0,u1, . . . ,uj−1. If j < n,

the vertices u1, . . . ,uj are children of u0,u1, . . . ,uj−1, so that the quantity (2) is positive. If
j = n, the sum

∑n
i=1 kui−1 counts vertices who have a parent, that is everyone except the

root, so that this sum is n− 1. Therefore,Φn(τ) ∈ Sn.
We next show that Φn is bijective by strong induction on n. For n = 1, there is

nothing to do. Fix n > 2 and assume that Φj is a bijection fore very j ∈ {1, 2, . . . ,n− 1}.
Take x = (a, x1, . . . , xn−1) ∈ Sn. We have Φn(τ) = x if and only if k∅(τ) = a + 1, and
(x1, . . . , xn−1) must be the concatenation of the images by Φ of the subtrees τ1, . . . , τa+1

attached on the children of ∅. But (x1, x1, . . . , xn−1) ∈ S
(a+1)
n−1 , so (x1, . . . , xn−1) = x1 · · · xa+1
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can be written as a concatenation of elements of S(1) in a unique way. Hence

Φn(τ) = x ⇐⇒ Φ|τi|
(τi) = xi for every i ∈ {1, 2, . . . ,a+ 1}

⇐⇒ τ = {∅}∪
a+1⋃
i=1

iΦ−1
|τi|

(xi),

where we have used the induction hypothesis (since |τi| < |τ|). This completes the proof.

Remark 3.3. For 0 6 k 6 n− 1, the height of vertex uk is given by Card({0 6 i < k :

Wi(τ) = min[i,k]W}). Indeed, the elements of this set correspond to the indices of the
ancestors of uk.

3.2 Coding BGW trees by random walks

We will now identify the law of the Łukasiewicz path of a BGW tree. Consider the random
walk (Wn)n>0 on Z such that W0 = 0 with jump distribution given by P (W1 = k) =

µ(k+ 1) for every k > −1. In other words, for n > 1, we may write

Wn = X1 + · · ·+Xn,

where the random variables (Xi)i>1 are independent and identically distributed with
P (X1 = k) = µ(k+ 1) for every k > −1. This random walk will play a crucial role in the
sequel. Finally, for j > 1, set

ζ = inf{n > 1 :Wn = −1},

which is the first passage time of the random walk at −1 (which could a priori be infinite!).

Proposition 3.4. Let T be a random BGWµ tree. Then the random vectors (of random length)(
W0(T),W1(T), . . . ,W|T|(T)

)
and (W0,W1, . . . ,Wζ)

have the same distribution. In particular, |T| and ζ have the same distribution.

Proof. Fix n > 1 and integers x1, . . . , xn > −1. Set

A = P (W1(T) = x1,W2(T) −W1(T) = x2, . . . ,Wn(T) −Wn−1(T) = xn) ,

B = P (W1 = x1,W2 −W1 = x2, . . . ,Wn −Wn−1 = xn) .

We shall show that A = B.
First of all, if (x1, . . . , xn) 6∈ Sn, thenA = B = 0. Now, if (x1, . . . , xn) ∈ Sn, by Proposition

3.2 there exists a tree τwhose Łukasiewicz path is (0, x1, x1 + x2, . . .). Then, by (1),

A = P (T = τ) =
∏
u∈τ

µ(ku) =

n∏
i=1

µ(xi + 1),
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et

B = P (W1 = x1,W2 −W1 = x2, . . . ,Wn −Wn−1 = xn, ζ = n)

= P (W1 = x1,W2 −W1 = x2, . . . ,Wn −Wn−1 = xn)

=

n∏
i=1

µ(xi + 1).

For the second equality, we have used the equality of events {W1 = x1,W2 −W1 =

x2, . . . ,Wn −Wn−1 = xn, ζ = n} = {W1 = x1,W2 −W1 = x2, . . . ,Wn −Wn−1 = xn}, which
comes from the fact that (x1, . . . , xn) ∈ Sn. Hence A = B, and this completes the proof.

Remark 3.5. If µ is an offspring distribution with mean m, we have E [W1] = m − 1.
Indeed,

E [W1] =
∑
i>−1

iµ(i+ 1) =
∑
i>0

(i− 1)µ(i) = m− 1.

In particular, (Wn)n>0 is a centered random walk if and only ifm = 1 (that is if the offspring
distribution is critical).

3.3 The cyclic lemma

For n > 1 set
Sn := {(x1, . . . , xn) ∈ {−1, 0, 1, . . .} : x1 + · · ·+ xn = −1},

and recall the notation

Sn = {(x1, . . . , xn) ∈ Sn : x1 + · · ·+ xj > −1 for every 1 6 j 6 n− 1}.

In the following, we identify an element of Z/nZ with its unique representative in
{0, 1, . . . ,n− 1}. For x = (x1, . . . , xn) ∈ Sn and i ∈ Z/nZ, we set

x(i) = (xi+1, . . . , xi+n),

where the addition of indices is considered modulo n. We say that x(i) is obtained from x
by a cyclic permutation. Note that Sn is stable by cyclic permutations.

Definition 3.6. For x ∈ Sn, set

Ix =
{
i ∈ Z/nZ : x(i) ∈ Sn

}
.

See Fig. 7 for an example.
Note that if x ∈ Sn and i ∈ Z/nZ, then Card(Ix) = Card(Ix(i)).

Theorem 3.7. (Cyclic Lemma) For every x = (x1, . . . , xn) ∈ Sn, we have Card(Ix) = 1. In
addition, the unique element of Ix is the smallest element of argminj(x1 + · · ·+ xj).
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Figure 7: For x = (x1, x2, . . .), we represent x1 + · · ·+ xi as a function of i. On the

left, we take x = (1,−1,−1,−1,−1, 2,−1,−1,−1, 0, 3) ∈ S11, where Ix = {9}. On

the right, we take x(9), which is indeed an element of S11.

Therefore, if x ∈ ∪n>1Sn, the set Ix depends on x, but its cardinal does not depend on x !

Proof. We start with an intermediate result: we check that Card(Ix) does not change if one
concatenates

(a,−1, . . . ,−1︸ ︷︷ ︸
a times

)

to the left of x, for an integer a > 1. To this end, fix x = (x1, . . . , xn) ∈ Sn and set

x̃ = (a,−1, . . . ,−1︸ ︷︷ ︸
a times

, x1, . . . , xn).

First, it is clear that 0 ∈ Ix̃ if and only if 0 ∈ Ix. Then, if 0 < j 6 n− 1, we have

x̃(j+a+1) = (xj+1, . . . , xn,a,−1, . . . ,−1, x1, . . . , xj).

It readily follows that j ∈ Ix if and only if j+a+ 1 ∈ Ix̃. Next, we check that if 0 < i 6 a+ 1,
then i 6∈ Ix̃. Indeed, if 0 < i 6 a+ 1, then

x̃(i) = (−1, . . . ,−1︸ ︷︷ ︸
a−i+1 times

, x1, x2, . . . , xn,a,−1, . . . ,−1).

The sum of the elements of x̃(i) up to element xn is

x1 + · · ·+ xn − (a− i+ 1) = −1 − (a− i+ 1) 6 −1.

