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Abstract

We study the asymptotic behaviour of random simply generated noncrossing planar
trees in the space of compact subsets of the unit disk, equipped with the Hausdorff
distance. Their distributional limits are obtained by triangulating at random the faces
of stable laminations, which are random compact subsets of the unit disk made of
non-intersecting chords and which are coded by stable Lévy processes. We also study
other ways to “fill-in” the faces of stable laminations, which leads us to introduce the
iteration of laminations and of trees.
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1 Introduction

We are interested in the structure of large random noncrossing trees. By definition, a
noncrossing tree with n vertices is a tree drawn in the unit disk of the complex plane,
having as vertices the n-th roots of unity and whose edges are straight line segments
which do not cross. The enumeration problem for noncrossing trees was first proposed
as Problem E3170 in the American Mathematical Monthly [20]. Dulucq & Penaud
[15] established a bijection between noncrossing trees with n vertices and ternary
trees with n internal vertices, thus showing that there are 1

2n−1
(
3n−3
n−1

)
noncrossing

trees with n vertices in another way. Noy [36] pushed forward the enumerative study
of noncrossing trees by counting them according to different statistics. Since then,
various authors have studied combinatorial and algebraic properties of noncrossing
trees [19, 12, 13, 37, 21]. See also [33] for motivations from linguistics and proof
theory, where noncrossing trees are for instance connected to the number of different
readings of an ambiguous sentence. Other families of noncrossing configurations have
also attracted some attention [14, 19, 2, 9].
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Triangulating stable laminations

Figure 1: Simulations from left to right: the Brownian triangulation, an α = 1.1 stable
lamination, and the same lamination with its faces triangulated “uniformly” in dashed
red.

In this work, we are interested in the properties of random noncrossing trees and we
study in particular how the geometrical constraint of their planar embeddings influences
their structure. Marckert & Panholzer [30] have shown that uniform random noncrossing
trees on n vertices are almost conditioned Bienaymé–Galton–Watson trees, thus obtaining
interesting results concerning the structure of noncrossing trees by using the theory of
random plane trees. This was then used by Curien & Kortchemski [9] to establish limit
theorems for large uniform random noncrossing trees as compact subsets of the unit
disk. We shall generalise these results.

1.1 Noncrossing trees seen as subsets of the plane

Since noncrossing trees are given with a plane embedding, we naturally view them as
(closed) subsets of the (closed) unit disk by considering each edge as a line segment. This
idea goes back to Aldous [1], who showed that if Pn is the regular polygon spanned by
the n-th roots of unity, then, as n→∞, a uniform random triangulation of Pn converges
in distribution for the Hausdorff distance to a random compact subset of the unit disk L2

called the Brownian triangulation. This set is indeed a triangulation, as its complement in
the unit disk is a disjoint union of triangles, and can be built from the Brownian excursion
(see Sec. 3.1 below for details). Curien & Kortchemski [9] showed that the Brownian
triangulation is the universal limit of various classes of uniform random noncrossing
graphs built using the vertices of Pn, such as dissections (which are collections of
noncrossing diagonals of Pn), noncrossing partitions or noncrossing trees.

Kortchemski [26] constructed a one parameter family (Lα : α ∈ (1, 2)) of random
compact subsets of the unit disk called stable laminations, which are the distributional
limits of the more general model of Boltzmann-type random dissections chosen at random
according to certain sequences of weights. They also appear as limits of large simply
generated noncrossing partitions [27]. Stable laminations are coded by excursions of
spectrally positive strictly stable Lévy processes, and unlike the Brownian triangulation,
each face is surrounded by infinitely many chords; see Fig. 1 for a simulation and Sec.
3.2 below for details.

1.2 Simply generated noncrossing trees

In this work, we introduce and study the asymptotic behaviour of simply generated
noncrossing trees in the space of compact subsets of the unit disk equipped with the
Hausdorff distance. Given a sequence of nonnegative real numbers (w(k) : k ≥ 1), we
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Triangulating stable laminations

define the weight of a noncrossing tree θ by

Ωw(θ) =
∏
u∈θ

w(deg u).

Next, for every integer n ≥ 1, we denote by NCn the set of noncrossing trees with n

vertices and we set

Zwn =
∑

θ∈NCn

Ωw(θ).

Finally, if Zwn > 0 (and we will always implicitly restrict our attention to those values of n
for which it is the case), we define a probability measure on NCn by

Pwn (θ) =
1

Zwn
Ωw(θ) for all θ ∈ NCn. (1.1)

A random noncrossing tree sampled according to Pwn is called simply generated. We
choose this terminology because of the similarity with the model of simply generated
plane trees, introduced by Meir & Moon [34].

Note that if w ≡ 1, then Pwn is the uniform distribution on NCn. More generally, if A
is a subset of N and if w(k) = 1k∈A, then Pwn is the uniform distribution on the set of all
noncrossing trees with n vertices with all degrees belonging to A (provided this set is
not empty).

