CPES 2 – Probabilités approfondies 2015-2016

Feuille d'exercices 1 : espaces probabilisés

Igor Kortchemski – igor.kortchemski@cmap.polytechnique.fr

Exercice 1. On modélise un lancer indéfini d'une pièce équilibrée comme suit. On pose $\Omega = \{0,1\}^{\mathbb{N}^*}$. Pour $\omega = (\omega_n)_{n\geq 1} \in \Omega$ on interprète ω_k comme le résultat du k-ième lancer. Pour tout $k\geq 1$ et $u_1,\ldots,u_k\in\{0,1\}$ on définit l'ensemble

$$C_{u_1,u_2,\dots,u_k} = \{(\omega_n)_{n\geq 1} : \omega_1 = u_1,\dots,\omega_k = u_k\}.$$
 (1)

Exprimer (par des unions, intersections et complémentaires) les évènements suivants en fonction d'ensembles de type (1) :

- (1) $A : \ll \text{le résultat du second lancer est pile} \gg$
- (2) B_n : « on obtient pile pour la première fois au n-ième lancer »
- (3) $C : \ll \text{ on n'obtient jamais pile } \gg$
- (4) D_n : « on obtient pile au moins deux fois au cours des n premiers lancers »

On admet l'existence d'une plus petite tribu \mathcal{A} contenant tous ces ensembles et l'existence d'une probabilité \mathbb{P} sur (Ω, \mathcal{A}) telle que

$$\mathbb{P}\left(C_{u_1,u_2,\dots,u_k}\right) = \frac{1}{2^k}.\tag{2}$$

(5) Calculer les probabilités des événements A, B_n, C, D_n précédents.

Remarque : On peut prouver que Ω n'est pas dénombrable, et qu'il n'existe pas de probabilité \mathbb{P} sur $(\Omega, \mathcal{P}(\Omega))$ telle que (2) soit vérifiée pour tous les ensembles de type (1).

Exercice 2. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Soient $A, B \in \mathcal{A}$. On suppose que $\mathbb{P}(A) > 0$ et que $\mathbb{P}(B) = 0$. Montrer que $\mathbb{P}(B|A) = 0$.

Exercice 3. Vrai ou faux? Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. Dire si chaque affirmation est vraie (alors la prouver) ou fausse (donner un contre-exemple) :

- (1) Si $A, B \subset \Omega$ alors $\{\emptyset, A, B, \overline{A}, \overline{B}\}$ est une tribu sur Ω .
- (2) Si A et B sont deux événements tels que $\mathbb{P}(A) + \mathbb{P}(B) = 1$ alors $B = \overline{A}$.
- (3) Si A et B sont deux évènements indépendants alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.
- (4) Si A et B sont deux évènements tels que $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ alors A et B sont incompatibles.
- (5) Si $(A_k)_{k\geq 1}$ est un système complet d'évènements de probabilités non nulles alors pour tout évènement A la série $\sum_{k\geq 0} \mathbb{P}(A|A_k)$ est convergente.

Exercice 4. On cherche un objet dans un meuble constitué de sept tiroirs. La probabilité qu'il soit effectivement dans ce meuble est p. Sachant qu'on a examiné les six premiers tiroirs sans succès, quelle est la probabilité qu'il soit dans le septième?

Exercice 5. On dispose de quatre livres, un livre de mathématiques, un livre de biologie, un livre de chimie, et un livre mathématiques-biologie-chimie. On choisit au hasard, avec la probabilité uniforme, un livre parmi les quatre. Notons M, B et C les événements « le livre choisi traite notamment de mathématiques » (respectivement biologie, chimie). Montrer que les événements M, B et C sont deux à deux indépendants. Sont-ils indépendants?

Exercice 6. Chaque nuit, le prince choisit au hasard de dormir sur 6, 7 ou bien 8 matelas (avec des probabilités égales). Chaque nuit, indépendamment, la princesse place sous les matelas un petit pois avec probabilité 1/2. Par ailleurs :

- si le prince dort sur 6 matelas et qu'un petit pois se trouve en-dessous, celui-ci dort mal;
- si le prince dort sur 7 matelas et qu'un petit pois se trouve en-dessous, celui-ci dort bien avec probabilité 1/5 (sinon il dort mal);
- si le prince dort sur 8 matelas et qu'un petit pois se trouve en-dessous, celui-ci dort bien avec probabilité 2/5 (sinon il dort mal).

(s'il n'y a pas de petit pois, le prince dort toujours bien).

(1) Soient B_1, \ldots, B_n des événements de probabilités non nulles, deux à deux disjoints, et telle que leur union soit égale à l'univers. Montrer que tout événement A vérifie

$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A|B_i) \mathbb{P}(B_i).$$

- (2) Quelle est la probabilité que le prince annonce avoir bien dormi au réveil?
- (3) Si A et B sont deux événements de probabilité non nulles, montrer que

$$\mathbb{P}(A|B) = \mathbb{P}(B|A) \frac{\mathbb{P}(A)}{\mathbb{P}(B)}.$$

- (4) Sachant que le prince a bien dormi, quelle est la probabilité qu'il ait dormi sur 7 matelas?
- (5) Le matin du 1er février, le prince annonce avoir bien dormi. Sur combien de matelas a-t-il dormi, en moyenne?