Hence x̃(i) 6∈ Ix̃. This shows our intermediate result.
Let us now establish the Cyclic Lemma by strong induction on n. For n = 1, there is

nothing to do, as the only element of Sn is x = (−1). Then consider an integer n > 1 such
that the Cyclic Lemma holds for elements of Sj with j = 1, . . . ,n− 1. Take x = (x1, . . . , xn) ∈
Sn. Since Card(Ix) does not change under cyclic permutations of x and since there exists
i ∈ {1, 2, . . . ,n} such that xi > 0 (because n > 1), without loss of generality we may assume
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that x1 > 0. Denote by 1 = i1 < i2 < · · · < im the indices i such that xi > 0 and set
im+1 = n+ 1 by convention. Then

−1 =

n∑
i=1

xi =

m∑
j=1

(
xij − (ij+1 − ij − 1)

)
since ij+1 − ij − 1 count the number of consecutive −1 that immediately follows xij . Since
this sum is negative, there exists j ∈ {1, 2, . . . ,m} such that xij 6 ij+1 − ij− 1. Therefore xij is
immediately followed by at least xij consecutive times −1. Then let x̃ be the vector obtained
from x by suppressing xij immediately followed by xij times −1, so that Card(Ix̃) =

Card(Ix) by the intermediate result. Hence Card(Ix) = 1 by induction hypothesis.
The fact that the unique element of Ix is argminj(x1 + · · ·+ xj) follows from the fact that

this property is invariant under insertion of (a,−1, . . . ,−1) for an integer a > 1 (where −1
is written a times).

Remark 3.8. The statement of Lemma 3.7 is actually valid in the more general setting
where steps can take any integer value and not only in {−1, 0, 1, . . .}.

In another direction, for 1 6 k 6 n, set

S
(k)
n := {(x1, . . . , xn) ∈ {−1, 0, 1, . . .} : x1 + · · ·+ xn = −k},

and
S
(k)
n = {(x1, . . . , xn) ∈ S(k)n : x1 + · · ·+ xj > −k for every 1 6 j 6 n− 1}.

Then, for x ∈ S
(k)
n , we similarly define Ix = {i ∈ Z/nZ : x(i) ∈ S

(k)
n }, then a simple

adaptation of the proof of Theorem 3.7 shows that the following: for every x = (x1, . . . , xn) ∈
S
(k)
n ∈ S

(k)
n , we have Card(Ix) = k. Also, if m = min{x1 + · · · + xi : 1 6 i 6 n} and

ζi(x) = min{j > 1 : x1 + · · ·+ xj = m+ i− 1} for 1 6 i 6 k, then Ix = {ζ1(x), . . . , ζk(x)}.

3.4 Applications to random walks

In this section, we fix a random walk (Wn = X1 + · · ·+ Xn)n>0 on Z such that W0 = 0,
P (W1 > −1) = 1 and P (W1 = 0) < 1. We set

ζ = inf {i > 0 :Wi = −1} .

Definition 3.9. A function F : Zn → R is said to be invariant under cyclic permutations if

∀ x ∈ Zn, ∀ i ∈ Z/nZ, F(x) = F(x(i)).

Let us give several example of functions invariant by cyclic permutations. If x =

(x1, . . . , xn), one may take F(x) = max(x1, . . . , xn), F(x) = min(x1, . . . , xn), F(x) = x1x2 · · · xn,
F(x) = x1 + · · ·+ xn, or more generally F(x) = xλ1 + · · ·+ xλn avec λ > 0. If A ⊂ Z,

F(x) =
n∑
i=1

1xi∈A,
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which counts the number of elements in A, is also invariant under cyclic permutations.
If F is invariant under cyclic permutations and g : R→ R is a function, then g ◦ F is also
invariant under cyclic permutations. Finally, F(x1, x2, x3) = (x2 − x1)

3 + (x3 − x2)
3 + (x1 −

x3)
3 is invariant under cyclic permutations but not invariant under all permutations.

Proposition 3.10. Let F : Zn → R be a function invariant under cyclic permutations. Then for
every integers n > 1 the following assertions hold.

(i) E [F(X1, . . . ,Xn)1ζ=n] = 1
nE [F(X1, . . . ,Xn)1Wn=−1],

(ii) P (ζ = n) = 1
nP (Wn = −1).

The assertion (ii) is known as Kemperman’s formula.

Proof. The second assertion follows from the first one simply by taking F ≡ 1. For (i), to
simplify notation, set Xn = (X1, . . . ,Xn). Note that the following equalities of events hold

{Wn = −1} = {Xn ∈ Sn} and {ζ = n} =
{

Xn ∈ Sn
}

.

In particular,
E [F(X1, . . . ,Xn)1ζ=n] = E

[
F(Xn)1Xn∈Sn

]
.

Then write

E
[
F(Xn)1Xn∈Sn

]
=

1
n

n∑
i=1

E
[
F(X(i)

n )1
X(i)
n ∈Sn

]
(since X(i)

n and Xn have the same law)

=
1
n

n∑
i=1

E
[
F(Xn)1X(i)

n ∈Sn

]
(invariance of F by cyclic permutations)

=
1
n

E

[
F(Xn)

(
n∑
i=1

1
X(i)
n ∈Sn

)]

=
1
n

E [F(X1, . . . ,Xn)1Xn∈Sn ] ,

where the last equality is a consequence of the equality of the random variables

n∑
i=1

1
X(i)
n ∈Sn

= 1Xn∈Sn

by the Cyclic Lemma. We conclude that

E
[
F(Xn)1Xn∈Sn

]
=

1
n

E [F(X1, . . . ,Xn)1Wn=−1] ,

which is the desired result.
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Proposition 3.10 is useful to compute quantities conditionally on {ζ = n} which are
invariant under cyclic permutations by instead working conditionally on {Wn = −1}, which
is a simpler conditioning (since it only involvesWn).

Actually, Proposition 3.10 can be in extended in the sense that instead of working
conditionally on {ζ = n}, we may often work conditionally on {Wn = −1}. To this end, we
need to define the Vervaat transform.

Definition 3.11. Let n ∈ N, (x1, . . . , xn) ∈ Zn and let w = (wi : 0 6 i 6 n) be the
associated walk defined by

w0 = 0 and wi =

i∑
j=1

xj, 1 6 i 6 n.

We also introduce the first time at which (wi : 0 6 i 6 n) reaches its overall minimum,

kn := min{0 6 i 6 n : wi = min{wj : 0 6 j 6 n}},

so that I{x1,...,xn} = {kn}. The Vervaat transform V(w) := (V(w)i : 0 6 i 6 n) of w is the walk
obtained by reading the increments (x1, . . . , xn) from left to right in cyclic order, started
from kn. Namely,

V(w)0 = 0 and V(w)i+1 −V(w)i = xkn+i mod [n], 0 6 i < n,

see Figure 7 for an illustration.

We keep the notation Xn = (X1, . . . ,Xn).

Proposition 3.12.

(i) The law of Xn conditionally given {ζ = n} is equal to the law of X(In)
n conditionally given

{Wn = −1}, where In is the unique element of IXn .

(ii) Conditionally given {Wn = −1}, In follows the uniform distribution on {0, 1, . . . ,n− 1}, and
In and X(In)

n are independent.

In other words, to construct a random variable following the conditional law of X given
{ζ = n}, one can start with a random variable following the conditional law of X given
{Wn = −1} and apply the Vervaat transform.