Theorem 1.1. Fix α ∈ (1, 2]. There exists a random compact subset of the unit disk,
denoted by LUα , with Hausdorff dimension 1 + 1

α such that the following holds. Let
(w(k) : k ≥ 1) be a sequence of nonnegative real numbers such that there exists b > 0

satisfying
∞∑
k=0

(k + 1)(k − 1)w(k + 1)bk = 0, (1.2)

and, moreover, such that the probability measure

µ(k) =
(k + 1)w(k + 1)bk∑∞
`=0(`+ 1)w(`+ 1)b`

(k ≥ 0)

belongs to the domain of attraction of a stable law of index α. If Θn is a random
noncrossing tree sampled according to Pwn , then the convergence in distribution

Θn
(d)−→
n→∞

LUα

holds for the Hausdorff distance on the space of all compact subsets of the unit disk.

Recall that a probability distribution µ belongs to the domain of attraction of a stable
law if either it has finite variance (in which case α = 2), or there exists a slowly varying
function g : R+ → R+ such that µ([n,∞)) = g(n)n−α for n ≥ 1. See Remark 5.2 for a
probabilistic interpretation of condition (1.2).

Let us give a rough description of LUα . In the case α = 2, LU2 = L2 is simply Aldous’
Brownian triangulation, whereas for α ∈ (1, 2), LUα is a triangulation that strictly contains
the α-stable lamination Lα. Intuitively, LUα is constructed from Lα by “triangulating”
each face of Lα from a uniform random vertex, i.e. by joining this vertex to each other
vertex of the face by a chord. We refer the reader to Fig. 1 for a simulation and to Sec.
3.3 for a precise definition. The random compact set LUα is called the uniform α-stable
triangulation. It is interesting to note that unlike the Brownian triangulation or stable
laminations, LUα is not simply coded by a function as we will see in Remark 3.3.
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It is interesting to compare the Hausdorff dimension of LUα with that of Lα computed
in [26], which is equal to 2− 1

α . Since 1+ 1
α >

3
2 > 2− 1

α , any uniform stable triangulation
is “fatter” than the Brownian triangulation and any stable lamination.

The main steps to prove Theorem 1.1 are the following. We first establish determin-
istic invariance principles in the space of compact subsets of the unit disk (Propositions
4.1 and 4.6) for noncrossing trees under conditions involving their shape, which is the
plane tree structure that they carry (see Fig. 2 for an illustration). We then estab-
lish (Theorem 5.1) that the shape of Θn is a “modified” Bienaymé–Galton–Watson tree,
where the root has a different offspring distribution, conditioned to have size n. This
extends a result of Marckert & Panholzer [30] for the uniform distribution. Finally,
we show that such trees fulfill the framework of our invariance principles with high
probability.
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Figure 2: A non-crossing tree with its vertices labelled in clockwise-order and the
associated plane tree, called its shape, with its vertices labelled in lexicographical order.

An interesting consequence of Theorem 1.1 is that the geometry of large simply
generated noncrossing trees may be very different from that of large simply generated
plane trees with the same weights, see Remark 5.5. Theorem 1.1 also has applications
concerning the length of the longest chord of a noncrossing tree. By definition, the
(angular) length of a chord [e−2iπs, e−2iπt] with 0 ≤ s ≤ t ≤ 1 is min(t−s, 1−t+s). Denote
by Λ(θ) the length of the longest chord of a noncrossing tree θ and by Λ(LUα ) the length
of the longest chord of Λ(LUα ).

Corollary 1.2. Under the assumptions of Theorem 1.1, we have

Λ(Θn)
(d)−→
n→∞

Λ(LUα ).

This simply follows from Theorem 1.1 since the longest chord is a continuous func-
tional for the Hausdorff distance on compact subsets of the unit disk obtained as the
union of noncrossing chords. In the case α = 2, it is known [1, 14] that the law of the
longest chord of the Brownian triangulation is

1

π

3x− 1

x2(1− x)2
√

1− 2x
1 1

3≤x≤
1
2

dx. (1.3)

It would be interesting to find an explicit formula for the length of the longest chord
of the uniform α-stable triangulation for α ∈ (1, 2). See [39, Proposition 4.3.] for the
expression of the cumulative distribution function of the length of the longest chord in
the α-stable lamination.
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1.3 Degree-constrained noncrossing trees

For each integer n ≥ 1 and each subset A ⊂ N, we denote by NCA
n the set of all

noncrossing trees having n vertices and with degrees only belonging to A.

Corollary 1.3. For every n ≥ 1 for which NCA
n 6= ∅, sample a random noncrossing tree

ΘA
n uniformly at random in NCA

n . Then ΘA
n converges in distribution to the Brownian

triangulation as n→∞.

