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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Motivation for studying scaling limits

Let Xn be a set of combinatorial objects of “size” n

(permutations, partitions,

graphs, functions, walks, matrices, etc.).

Goal: study Xn.

y Find the cardinal of Xn.

(bijective methods, generating functions)

y Understand the typical properties of Xn. Let Xn be an element of Xn

chosen uniformly at random. What can be said of Xn?

y A possibility to study Xn is to find a continuous object X such that

Xn ! X as n ! 1.
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Motivation for studying scaling limits

Let (Xn)n>1 be “discrete” objects converging towards a “continuous” object X:

Xn �!
n!1

X.

Several consequences:

- From the discrete to the continuous world: if a property P is satisfied by all

the Xn and passes to the limit, then X satisfies P.

- From the world to the discrete world: if a property P is satisfied by X and

passes to the limit, Xn satisfies “approximately” P for n large.

- Universality: if (Yn)n>1 is another sequence of objects converging towards

X, then Xn and Yn share approximately the same properties for n large.
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Motivation for studying scaling limits

Let (Xn)n>1 be “discrete” objects converging towards a “continuous” object X:

Xn �!
n!1

X.

y In what space do the objects live?

Here, a metric space (Z,d) which will

be complete and separable (there exists a dense countable subset).y What is the sense of the convergence when the objects are random? Here,

convergence in distribution:

E [F(Xn)] �!
n!1

E [F(X)]

for every continous bounded function F : Z ! R.
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Outline

I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)

III. Plane non-crossing configurations (2012)

IV. Random planar maps (2004)
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Central Limit Theorem
Theorem (Central Limit, ' 1901 Liapounov)
Let (Xn)n>1 be i.i.d. (independent identically distributed) random variables

with E [X1] = 0 and �2 = E
⇥
X1

2
⇤
2]0,1[.

Set Sn = X1 +X2 + · · ·+Xn. Then:

Sn
�
p
n

(d)�!
n!1

N(0, 1),

where N(0, 1) is a standard Gaussian random variable.

y Consequence: for every a < b,

P
✓
a <

Sn
�
p
n

< b

◆
�!
n!1

Z
b

a

dx
1p
2⇡

e-
x2

2 .

Igor Kortchemski Scaling limits of large random discrete structures 6 / 672



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Central Limit Theorem
Theorem (Central Limit, ' 1901 Liapounov)
Let (Xn)n>1 be i.i.d. (independent identically distributed) random variables

with E [X1] = 0 and �2 = E
⇥
X1

2
⇤
2]0,1[. Set Sn = X1 +X2 + · · ·+Xn.

Then:

Sn
�
p
n

(d)�!
n!1

N(0, 1),

where N(0, 1) is a standard Gaussian random variable.

y Consequence: for every a < b,

P
✓
a <

Sn
�
p
n

< b

◆
�!
n!1

Z
b

a

dx
1p
2⇡

e-
x2

2 .

Igor Kortchemski Scaling limits of large random discrete structures 6 / 672



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Central Limit Theorem
Theorem (Central Limit, ' 1901 Liapounov)
Let (Xn)n>1 be i.i.d. (independent identically distributed) random variables

with E [X1] = 0 and �2 = E
⇥
X1

2
⇤
2]0,1[. Set Sn = X1 +X2 + · · ·+Xn. Then:

Sn
�
p
n

(d)�!
n!1

N(0, 1),

where N(0, 1) is a standard Gaussian random variable.

y Consequence: for every a < b,

P
✓
a <

Sn
�
p
n

< b

◆
�!
n!1

Z
b

a

dx
1p
2⇡

e-
x2

2 .

Igor Kortchemski Scaling limits of large random discrete structures 6 / 672



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Central Limit Theorem
Theorem (Central Limit, ' 1901 Liapounov)
Let (Xn)n>1 be i.i.d. (independent identically distributed) random variables

with E [X1] = 0 and �2 = E
⇥
X1

2
⇤
2]0,1[. Set Sn = X1 +X2 + · · ·+Xn. Then:

Sn
�
p
n

(d)�!
n!1

N(0, 1),

where N(0, 1) is a standard Gaussian random variable.