Proof of Proposition 3.12. Fix x ∈ Sn (it is important to take x ∈ Sn and not only x ∈ Sn).
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Since the events {Xn = x, ζ = n} et {Xn = x,Wn = −1} are equal, we have

P (Xn = x, ζ = −1) = P (Xn = x,Wn = −1) =
1
n

n∑
i=1

P
(

X(i)
n = x,Wn = −1

)
=

1
n

E

[
1Wn=−1

(
n∑
i=1

1
X(i)
n =x

)]

=
1
n

E
[
1Wn=−11X(In)

n =x

]
=

1
n

P
(

X(In)
n = x,Wn = −1

)
. (3)

We divide by the equality P (ζ = n) = 1
nP (Wn = −1) to get

P
(
Xn = x

∣∣ζ = n) = P
(

X(In)
n = x

∣∣Wn = −1
)

,

which shows (i).
For (ii), fix k ∈ {0, 1, . . . ,n− 1} and x ∈ Sn. Since the events {In = k, X(In)

n = x,Wn = −1}
and {X(k)

n = x,Wn = −1} are equal (because Card(IXn) = 1 when Wn = −1 by the cyclic
lemma), we have

P
(
In = k, X(In)

n = x,Wn = −1
)

= P
(

X(k)
n = x,Wn = −1

)
= P (Xn = x,Wn = −1) (X(k)

n have Xn the same law)

=
1
n

P
(

X(In)
n = x,Wn = −1

)
(by (3))

we divise this equality by P (Wn = −1), and get that

P
(
In = k, X(In)

n = x
∣∣Wn = −1

)
=

1
n
·P
(

X(In) = x
∣∣Wn = −1

)
.

By summing over all the possible x ∈ Sn we get that P
(
In = k

∣∣Wn = −1
)
= 1

n (which is
indeed the uniform law on {0, 1, . . . ,n− 1}) and then

P
(
In = k, X(In)

n = x
∣∣Wn = −1

)
= P

(
In = k

∣∣Wn = −1
)
·P
(

X(In) = x
∣∣Wn = −1

)
,

which completes the proof.

4 Exercise session

4.1 Exercises

Exercise 1 (Exponential tilting). We say that two offspring distributions (that is probability
measures on Z+) are equivalent if there exist a,b > 0 such that µ̃(i) = abiµ(i) for every
i > 0.
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(1) Let µ and µ̃ be two equivalent offspring distributions. Let Tn be a BGWµ random tree
conditioned on havingn vertices (here and after, we always assume that conditionings
are non-degenerate) and let T̃n be a BGWµ̃ random tree conditioned on having n
vertices. Show that Tn and T̃n have the same distribution.

(2) Let µ be an offspring distribution with infinite mean and such that µ(0) > 0. Can one
find a critical offspring distribution equivalent to µ?

(3) Can one always find a critical offspring distribution equivalent to any offspring
distribution?

(4) Find a critical offspring distribution µ such that a BGWµ random tree conditioned on
having n vertices follows the uniform distribution on the set of all plane trees with n
vertices.

(5) Find a critical offspring distribution ν such that a BGWν random tree conditioned on
having n leaves follows the uniform distribution on the set of all plane trees with n
leaves having no vertices with only one child.

NB: a leaf is a vertex with no children.

Exercise 2. Let µ be a subcritical offspring distribution (with mean m < 1) and let
T be a BGWµ random tree. Denote by Height(T) the last generation of T. Show that
P (Height(T) > n) 6 mn.

In the following exercises, (Xi)i>1 is a sequence of i.i.d. integer valued random variables
such that P (X1 > −1) = 1 and P (X1 > 0) > 0 (to avoid trivial cases). We set Wn =

X1 + · · ·+ Xn and ζ = inf{n > 1 : Wn = −1}. Finally, we denote by X a random variable
having the same law as X1.

Exercise 3. Assume that E [X1] = −c 6 0 The goal of this exercise is to show that
P (∀n > 1,Wn < 0) = c.

(1) Show that E [ζ] = 1
c .

Set T1 = inf{n > 1 :Wn > 0} ∈N∪ {∞} and, by induction, Tk+1 = inf{n > Tk :Wn >WTk}

(the sequence (Tk) is called the sequence of weak ladder times of the random walk).

(2) Show that P (ζ > n) = P (n ∈ {T1, T2, T3, . . .}) for n > 1.

(3) Conclude.

Exercise 4.
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(1) Assume that E [X1] = −c 6 0. Show that

∞∑
n=1

1
n

P (Wn = −1) = 1,
∞∑
n=1

P (Wn = −1) =
1
c

.

(2) Show that for every 0 6 λ 6 1,

∑
n>1

(λn)n−1e−λn

n!
= 1,

∞∑
n=1

(λn)n−1e−λn

(n− 1)!
=

1
1 − λ

.

Exercise 5. Show that for 0 6 s 6 1:

∞∑
n=1

P (ζ = n) sn = 1 − exp

(
−

∞∑
n=1

sn

n
P (Wn < 0)

)

and ∞∑
n=0

P (ζ > n) sn = exp

( ∞∑
n=1

sn

n
P (Wn > 0)

)
.

Hint. For r > 1, set ζr = inf{i > 1 : Wi = −r} ∈ N ∪ {∞}. You may use the following
extension of the cyclic lemma: for n > 1,

P (ζr = n) =
r

n
P (Wn = −r) .

Exercise 6 (Open problem: first hitting time for Cauchy random walks). Assume that

E [X] = 0, P (X > n) ∼
n→∞ L(n)

n

for a slowly varying function L (meaning that for every fixed t > 0, L(tx)/L(x) → 1 as
x → ∞. Let (an : n > 1) be a sequence nP(X > an) → 1 and set bn = nE

[
X1|X|6an

]
. Do

we have
P(ζ > n) ∼

n→∞ nL(|bn|)

b2
n

?

4.2 Solutions

Solution of Exercise 1.
Remark. The technique of “exponential tilting” in branching processes goes back to at

least Kennedy [44]. See [39, Section 4] for a detailed exposition in the slightly more general
context of size-conditioned simply generated trees.
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(1) The idea is to introduce T and T̃, respectively two (nonconditioned) BGWµ and BGWµ̃

random trees. Fix a tree T with n vertices. Then, if ku denotes the number of children
of a vertex u ∈ T , by definition:

P
(
T̃ = T

)
=
∏
u∈T

µ̃(ku) =
∏
u∈T

(
abkuµ(ku)

)
= anbn−1

∏
u∈T

µ(ku) = a
nbn−1P (T = T) ,

(4)
where we have used the simple deterministic fact that

∑
u∈T ku = n− 1. The key is

that the quantity anbn−1 does not depend on T . Indeed, by summing over all trees T
with n vertices, we get that

P
(
|T̃| = n

)
= anbn−1P (|T| = n) . (5)

The desired result follows by dividing (4) by (5).

(2) Set F(z) =
∑
i>0 µ(i)z

i, so that F ′(1) = ∞. The question is whether we can find an
offspring distribution of the form µ̃(i) = abiµ(i) for every i > 0 with mean 1. The
generating function of µ̃ is

F̃(z) =
F(bz)

F(b)
,

so that the mean of µ̃ is F̃ ′(1) = bF ′(b)
F(b) . This quantity is continuous in b, tends to 0 as

b→ 0 and is equal to∞ for b = 1. The desired result follows by continuity.

