Structure in Randomness

Discrete mathematics MAA103



Law of large numbers

1. LAW OF LARGE NUMBERS

II. CENTRAL LIMIT THEOREM
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Law of large numbers

The law of large numbers

Fix p € (0,1). Throw n times in a row a coin which has a probability p of
giving heads.
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Law of large numbers

The law of large numbers

Fix p € (0,1). Throw n times in a row a coin which has a probability p of
giving heads.

As n — 0o, how does evolve the proportion of heads?
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Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens

with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ Xy
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Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens

with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ Xy

A~ What is the behavior of ST“ asn — oo’

Igor Kortchemski Structure in randomness 3/672




Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens
with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ X,

A~ What is the behavior of ST“ asn — oo’
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Figure: Simulation of (ST“ 1< nK 10).
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Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens
with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ X,

A~ What is the behavior of ST“ asn — oo’
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Figure: Simulation of (ST“ 1< ng 100).
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Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens
with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ X,

A~ What is the behavior of ST“ asn — oo’
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Figure: Simulation of (ST“ 1< ng 100).
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Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens
with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ X,

A~ What is the behavior of ST“ asn — oo’
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Figure: Simulation of (ST“ 1< ng 10000) for p = 0.6.
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Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens

with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ Xy

A~ What is the behavior of ST“ asn — oo’
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Figure: 10 simulations of (ST“ 1< nK 1000) for p = 0.6.
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Law of large numbers

The law of large numbers

A bit more formally, for i > 1 set X; =1 if the i-th throw is heads (happens

with probability p) and 0 otherwise (happens with probability 1 —p). Set
Sh=X1+ -+ Xy

A~ What is the behavior of ST“ asn — oo’
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Figure: 10 simulations of (ST“ 1< nK 1000) for p = 0.6.
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A\ Law of large numbers: =™ converges almost surely towards p as n — oo.
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The Central Limit Theorem

I. LAW OF LARGE NUMBERS

II. CENTRAL LIMIT THEOREM
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The Central Limit Theorem

The Central Limit Theorem

Figure: 10 simulations of (2= —p:1 < n < 1000) for p = 0.6.

Igor Kortchemski Structure in randomness



The Central Limit Theorem

The Central Limit Theorem

Figure: 10 simulations of (2= —p:1 < n < 1000) for p = 0.6.

A~ Can we “zoom in"?
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The Central Limit Theorem

The Central Limit Theorem

Figure: 10 simulations of (2= —p:1 < n < 1000) for p = 0.6.

A~ Can we “zoom in"?

A, Is there a function f(n) such that f(n) (ST“ —p) has a nice behavior for n

large?
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The Central Limit Theorem

The Central Limit Theorem

The speed of convergence is \/_ This means that f p) has
a nondegenerate behavior as n — oo.

Igor Kortchemski Structure in randomness 5/672



The Central Limit Theorem

The Central Limit Theorem

The speed of convergence is \/_ This means that f p) has
a nondegenerate behavior as n — oo.

2 -

Igor Kortchemski Structure in randomness



The Central Limit Theorem

The Central Limit Theorem

The speed of convergence is \/_ This means that f p) has
a nondegenerate behavior as n — oo.

2 -

Igor Kortchemski Structure in randomness
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The Central Limit Theorem

The speed of convergence is \/_ This means that f p) has
a nondegenerate behavior as n — oo.
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The Central Limit Theorem

The Central Limit Theorem

The speed of convergence is T This means that f p) has
a nondegenerate behavior as n — oo.
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The Central Limit Theorem

The Central Limit Theorem

_\C,_ The speed of convergence is % This means that \/ﬂ(% —p) has

“¥" a nondegenerate behavior as n — oo.
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Figure: 100 simulations of (\/ﬁ (ST“ —p) 1< n< 1000) for p = 0.6.
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The Central Limit Theorem

Structure in randommness

Figure: 100 simulations of (\/ﬂ (ST“ —p) 1< nK 1000) for p = 0.6.
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The Central Limit Theorem

Structure in randommness

.. There is structure in this randomness! Look at the “endpoints’
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Figure: 100 simulations of (\/ﬂ (ST“ —p) 1< nK 1000) for p = 0.6.
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The Central Limit Theorem

Structure in randommness

.. There is structure in this randomness! Look at the “endpoints’

O- n(2x —p) and draw the empirical histogram.
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Figure: 100 simulations of (\/ﬂ (ST“ —p) 1< nK 1000) for p = 0.6.
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The Central Limit Theorem

Structure in randommness

.. There is structure in this randomness! Look at the “endpoints’
O \/T_l(ST“ — p) and draw the empirical histogram.

Figure: 100 simulations of (\/ﬂ (ST“ —p) 1< nK 1000) for p = 0.6.
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The Central Limit Theorem

Structure in randommness
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Figure: Empirical histograms of 10000 simulations of /1 - (22 — p) for n = 10000.
Left: p = 0.6; Right:p = 0.4.
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The Central Limit Theorem

Structure in randommness
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Figure: Empirical histograms of 10000 simulations of /1 - (22 — p) for n = 10000.
Left: p = 0.6; Right:p = 0.4.
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Figure: Plot of the function x — T

Igor Kortchemski Structure in randomness 7/672



The Central Limit Theorem
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The Central Limit Theorem
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Figure: Plot of the function x — e

Theorem (Central limit theorem — De Moivre Laplace theorem).}

Let S,, be the sum of n independent Bernoulli random variables of pa-
rameter p € (0,1). Then, for every a < b:

b
Plac< vn (Sn p) <b — J Le_"z/de.
Vvp(l—p) \ 1 n—oo Ja V2T
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The Central Limit Theorem
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Figure: Plot of the function x — e

Theorem (Central limit theorem — De Moivre Laplace theorem).}

Let S,, be the sum of n independent Bernoulli random variables of pa-
rameter p € (0,1). Then, for every a < b:

Sh b 1 >
Pla< Y p]<b|] — J e X /24x.
Vvp(l—p) \ 1 a V2T

We say that 7 ‘(/f ) (ST{‘ p) converges in distribution to a Gaussian random
p(1—p

variable.
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The Central Limit Theorem

The central [imit theorem

We do not know where the “trajectory" will arrive, but we know an
O esimate of the probability that it arrives in a certain region thanks to
the central limit theorem.
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Recap
Firgt part: foundationg

- Setg
- Mathematical asgertiong (quantifiere)

- Functiong



Recap
Second part: combinatoricg

- Binomial coefficientsg
- Permutationg

- Graphg
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Third part: Probability

- Eventg, probabilitieg

- Independence, conditional probabilitieg
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Warning when applying Mathematicg in the real world!