Here the metric space

(Z,d) is R.

y Consequence: for every a < b,

P
✓
a <

Sn
�
p
n

< b

◆
�!
n!1

Z
b

a

dx
1p
2⇡

e-
x2

2 .

Igor Kortchemski Scaling limits of large random discrete structures 6 / 672



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Central Limit Theorem
Theorem (Central Limit, ' 1901 Liapounov)
Let (Xn)n>1 be i.i.d. (independent identically distributed) random variables

with E [X1] = 0 and �2 = E
⇥
X1

2
⇤
2]0,1[. Set Sn = X1 +X2 + · · ·+Xn. Then:

Sn
�
p
n

(d)�!
n!1

N(0, 1),

where N(0, 1) is a standard Gaussian random variable.

Here the metric space

(Z,d) is R.

y Consequence: for every a < b,

P
✓
a <

Sn
�
p
n

< b

◆
�!
n!1

Z
b

a

dx
1p
2⇡

e-
x2

2 .

Igor Kortchemski Scaling limits of large random discrete structures 6 / 672



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Brownian motion as a limit of discrete paths
Theorem (Donsker, 1951)
Let (Xn)n>1 be a sequence of i.i.d. random variables such that E [X1] = 0 and

�2 = E
⇥
X1

2
⇤
2 (0,1).

Set Sn = X1 + X2 + · · ·+ Xn, and define Snt by linear

interpolation for t > 0. Then:

✓
Snt

�
p
n
, 0 6 t 6 1

◆
(d)�!

n!1
(Wt, 0 6 t 6 1),

where (Wt, 0 6 t 6 1) is a random variable with values in C([0, 1],R) called

Brownian motion.The law of W does not depend on the law of X1.

y Consequence: for every a > 0,

P
✓

sup
06t61

Snt

�
p
n

> a

◆
�!
n!1

P
✓

sup
06t61

Wt > a

◆
= 2

Z1

a

dx
1p
2⇡

e-
x2

2 .
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Theorem (Conditioned Donsker Theorem, Kaigh ’75)
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I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)

III. Plane non-crossing configurations (2012)

IV. Random planar maps (2004)

Igor Kortchemski Scaling limits of large random discrete structures 9 / 142



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Recall that in a Bienaymé–Galton–Watson tree, every individual has a random

number of children (independently of each other) distributed according to µ
(offspring distribution).

What does a large Bienaymé–Galton–Watson tree look like ?
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A simulation of a large random critical GW tree
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Coding trees by functions
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Contour function of a tree
Define the contour function of a tree:
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Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.
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Scaling limits
Let µ be an offspring distribution with finite positive variance such thatP

i>0 iµ(i) = 1. Let Tn be a Galton–Watson tree conditioned on having n
vertices.

Theorem (Aldous ’93)
Let �2

be the variance of µ. Let t 7! Ct(Tn) be the contour function of Tn.

Then: ✓
1p
n
C2nt(Tn)

◆

06t61

(d)�!
n!1

✓
2

�
· (t)

◆

06t61

,

where the convergence holds in distribution in C([0, 1],R), where is the

normalized Brownian excursion.

Idea of the proof:

y The Lukasieiwicz path of Tn, appropriately scaled, converges in distribution

to (conditioned Donsker’s invariance principle).

y Go from the Lukasieiwicz path of Tn to its contour function.
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Do the discrete trees converge to a continuous tree?

Yes, if we view trees as compact metric spaces by equiping the vertices with the

graph distance!
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The Hausdorff distance

Let X, Y be two subsets of the same metric space Z.

Let

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

be the r-neighborhoods of X and Y. Set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff

distance between all possible isometric embeddings of X and Y in a same metric

space Z.