Note that this argument works for any supercritical offspring distribution.

(3) No, for instance if µ is subcritical and F(z) =
∑
i>0 µ(i)z

i has radius of convergence
equal to 1. Indeed, one checks that

G : b 7→ bF ′(b)

F(b)
=

∑
k>0 kµ(k)b

k∑
k>0 µ(k)b

k

is increasing. Indeed,

G ′(b) =

∑
k>1 k

2µ(k)bk−1∑
k>0 µ(k)b

k
−

(∑
k>0 kµ(k)b

k
) (∑

k>0 kµ(k)b
k−1)(∑

k>0 µ(k)b
k
)2 .

The key is then to observe that bG ′(b) is the variance of the offspring distribution µ̃
with generating function G, so that G ′(b) > 0. Since G(1) < 1 and G has radius of
convergence equal to 1, one cannot find 0 6 b 6 1 such that G(b) = 1.

However, if µ is supercritical and µ(0) > 0, question (2) shows that it is possible. If
µ is supercritical and µ(0) = 0, this is not possible since the only critical offspring
distribution µ with µ(0) = 0 is µ(1) = 1.
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(4) Inspired by Question (1), it is natural to try to find µ of the form µ(i) = abi for i > 0.
Since we want µ to be critical, a small calculation yields µ(i) = 2−i−1 for i > 0. The
same calculation as in (1) shows that if Tn be a BGWµ random tree, then P (Tn = T)

for a fixed tree T with n vertices does not depend on n, so that Tn follows the uniform
distribution on the set of all plane trees with n vertices.

(5) The idea it to look for ν of the form ν(0) = a, ν(1) = 0, ν(i) = bi−1 for i > 2. Indeed,
if T is a nonconditioned BGWν random tree and T a tree with n leaves and such that
no vertices have only one child,

P
(
T̃ = T

)
=
∏
u∈T

µ̃(ku) = a
n
∏

u∈T ,ku>2

(
bku−1

)
= anbn−1,

where we have used the simple deterministic fact that
∑
u∈T ,ku>2 = n− 1. Since this

quantity does not depend on T , the same reasoning as in Question (1) shows that
such a BGWν tree conditioned on having n leaves follows the uniform distribution
on the set of all plane trees with n leaves having no vertices with only one child.

It remains to choose a,b such that ν is a critical offspring distribution. A small
calculation yields

ν(0) = 2 −
√

2, ν(1) = 0, ν(i) =

(
2 −
√

2
2

)i−1

for i > 2.

Remark. This was used in to study random Schröder bracketings of words [61] and to
study uniform dissections of polygons [21].

Solution of Exercise 2. The idea is to use the Bienaymé–Galton–Watson process associated
with T. Specifically, let (X(n)

j )j,n>1 be a sequence of i.i.d. random variables with law µ

(defined on the same probability space). Define recursively (Zn : n > 0) as follows:

Z0 = 1, and for every n > 1, Zn+1 =

Zn∑
j=1

X
(n)
j .

Then max{i : Zi 6= 0} has the same distribution as Height(T). Since max{i : Zi 6= 0} > n

implies that Zn > 1, we get

P (Height(T) > n) 6 P (Zn > 1) .

The next idea is to notice that P (Zn > 1) 6 E [Zn] and that E [Zn] can be readily
calculated. Indeed, by definition of Zn+1 we have E [Zn+1|Zn] = mZn, which gives E [Zn] =

mn for n > 0. The desired result follows.
Remark. See [54] for asymptotic equivalents on the tail of Height(T).
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Solution of Exercise 3.

(1) The idea is to use the connection with Bienaymé–Galton–Watson processes. If µ is
the offspring distribution defined by µ(n) = P (X = n+ 1) for n > −1, the coding
of a BGWµ by its Lukasiewicz path (Proposition 3.4) entails that ζ has the same
distribution as the total size of a BGWµ tree. But if (Zn)n>0 denotes the BGW process
as in the solution of Exercise 2, we see that the total size of a BGWµ tree has the same
distribution as

∑
n>0 Zn. We conclude that

E [ζ] =

∞∑
n=0

E [Zn] =

∞∑
n=0

mn =
1

1 −m
=

1
c

since −c = E [X1] = m− 1.

(2) The idea is to use a time-reversal argument. Specifically, fix n > 1 and for 0 6

i 6 n define W[n]
i = Wn −Wn−i (this amounts to considering the walk obtained

by reading the jumps of (W0,W1, . . . ,Wn) backwards). Extend W[n] by defining
W

[n]
n+i = W

[n]
n ) + X ′1 + X

′
2 + · · · + X ′i for i > 1, with (X ′i)i>1 i.i.d. with law X1 and

independent of (Xi)i>1. Define (T
[n]
k )k>1 as (Tk)k>1 but by replacing W with W[n].

Then
{ζ > n} = {n ∈ {T

[n]
1 , T [n]2 , T [n]3 , . . .}},

see Figure 8.

−1
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1

2

3

1 2 3 4 5 6 7
0

1

2

3

1 2 3 4 5 6 7

Figure 8: Left: an example of (Wi : 0 6 i 6 7) such that ζ > 7; Right: its associated

time-reversed path (W
[7]
i : 0 6 i 6 7) (obtained by reading the jumps from right to

left).

The desired result follows from the fact that (Wi)i>0 and (W
[n]
i )i>0 have the same

distribution, and therefore (Ti)i>1 and (T
[n]
i )i>1 as well have the same distribution, so

that
P(n ∈ {T

[n]
1 , T [n]2 , T [n]3 , . . .) = P(n ∈ {T1, T2, T3, . . .).
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(3) By (2), we have P (ζ > n) =
∑∞
k=1 P (Tk = n). By summing over n > 1, we get

E [ζ] − 1 =

∞∑
n=1

P (ζ > n) =

∞∑
k=1

∞∑
n=1

P (Tk = n) =

∞∑
k=1

P (Tk <∞) =

∞∑
k=1

P (T1 <∞)k ,

where the last equality follows from the strong Markov property. By (1), we get that

1
c
− 1 =

P (T1 <∞)

1 − P (T1 <∞)
,

so that P (T1 <∞) = 1−c. It remains to observe that P (∀n > 1,Wn < 0) = P (T1 =∞).

Solution of Exercise 4.

(1) The idea is to use the connection with Bienaymé–Galton–Watson processes as in
Exercice 4. If µ is the offspring distribution defined by µ(n) = P (X = n+ 1) for
n > −1. We have seen that P (ζ1 = n) = 1

nP (Wn = −1). Therefore

∞∑
n=1

1
n

P (Wn = −1) =
∞∑
n=1

P (ζ1 = n) = P (ζ1 <∞) ,

which is the probability that a BGWµ is finite, and is therefore 1 since µ has expectation
1 − c 6 1.

For the second equality, write

∞∑
n=1

P (Wn = −1) =
∞∑
n=1

nP (ζ1 = n) = E [ζ1] =
1
c

by the first question of Exercise 4.

(2) We apply the first question with X1 = Poisson(λ) − 1. In particular, Wn + n is dis-
tributed according to a Poisson random variable of parameter λn. Therefore, by
(1):

1 =

∞∑
n=1

1
n

P (Wn = −1) =
∞∑
n=1

1
n

P (Wn +n = n− 1) =
∞∑
n=1

1
n
· (λn)

n−1e−λn

(n− 1)!
,

which shows (1).

Similarly,

1
1 − λ

=

∞∑
n=1

P (Wn = −1) =
∞∑
n=1

P (Wn +n = n− 1) =
∞∑
n=1

(λn)n−1e−λn

(n− 1)!
.
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Solution of Exercise 5. We start with summing the identity of the hint over r:

∞∑
r=1

sn

r
P (ζr = n) =

∞∑
r=1

sn

n
P (Wn = −r) =

P(Wn < 0)
n

sn.

If (ζ(i))i>1 is an i.i.d. sequence of independent random variables distributed as ζ1, we have

∞∑
n=1

∞∑
r=1

1
r

P (ζr = n) s
n =

∞∑
r=1

1
r

E
[
sζ

(1)+ζ(2)+···+ζ(r)
]
=

∞∑
r=1

1
r

E
[
sζ1
]r

= ln
(

1
1 − E [sζ1 ]

)
.

The first identity follows.
For the second one, write

exp

(
−

∞∑
n=1

sn

n
P (Wn < 0)

)
= (1 − s) exp

( ∞∑
n=1

sn

n
P (Wn > 0)

)
.

The desired result follows by noting that

1
1 − s

(
1 −

∞∑
n=1

P (ζ = n) sn

)
=

∞∑
n=1

P (ζ = n)
1 − sn

1 − s
=

∞∑
n=0

P (ζ > n) sn.

Remarks on Exercise 6. This has been established in [48] under the assumption that
P (X = n) ∼ L(n)/n2 as n→∞, see also [13, Theorem 3.4] for estimates under regularity
conditions on L.

5 Estimates for centered, downward skip-free random walks
in the domain of attraction of a stable law

In this Section, we establish estimates for a certain class of random walks, in view of
applying them to study large subcritical BGW trees whose offspring distribution is regularly
varying.

Assumptions. Let X be an integer-valued random variable such that:

– P(X > −1) = 1 and P(X > 0) > 0;

– E [X] = 0;

– X is in the domain of attraction of an α-stable distribution, with 1 < α 6 2.
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The last assumption means that either X has finite variance (in which case α = 2), or

µ([n,∞)) =
L(n)

nα
(6)

for a slowly varying function L (that is for every fixed x > 0, L(ux)/L(u) → 1 as u → ∞;
for instance ln is slowly varying, and so is any function converging to a positive limit at∞).
We refer to [16] for details slowly varying functions and to [31, IX.8,XVII.5] for background
on domains of attraction.

In order to unify the finite and infinite variance cases for α = 2, it is useful to rely on
the following equivalent characterization: X in the domain of attraction of an α-stable
distribution, with 1 < α 6 2, if there exists a slowly varying function L0 such that

E
[
X2
1X6n

]
= L0(n)n

2−α. (7)

We also choose a scaling sequence (bn) such that

nL0(bn)

bαn
−→
n→∞


1

(2 −α)Γ(−α)
for α < 2

2 for α = 2.
(8)

In particular, bn is of order n1/α up to a slowly varying function (if µ([n,∞)) ∼ c/nα, then
bn ∼ c ′n1/α for a certain constant c ′). Its importance comes from the fact that if (Xi)i>1 are
i.i.d. distributed as X and Sn = X1 + · · ·+Xn, then we have the convergence in distribution

Sn

bn

(d)−→
n→∞ Yα, (9)

where Yα is an α-stable spectrally positive random variable normalized so that E[e−λYα] =

eλ
α

for every λ > 0. In particular, for α = 2, Y2 is a multiple of standard Gaussian
distribution.

Remark 5.1. When 1 < α < 2, we may take L(n) = 2−α
α L0(n) and when α = 2 we have

L(n) = o(L0(n)). If X has finite variance we have L0(n) → Var(X), so that we may take
bn =

√
Var(X)n/2.

In the sequel, we shall use, sometimes without notice, the following useful result
concerning slowly varying function (sometimes called the Potter bounds, see [16, Theorem
1.5.4]. For every A > 1, δ > 0, there existsM > 0 such that for evey x,y >M:

L(y)

L(x)
6 Amax

((y
x

)δ
,
(y
x

)−δ)
.
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5.1 A maximal inequality

Our goal is to establish the following inequality, where Sn = X1 + · · ·+Xn with (Xi)i>1 i.i.d.
satisfying the assumptions in the beginning of Section 5.

Proposition 5.2. There exists a constant C > 0 such that for every n > 1, x > 0 and c > 1 we
have

P (Sn > xbn,X1 6 cbn, . . . ,Xn 6 cbn) 6 C exp
(
−
x

c

)
.

In our setting, a rather short proof can be given by adapting the proof of [33, Theorem
2]. See [24, Lemma 2.1] for greater generality.

Proof. The idea is to introduce the “truncated” random walk S̃n defined by

S̃n =

n∑
i=1

Xi1Xi6cbn .

Indeed, we have P (Sn > xbn,X1 6 cbn, . . . ,Xn 6 cbn) 6 P(S̃n > xbn). To bound the latter
quantity, we use a Chernoff bound. Specifically, set λn = 1/(cbn) and write

P(S̃n > xbn) 6 e
−λxbnE

[
eλnS̃n

]
= e−x/cE

[
eλnS̃1

]n
.

The idea is to write E
[
eλnS̃1

]
= 1 +mn + sn with

mn =
1
cbn

E [X1X6cbn ] , sn =
1

(cbn)2 E

[
eX/(cbn) − 1 −X/(cbn)

(X/(cbn))2 X2
1X6cbn

]
.

It suffices to check thatmn = O(1/n) and sn = O(1/n) to finish the proof.
Estimation ofmn. Since E [X] = 0, we have E [X1X6cbn ] = −E [X1X>cbn ]. But

uα−1

L0(u)
·E [X1X>u] −→

u→∞ 2 −α

α− 1
,

see [31, Lemma in XVII.5]. Therefore,

mn ∼
n→∞ 2 −α

α− 1
· L0(cbn)

(cbn)α
,

where for α = 2 the equivalent ∼ should be interpreted as a little-o. By (8), the last quantity
is indeed O(1/n).

Estimation of sn. Since the function x 7→ (ex − 1 − x)/x2 is bounded on [−1, 1], we have
sn = O(E

[
X2
1X6cbn

]
)/b2

n. Hence, by (7) and (8), sn = O(L0(bn)/b
α
n) = O(1/n). This

completes the proof.
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Remark 5.3. In the previous statement, note that is is important to take c > 1. Indeed, the
statement is false in general for every c > 0. For example, if P(X = n) ∼ 1

n4 as n → ∞,
then Sn/

√
n and max(X1, . . . ,Xn)/n1/4 converge (jointly) in distribution to non-degenerate

random variables. If Proposition 5.2 were true for every c > 0, we would have

P(Sn >
√
n,X1 6 2n1/4, . . . ,Xn 6 2n1/4) 6 Ce−n

1/4/2 −→
n→∞ 0,

which is not the case.

5.2 A local estimate

We now establish a local estimate under the following assumptions.