Igor Kortchemski Scaling limits of large random discrete structures 18 / 142
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The Brownian tree
y Consequence of Aldous’ theorem (Duquesne, Le Gall): there exists a

compact metric space such that the convergence

�

2
p
n

· tn
(d)�!

n!1
T ,

holds in distribution in the space of compact metric spaces equiped with the

Gromov–Hausdorff distance.

Notation: for a metric space (Z,d) and a > 0, a · Z is the metric space

(Z,a · d).

The metric space T is called the Brownian continuum random tree (CRT), and

is coded by a Brownian excursion.

Formally, for 0 6 s, t 6 1, set

de(s, t) = e(s) + e(t)- 2 min
[s^t,s_t]

e,

and write s ⇠ t if de(s, t) = 0. The Brownian tree Te is then defined to be the

quotient metric space [0, 1]/ ⇠ equiped with de.
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I. Random walks and Brownian motion (1951)

II. Scaling limits of BGW trees (1991)

III. Plane non-crossing configurations (2012)

IV. Random planar maps (2004)

Igor Kortchemski Scaling limits of large random discrete structures 20 / 142



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Let Pn be the polygon with vertices e
2i⇡j
n (j = 0, 1, . . . ,n- 1).

General philosophy: chose at random a non crossing configuration, obtained

from the vertices of Pn by drawing diagonals which may not cross.

What happens for n large?

Igor Kortchemski Scaling limits of large random discrete structures 21 /
p
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Case of triangulations of Pn
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Let Tn be a random triangulation, chosen uniformly among all triangulations of

Pn. What does Tn look like when n is large?

Igor Kortchemski Scaling limits of large random discrete structures 23 /
p

17



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Let Tn be a random triangulation, chosen uniformly among all triangulations of

Pn. What does Tn look like when n is large?

Igor Kortchemski Scaling limits of large random discrete structures 23 /
p

17



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Theorem (Aldous ’94)
For n > 3, let Tn be a uniform triangulation of Pn.

Then there exists a random

compact subset L( ) of the unit disk such that

Tn
(d)���!

n!1
L( ),

where the convergence holds in distribution in the space of compact subsets of

the unit disk equiped with the Hausdorff distance.

L( ) is the Brownian triangulation.

y Consequence: The length (that is its normalised angle from the center,

360� = 1) of the longest diagonal of Tn converges in distribution to the length

of the longest chord of L( ).

We get that the length of the longest chord of

L( ) has density:

1

⇡

3x- 1

x2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.
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Construction of the Brownian triangulation

Start from the Brownian excursion :
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Construction of the Brownian triangulation

Start from the Brownian excursion :

0.2 0.4 0.6 0.8 10. t

Let t be a local minimum timel. Set gt = sup{s < t; s = t} et

dt = inf{s > t; s = t}.
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Construction of the Brownian triangulation

Start from the Brownian excursion :

0.2 0.4 0.6 0.8 10.gt dtt
Let t be a local minimum timel. Set gt = sup{s < t; s = t} et

dt = inf{s > t; s = t}. Draw the chords
⇥
e-2i⇡gt , e-2i⇡t⇤

,
⇥
e-2i⇡t, e-2i⇡dt

⇤

and
⇥
e-2i⇡gt , e-2i⇡dt

⇤
.
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Construction of the Brownian triangulation
Start from the Brownian excursion :

0.2 0.4 0.6 0.8 10.

Let t be a local minimum timel. Set gt = sup{s < t; s = t} et

dt = inf{s > t; s = t}. Draw the chords
⇥
e-2i⇡gt , e-2i⇡t⇤

,
⇥
e-2i⇡t, e-2i⇡dt

⇤

and
⇥
e-2i⇡gt , e-2i⇡dt

⇤
.

Do this for all local minimum times.