Assumptions. Let X be an integer-valued random variable such that:

– P(X > −1) = 1 and P(X > 0) > 0;

– E [X] = 0;

– We have
P (X = n) ∼

n→∞ L(n)

n1+β (10)

with β > 1.

The last condition implies that X is in the domain of attraction of a stable law of index
min(2,β), so these assumptions are stronger than those made in the beginning of Section 5.

The following result is due to Doney [25], where for n > 1 we set Sn = X1 + · · ·+ Xn
with (Xi)i>1 i.i.d. satisfying the previous assumptions.

Theorem 5.4. Fix ε > 0. Uniformly form > εn,

P (Sn = m) ∼
n→∞ n ·P (X1 = m) (11)

This result indicates a “one-big jump principle”: for m > εn, intuitively speaking
having Sn = m amounts to having one big jump of size m among the n possible. The
proof will confirm the intuition, and Theorem 5.6 below gives a quantitive statement in
this direction. The question of finding the optimalmn such that (11) holds uniformly for
m > mn has attracted a lot of attention, see [24]

Proof. We follow the proof of [25], which follows the lines of [57]. Set

`m =
m

(ln(m))3 .
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The idea is to separate the cases depending on the number of jumps at least equal to `m by
writing P (Sn = m) 6 nPm,n

1 + Pm,n
2 + Pm,n

3 with

Pm,n
1 = P

(
Sn = m,Xn > `m, max

16k6n−1
Xk < `m

)
, Pm,n

2 = P

(
Sn = m, max

16k6n
Xk < `m

)
and

Pm,n
3 = P

Sn = m,
⋃

16i<k6n

{Xi > `m,Xk > `m}

 .

Estimation of Pm,n
3 . Write

Pm,n
3 6

(
n

2

)
P (Sn = m,X1 > `m,X2 > `m)

6 n2
∑
i>0

P (Sn−2 = i)P (X1 > `m,X2 > `m,X1 +X2 = m− i)

6 n2P (X1 > `m) sup
j>`m

P (X2 = j) .

By (10), the last quantity is asymptotic to

n2 · βL(`m)
`
β
m

· L(`m)
`

1+β
m

.

Since β > 1, by definition of `m and using the fact that m > εn together with the Potter
bounds, we get that Pm,n

3 = o(nP (X1 = m)) uniformly inm > εn.
Estimation of Pm,n

2 . We use Proposition 5.2 to write

Pm,n
2 6 P

(
Sn > m, max

16k6n
Xk < `m

)
6 C exp

(
−
m

`m

)
6 C exp

(
− ln(m)3

)
,

which is o(nP (X1 = m)) uniformly inm > εn.
Estimation of Pm,n

1 . This is the more difficult part. The idea is to introduce another cutoff
to take into account the small values of Sn−1. Specifically, set α = min(β, 2) and α ′ = 1+α

2α ∈
(1/α, 1), so that Sn/nα

′ → 0 in probability by (8) , and write Pm,n
2 6 Qm,n

1 +Qm,n
2 +Qm,n

3
with

Qm,n
1 = P

(
Sn = m,Xn > `m, max

16k6n−1
Xk < `m,Sn−1 >

m

ln(m)

)
Qm,n

2 = P

(
Sn = m,Xn > `m, max

16k6n−1
Xk < `m,Sn−1 < −nα

′
)

Qm,n
3 = P

(
Sn = m,Xn > `m, max

16k6n−1
Xk < `m,−nα

′
6 Sn−1 6

m

ln(m)

)
.

To estimate Qm,n
1 , using Proposition 5.2 we have

Qm,n
1 6 P

(
Sn−1 >

m

ln(m)
, max

16k6n−1
Xk < `m

)
6 C exp

(
− ln(m)2

)
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which is o(P (X1 = m)) uniformly inm > εn.
To estimate Qm,n

2 , write

Qm,n
2 6

∑
j<−nα

′

P (Sn−1 = j,Xn = m− j) 6 P
(
Sn−1 < −nα

′
)

sup
j>nα

′
P (X1 = m+ j) ,

which is o(P (X1 = m)) uniformly inm > εn.
To estimate Qm,n

3 , notice that P (Xn = m− j) ∼ P (S1 = m) uniformly in −nα
′
6 j 6

m
ln(m) . Therefore, sincem−m/ ln(m) > `m form sufficiently large, we have

Qm,n
3 ∼

n→∞ P

(
max

16k6n−1
Xk < `m,−nα

′
6 Sn−1 6

m

ln(m)

)
P (S1 = m) .

Since P
(
−nα

′
6 Sn−1 6 m/ln(m)

)
→ 1, it suffices to check that P (max16k6n−1 Xk < `m)→

1. This readily follows from the fact that nP(X1 > `m)→ 0.

Remark 5.5. If one only assumes that P(X > −1) = 1, P(X > 0) > 0, E [X] = 0 and
P(X > n) =

L(n)
nβ

with β > 1, one can show that for every ε > 0, uniformly for m > εn,
P (Sn > m) ∼ n ·P (X1 > m) as n→∞ (this is one of the main results of [57]).

5.3 A one big jump principle

We keep the notation and assumptions of Section 5.2 and fix a sequence (xn) such that
lim infn→∞ xn/n > 0. We establish here that, conditionally given Sn = xn, a one-big jump
principle appears.

We start with some notation. Let

Vn := inf
{

1 6 j 6 n : Xj = max{Xi : 1 6 i 6 n}
}

be the first index of the maximal element of (X1, . . . ,Xn). Let (X(n)
1 , . . . ,X(n)

n−1) be a random
variable distributed as (X1, . . . ,XVn−1,XVn+1 . . . ,Xn) under P( · |Sn = xn).

The following result is due to Armendáriz & Loulakis [9]:

Theorem 5.6. We have

sup
A∈B(Rn−1)

∣∣∣P((X(n)
i : 1 6 i 6 n− 1

)
∈ A

)
− P ((Xi : 1 6 i 6 n− 1) ∈ A)

∣∣∣ −→
n→∞ 0.

Roughly speaking, this results states that the conditioning Sn = xn affects only the
maximum jump in the limit, and the other jumps become asymptotically independent.

Let us explain the main conceptual idea of the proof first. If (µn) and (µ̃n) are two
sequences of probability measure (with µn “complicated” and µ̃n “simpler”), to show that
supA |µn(A) − µ̃n(A)|→ 0, it is enough to:
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– find an event En typical for µ̃n, in the sense that µ̃n(En)→ 1;

– show that supA |µn(A∩ En) − µ̃n(A∩ En)→ 0 (which is simpler because we work on
the event En).

Proof. For every A ∈ B(Rn−1), note that P((X1, . . . ,XVn−1,XVn+1 . . . ,Xn) ∈ A,Sn = xn) is
bounded for n sufficiently large from below by the probability of the event

n⋃
i=1

{
(X1, . . . ,Xi−1,Xi+1 . . . ,Xn) ∈ A,

∣∣∣∑
16j6n
j 6=i

Xj

∣∣∣ 6 Kbn, max
16j6n
j 6=i

Xj < xn −Kbn,Sn = xn

}
,

where K > 0 is an arbitrary constant and the events are disjoint. By cyclic invariance of the
law of (X1, . . . ,Xn), we get that P((X1, . . . ,XVn−1,XVn+1 . . . ,Xn) ∈ A,Sn = xn) is bounded
from below by

nP

(
(X1, . . . ,Xn−1) ∈ A,

∣∣∣Sn−1

∣∣∣ 6 Kbn, max
16j6n−1

Xj < xn −Kbn,Sn = xn

)
.