The closure of this object, denoted by L( ), is called the Brownian

triangulation.
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Case of dissections of Pn
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Dissections

Recall that Pn is the polygon with vertices e
2i⇡j
n (j = 0, 1, . . . ,n- 1).

A dissection of Pn is the union of Pn with a collection of non-crossing

diagonals.
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Dissections

Let Dn be a random dissection, chosen uniformly at random among all

dissections of Pn. What does Dn look like as n ! 1?
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For n > 3, let Dn be a uniform dissection of Pn.

Then

Dn

(d)���!
n!1

L( ),

where the convergence holds in distribution in the space of compact

subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to

the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.

Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of

the longest diagonal of Dn converges in distribution to a probability measure

with density:

1

⇡

3x- 1

x2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.
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36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 29 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn

(d)���!
n!1

L( ),

where the convergence holds in distribution in the space of compact

subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to

the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.

Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of

the longest diagonal of Dn converges in distribution to a probability measure

with density:

1

⇡

3x- 1

x2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 29 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn

(d)���!
n!1

L( ),

where the convergence holds in distribution in the space of compact

subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to

the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.

Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of

the longest diagonal of Dn converges in distribution to a probability measure

with density:

1

⇡

3x- 1

x2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 29 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn

(d)���!
n!1

L( ),

where the convergence holds in distribution in the space of compact

subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to

the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.

Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of

the longest diagonal of Dn converges in distribution to a probability measure

with density:

1

⇡

3x- 1

x2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 29 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

For n > 3, let Dn be a uniform dissection of Pn. Then

Dn

(d)���!
n!1

L( ),

where the convergence holds in distribution in the space of compact

subsets of the unit disk equiped with the Hausdorff distance.

Theorem (Curien & K. ’12).

(Many other models of random plane non-crossing configurations converge to

the Brownian triangulation: non-crossing trees, non-crossing partitions, etc.

Curien & K. ’12, K. & Marzouk ’15).

y Consequence: The length (that is its normalised angle from the center) of

the longest diagonal of Dn converges in distribution to a probability measure

with density:

1

⇡

3x- 1

x2(1- x)2
p
1- 2x

1 1
36x6 1

2
dx.

Igor Kortchemski Scaling limits of large random discrete structures 29 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

How to prove that these models converge to the

Brownian triangulation?

Key point: these trees can be coded by BGW trees.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Figure: The dual tree of a dissection.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

0.2 0.4 0.6 0.8 10.

Figure: Normalized contour function of a large conditioned Bienaymé–Galton-Watson.

Strategy of the proof:

I These models can be coded a random conditioned

Bienaymé–Galton–Watson tree.

I The normalized contour functions of these conditioned

Bienaymé–Galton–Watson trees converge to the Brownian excursion.

I The Brownian excursion codes the Brownian triangulationL( ).

Therefore these random plane non-crossing configurations converge to L( ).
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

What about dissections seen as compact metric spaces?
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

Figure: A uniform dissection of P45.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

Figure: A uniform dissection of P260.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

Figure: A uniform dissection of P387.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

Figure: A uniform dissection of P637.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

Figure: A uniform dissection of P8916.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

For n > 3, let Dn be a uniform dissection of Pn.

Then

1p
n

·Dn

(d)���!
n!1

1

7
(3+

p
2)23/4 · T ,

in distribution in the space of isometry classes of compact metric spaces

equiped with the Gromov–Hausdorff distance.

Theorem (Curien, Haas & K. ’13).

Igor Kortchemski Scaling limits of large random discrete structures 35 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

For n > 3, let Dn be a uniform dissection of Pn. Then

1p
n

·Dn

(d)���!
n!1

1

7
(3+

p
2)23/4 · T ,

in distribution in the space of isometry classes of compact metric spaces

equiped with the Gromov–Hausdorff distance.

Theorem (Curien, Haas & K. ’13).

Igor Kortchemski Scaling limits of large random discrete structures 35 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Dissections seen as compact metric spaces

For n > 3, let Dn be a uniform dissection of Pn. Then

1p
n

·Dn

(d)���!
n!1

1

7
(3+

p
2)23/4 · T ,

in distribution in the space of isometry classes of compact metric spaces

equiped with the Gromov–Hausdorff distance.

Theorem (Curien, Haas & K. ’13).

Igor Kortchemski Scaling limits of large random discrete structures 35 / @0



Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

I. Scaling limits of BGW trees (finite variance, 1991)

II. Scaling limits of BGW trees (infinite variance, 1998)

III. Plane non-crossing configurations (2012)

IV. Random maps (2004 – ?)
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

What does a “typical” random surface look like?
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

In dimension one

It is natural to view Brownian motion as a “typical” random path, describing the

motion of a particle moving “uniformly at random”.
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random mapsy Idea: construct a (two-dimensional) random surface as a limit of random

discrete surfaces.

Consider n triangles, and glue them uniformly at random in such a way to get a

surface homeomorphic to a sphere.

Figure: A large random triangulation (simulation by Nicolas Curien)
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

The Brownian map

Problem (Schramm at ICM ’06): Let Tn be a random uniform triangulation of

the sphere with n triangles.

View Tn as a compact metric space, by equipping

its vertices with the graph distance. Show that n-1/4 · Tn converges towards a

random compact metric space (the Brownian map), in distribution for the

Gromov–Hausdorff topology.

Solved by Le Gall in 2011.

Since, many different models of discrete surfaces have been shown to converge

to the Brownian map (Miermont, Beltran & Le Gall, Addario-Berry & Albenque,

Bettinelli & Jacob & Miermont, Abraham)

, using various techniques (in

particular bijective codings by labelled trees)

(see Le Gall’s proceeding at ICM ’14 for more information and references)
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Definitions
A planar map is a finite connected graph properly embedded in the sphere

(seen up to orientation preserving deformations).

It is a p-angulation when all

the faces have degree p.
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Definitions
A planar map is a finite connected graph properly embedded in the sphere

(seen up to orientation preserving deformations).

It is a p-angulation when all

the faces have degree p.

Figure: Two identical maps .
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Definitions
A planar map is a finite connected graph properly embedded in the sphere

(seen up to orientation preserving deformations). It is a p-angulation when all

the faces have degree p.

Figure: Two identical 3-angulations .
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Why study maps?

y Combinatorics (Tutte starting in ’60)

y Probability theory (model for a Brownian surface)

y Algebraix and geometric motivations Motivations (cf Lando–Zvonkine ’04

Graphs on surfaces and their applications)

y Theoretical physics (connections with matrix integrals, 2D Liouville

quantum gravity, KPZ formula.)
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Random walks and Brownian motion Random trees Plane non-crossing configurations Random maps

Scaling limits of large planar maps
Fix p > 3. Let Mn be a planar map, chosen uniformly at random among all

p-angulations with n faces.

Let V(Mn) be its vertices.

Theorem (Le Gall (p = 3 or p odd), Miermont (p = 4), 2011)
There exists a constant cp > 0 and a random compact metric space (m1,D⇤),
called the Brownian map, such that the convergence

⇣
V(Mn), cpn

-1/4dgr

⌘
(d)�!

n!1
(m1,D⇤)

holds in distribution in the space of isometry classes of compact metric spaces

equiped with the Gromov–Hausdorff distance.
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n!1
(m1,D⇤)

holds in distribution in the space of isometry classes of compact metric spaces

equiped with the Gromov–Hausdorff distance.

y Chassaing–Schaeffer ’04: graph distances inV(Mn) are of order n1/4
(case

p = 4).

y Le Gall & Paulin and Miermont ’07: almost surely, (m1,D⇤) is

homeomorphic to the sphere.y Le Gall ’08: almost surely, (m1,D⇤) has Hausdorff dimension 4.
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