Let us introduce the event

Gn(K) :=

{∣∣∣Sn−1

∣∣∣ 6 Kbn, max
16j6n−1

Xj < xn −Kbn

}
.

To simplify notation, set ∆ = [0, 1). By (10), observe that

P(X1 ∈ xn − kn +∆) ∼
n→∞ P(X1 ∈ xn +∆)

uniformly in kn satisfying |kn| 6 Kbn. Moreover, by Theorem 5.4 we have that P(Sn =

xn) ∼ nP(X1 ∈ xn). Therefore, there exists a sequence εn → 0 such that

P
((
X
(n)
1 , . . . ,X(n)

n−1

)
∈ A

)
> (1 − εn)P ((X1, . . . ,Xn−1) ∈ A,Gn(K))

> (1 − εn)
(

P((X1, . . . ,Xn−1) ∈ A) − P
(
Gn(K)

))
.

Hence

P
((
X
(n)
1 , . . . ,X(n)

n−1

)
∈ A

)
− P((X1, . . . ,Xn−1) ∈ A)

> −εnP((X1, . . . ,Xn−1) ∈ A) − (1 − εn)P
(
Gn(K)

)
.

By writing this inequality with A instead of A, we get that∣∣∣P((X(n)
1 , . . . ,X(n)

n−1

)
∈ A

)
− P((X1, . . . ,Xn−1) ∈ A)

∣∣∣ 6 εn + P
(
Gn(K)

)
.

It therefore remains to check that

lim sup
K→∞ lim sup

n→∞ P
(
Gn(K)

)
= 0.
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To this end, first notice that by (9)

P
(∣∣∣Sn−1

∣∣∣ > Kbn) −−−→
n→∞ P(Y > K),

for a certain finite random variable Y. In particular, we have P(Y > K) → 0 as K → ∞.
Second, write

P

(
max

16j6n−1
Xj > xn −Kbn

)
= 1 − (1 − P(X1 > xn −Kbn)))

n−1 .

But (n− 1)P(X1 > xn −Kbn)→ 0, hence the result.

The following corollary justifies the denomination “one-big jump principle” (because
bn = o(xn)).

Corollary 5.7. Denote by ∆n the maximal element of (X1, . . . ,Xn) conditionally given Sn = xn,
and by ∆(2)

n its second maximal element. Then:

(i) we have
∆n

xn

(P)−→
n→∞ 1.

(ii) We have
∆n − xn
bn

(d)−→
n→∞ −Yα;

(iii) Let (b ′n) such that βnL(b
′
n)

(b ′
n)
β → 1. We have for every u > 0,

P

(
∆
(2)
n

b ′n
6 u

)
−→
n→∞ exp

(
−u−β

)
.

Observe that b ′n is of order n1/β (up to a slowly varying function). Also, by Remark 5.1,
for 1 < β < 2, bn/b ′n converges to a positive constant, while for β = 2, b ′n = o(bn).

Proof. First of all, (i) is a simple consequence of (ii): since lim infn→∞ xn/n > 0, we have
bn = o(xn).

For (ii), conditionally given Sn = xn, we have ∆n = xn −X
(n)
1 − · · ·−X(n)

n−1. The desired
result then follows from Theorem 5.6 and (9).

For (iii), by Theorem 5.6, it suffices to show that

P

(
max(X1, . . . ,Xn)

b ′n
6 u

)
−→
n→∞ exp

(
−u−β

)
.

To this end, write

P(max(X1, . . . ,Xn) 6 ub ′n) = (1 − P(X1 > ub ′n))
n = exp(n ln(1 − P(X1 > ub ′n))).

Since L is slowly varying,

nP(X1 > ub ′n) ∼
n→∞ n

βL(b ′n)

uβ(b ′n)
β

.

The desired result follows by definition of b ′n.
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6 Application: condensation in subcritical Bienaymé–Galton–
Watson trees

We now turn to our application concerning subcritical BGW trees whose offspring distribu-
tion is regularly varying.

Assumptions. We assume here that µ is an offspring distribution such that:

– m :=
∑∞
i=0 iµ(i) < 1;

– we have µ(n) =
L(n)

n1+β , with L slowly varying and β > 1.

We set α = min(β, 2), denote by (Xi)i>1 i.i.d. random variables with distribution
given by P(X1 = i) = µ(i+ 1) for i > −1, and finally set Wn = X1 + · · ·+ Xn as well as
ζ = inf{n > 1 :Wn = −1}. Observe that E [X1] = m− 1 < 0.

As in the beginning of Section 5, the assumptions on µ entail that E
[
X2

11X16n
]
=

L0(n)n
2−α for a certain slowly varying function L0, and we consider here as well a scaling

sequence (bn) such that

nL0(bn)

bαn
−→
n→∞


1

(2 −α)Γ(−α)
for α < 2

2 for α = 2.
,

so that
Wn + (1 −m)n

bn

(d)−→
n→∞ Yα,

where Yα is an α-stable spectrally positive random variable normalized so that E[e−λYα] =

eλ
α

for every λ > 0. Recall that bn is of order n1/α (up to a slowly varying function) and
that when µ has finite variance σ2 ∈ (0,∞), one may take bn = σ

√
n/2.

Finally, we let Tn be a BGWµ tree conditioned on having n vertices (to avoid periodicity
issues, we assume that this conditioning is non-degenerate for n sufficiently large).

Let u?(Tn) be the vertex with maximal degree of Tn (if there are several vertices with
maximum degree, choose the first one in lexicographical order, but we will see that this
vertex is unique with high probability) and denote by ∆(Tn) its outdegree. Let also ∆(2)(Tn)

be the maximal outdegree of the remaining vertices.
We investigate the condensation phenomenon in two directions. First, we establish

a law of large numbers and a central limit type result for ∆(Tn) (Theorem 6.1). Second,
we study the asymptotic behavior of the height of u?(Tn) (Theorem 6.2) and show that it
converges in distribution to a geometric random variable of parameter 1 −m. Both results
combine the coding of Tn by the Łukasiewicz path with the previously established "one
big jump principle" (Theorem 5.6).
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Theorem 6.1. The following assertions hold:

(i) we have
∆(Tn)

(1 −m)n

(P)−→
n→∞ 1.

(ii) We have
∆(Tn) − (1 −m)n

bn

(d)−→
n→∞ −Yα.

(iii) Let (b ′n) such that βnL(b
′
n)

(b ′
n)
β → 1. We have for every u > 0,

P

(
∆(2)(Tn)

b ′n
6 u

)
−→
n→∞ exp

(
−u−β

)
,

with the quantity on the right-hand side being interpreted as 1 for α = 2.

When µ(n) ∼ c/n1+β as n→∞ (that is when L = c+ o(1)), the first assertion is due to
Jonsson & Stefánsson [42] and the others to Janson [39]. The general case is treated in [47].

Denote by |u?(Tn)| the height of u?(Tn). The following result was established in [47].

Theorem 6.2. For every i > 0, we have

P (|u?(Tn)| = i) −→
n→∞ (1 −m)mi.

6.1 Approximating the Łukasiewicz path

Denote by (W
(n)
i : 0 6 i 6 n) the random walk (Wi : i > 0) under the conditional

probability P( · |ζ = n), which has the same distribution as the Łukasiewicz path of Tn (see
Section 3). The first step to prove Theorems 6.1 and 6.2 is to show that W(n) can be well
approximated by a path constructed in a simple way.

For every n > 1, define the random process Z(n) := (Z
(n)
i : 0 6 i 6 n) by

Z(n) := V(W0,W1, . . . ,Wn−1,−1), (12)

where V denotes the Vervaat transform (see Definition 3.11). The next result shows that
(Z

(n)
i : 0 6 i 6 n) is a good approximation of (W(n)

i : 0 6 i 6 n) as n goes to infinity.

Theorem 6.3. We have

sup
A∈B(Rn+1)

∣∣∣P((W(n)
i : 0 6 i 6 n

)
∈ A

)
− P

((
Z
(n)
i : 0 6 i 6 n

)
∈ A

)∣∣∣ −−−→
n→∞ 0.

Proof. Throughout the proof, we let B(n) := (B
(n)
i : 0 6 i 6 n) be a bridge of length n, that

is, a process distributed as (Wi : 0 6 i 6 n) under P( · |Wn = −1).
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Denote by (X
(n)
1 , . . . ,X(n)

n−1) the jumps of B(n) with the first maximal jump removed. We
apply Theorem 5.6 with the centered random walk Sn =Wn + (1 −m)nwith increments
(Xi + 1 −m)16i6n−1, conditionally given Sn = xn with xn = −1 + (1 −m)n (note that (Sn)
is not integer-valued, but it is a simple matter to see that the results carry through):

sup
A∈B(Rn−1)

∣∣∣∣P((X(n)
i + 1 −m

)
16i6n−1

∈ A
)
− P

(
(Xi + 1 −m)16i6n−1 ∈ A

)∣∣∣∣ −→
n→∞ 0,

which implies

sup
A∈B(Rn−1)

∣∣∣∣P((X(n)
i

)
16i6n−1

∈ A
)
− P

(
(Xi)16i6n−1 ∈ A

)∣∣∣∣ −→
n→∞ 0. (13)

For every 0 6 i < n, we denote by b(n)i := B
(n)
i+1 −B

(n)
i the i-th increment of the bridge.

We will need the first time at which (B
(n)
i : 0 6 i 6 n) reaches its largest jump, defined by

Vbn := inf
{

0 6 i < n : b
(n)
i = max

{
b
(n)
j : 0 6 j < n

}}
.

Without loss of generality, we assume that the largest jump of B(n) is reached once ((13)
entails that this happens with probability tending to 1 as n→∞ since max(X1, . . . ,Xn)/bn
converges in distribution). We finally introduce the shifted bridge R(n) := (R

(n)
i : 0 6 i 6 n),

obtained by reading the jumps of the bridge B(n) from left to right starting from Vbn. Namely,
we set

R
(n)
0 = 0 and r

(n)
i := R

(n)
i+1 − R

(n)
i = b

(n)

Vbn+i+1 mod [n]
, 0 6 i < n,

see Figure 9 for an illustration.
Since Vbn is independent of (b(n)0 , . . . ,b(n)

Vbn−1,b(n)
Vbn+1, . . . ,b(n)n−1), we have(

r
(n)
i : 0 6 i < n− 1

)
=
(
b
(n)

Vbn+i+1 mod [n]
: 0 6 i < n− 1

)
(d)
=
(
X
(n)
1 , . . . ,X(n)

n−1

)
.

Hence, by (13),

sup
A∈B(Rn−1)

∣∣∣∣P((R(n)i )16i6n−1
∈ A

)
− P

(
(Wi)16i6n−1 ∈ A

)∣∣∣∣ −→
n→∞ 0.

We now use the Vervaat transform. By construction, V(R(n)) = V(B(n)) (see Figure 9), and
V(B(n)) has the same distribution as the excursion (W

(n)
i : 0 6 i 6 n) by Lemma 3.12. Since

R
(n)
n = −1 and Z(n) = V (W0, . . . ,Wn−1,−1) by definition, this concludes the proof.

6.2 Proof of the results

In order to prove Theorems 6.1 and 6.2, the main idea is to establish them for a modified
tree T(n) whose Lukasiewicz path Z(n) is defined by

Z(n) := V(W0,W1, . . . ,Wn−1,−1).
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0

R(n)

n

0
n

B(n)

V b
n

0
n

V
(
B(n)

)

V ′
n

n-V ′
n-1

Figure 9: The bridge B(n) = (B
(n)
i : 0 6 i 6 n) with the location Vbn of its (first)

maximal jump, its Vervaat transform V(B(n)) with the location V ′n of its (first) maximal

jump, and the shifted bridge R(n) = (R
(n)
i : 0 6 i 6 n) with the location of its first

overall minimum.

Indeed, this is possible thank to Theorem 6.3.
First observe that, with probability tending to 1 as n → ∞, the maximum jump of

(W0,W1, . . . ,Wn−1) is of order bn = o(n) and sinceWn is of order −(1−m)n, the last jump
of (W0,W1, . . . ,Wn−1,−1) is of order (1 −m)n.

Proof of Theorem 6.1. By the previous observation, we may assume that the maximum jump
of (W0,W1, . . . ,Wn−1,−1) is the last one. Then

∆(T(n)) = −Wn−1, ∆(2)(Tn) = max
16i6n

(Wi −Wi−1),

and the desired result follows by the same calculations as in the proof of Corollary 5.7.

Proof of Theorem 6.2. Observe that

|u?(T
(n))| = Card

({
0 6 i 6 n− 1 :Wi = min

i6j6n−1
Wj

})
,

see Figure 10.
By time reversal at time n− 1 (see the solution of Exercice 4 for a similar argument),

|u?(T
(n))| has the same distribution as

Card({0 6 i 6 n− 1 :Wi = max
06i6n−1

Wi}).

38



0

(Wi : 0 ≤ i < n)

n

u?(T (n))
T (n)

Figure 10: Left: the path (W1,W1, . . . ,Wn−1, 1). Right: the tree T(n) whose

Lukasiewicz path is V(W1,W1, . . . ,Wn−1, 1). The ancestors of u?(T
(n)) (in bold)

correspond to times 0 6 i 6 n− 1 such that Wi = mini6j6n−1Wj (in bold).

Therefore, as n → ∞, |u?(T(n))| converges in distribution to the number of weak ladder
times of (Wi)i>0 (which is almost surely finite, since the random walk has negative drift).
We saw in the solution of Exercice 4 that if Tk denotes the k-th weak ladder time, P(Tk <∞) = P(T1 <∞)k and that P(T1 <∞) = 1 − E [W1] = m. The desired result follows.

Remark 6.4. It is also possible to show that the height of Tn behaves logarithmically; more
precisely,

Height(Tn)

ln(n)
(P)−→
n→∞ 1

ln(1/m)
.

see [47, Theorem 4]. Intuitively speaking, Tn looks like a finite spine on top of which are
grafted (1 −m)n asymptotically independent BGWµ trees, for which the tail of the height
decreases exponentially fast.
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