Indeed, this follows from Theorem 1.1 by taking w(k) = 1k∈A, as in this case µ admits
finite small exponential moments (since b < 1, see the beginning of the proof of Theorem
1.4 below). Theorem 1.1 thus extends Theorem 3.1 in [9], which shows the convergence
to the Brownian triangulation of large uniform noncrossing trees. Also, by Corollary 1.2,
the length of the longest chord of ΘA

n converges in distribution to the random variable
whose law is given by (1.3). It is remarkable that this limiting distribution does not
depend on A.

As an application of our techniques, we also establish the following enumerative
result.

Theorem 1.4. Assume that A 6= {1, 2}. Let b > 0 be such that
∑
k+1∈A(k+1)(k−1)bk = 0

and define

KA := gcd(A− 1) ·
√ ∑

k+1∈A(k + 1)bk

2π
∑
k+1∈A(k + 1)(k2 − 1)bk

·
(∑
k∈A

kbk

)
.

We have

#NCA
n ∼

n→∞
KA ·

( ∑
k+1∈A

(k + 1)bk−1

)n−1
· n−3/2,

where the limit is taken along the subsequence of those values of n for which NCA
n 6= ∅.

We give a simple proof of this by using the probabilistic structure of simply generated
non-crossing trees. Observe that Theorem 1.4 is consistent with the fact that #NCn =

1
2n−1

(
3n−3
n−1

)
since, for A = N, it reads #NCn ∼ (9

√
3π)−1 · (27/4)n · n−3/2 as n→∞.

1.4 Iterating laminations

The random set LUα is constructed from an α-stable lamination Lα by triangulating
independently each face of Lα. More generally, one can consider independent random
β-laminations in each face of Lα (see Fig. 3 for an illustration). We can also iterate this
procedure: fix a sequence (αk : k ≥ 1) with values in (1, 2), let L(0) be the unit circle
and define next recursively for n ≥ 1 random sets L(n) by sampling independently an
αn-stable lamination in each face of L(n−1). We give a formal definition of this procedure
in Sec. 6, with several possible further directions of research concerning the study of
L(n).

The rest of this paper is organised as follows. In Section 2, we define discrete
plane trees and their coding by a discrete paths, and we describe a bijection between
noncrossing trees and plane trees. Next, in Section 3, we describe the continuous
analogues which are the stable laminations of the disk and their triangulated versions,
we also compute the Hausdorff dimension which appears in Theorem 1.1. In Section 4,
we state and prove deterministic invariance principles for noncrossing trees and apply
them to trees obtained by embedding in the disk a size-conditioned Bienaymé–Galton–
Watson trees. In Section 5, we show that simply generated noncrossing trees are almost
size-conditioned Bienaymé–Galton–Watson trees and prove Theorems 1.1 and 1.4. Finally,
in Section 6 we give some extensions concerning the iteration of laminations.
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Figure 3: Simulations from left to right: β = 1.4 laminations iterated inside an α = 1.1,
and β = 1.1 laminations iterated inside an α = 1.4. The chords of the β-stable laminations
are in dashed red.

2 Coding plane trees and noncrossing trees

We start by explaining how we code plane trees and noncrossing trees. These
codings are also useful to understand the intuition hiding behind the definitions of their
continuous analogs.

2.1 Plane trees

Definitions. We use Neveu’s formalism [35] to define plane trees: let N = {1, 2, . . . } be
the set of all positive integers, set N0 = {∅} and consider the set of labels U =

⋃
n≥0N

n.
For u = (u1, . . . , un) ∈ U, we denote by |u| = n the length of u; if n ≥ 1, we define
pr(u) = (u1, . . . , un−1) and for i ≥ 1, we let ui = (u1, . . . , un, i); more generally, for
v = (v1, . . . , vm) ∈ U, we let uv = (u1, . . . , un, v1, . . . , vm) ∈ U be the concatenation of u
and v. We endow U with the lexicographical order: given v, w ∈ U, let z ∈ U be their
longest common prefix, that is v = z(v1, . . . , vn), w = z(w1, . . . , wm) and v1 6= w1, then
v ≺ w if v1 < w1.

A plane tree is a nonempty finite subset τ ⊂ U such that (i) ∅ ∈ τ ; (ii) if u ∈ τ with
|u| ≥ 1, then pr(u) ∈ τ ; (iii) if u ∈ τ , then there exists an integer ku(τ) ≥ 0 such that
ui ∈ τ if and only if 1 ≤ i ≤ ku(τ). For u, v ∈ τ , we let Ju, vK be the vertices belonging to
the shortest path from u to v.

We will view τ as a genealogical tree of a population, each vertex u being seen as an
individual. The vertex ∅ is called the root of the tree and for every u ∈ τ , ku(τ) is the
number of children of u (if ku(τ) = 0, then u is called a leaf, otherwise, u is called an
internal vertex), |u| is its generation, pr(u) is its parent and more generally, the vertices
u, pr(u), pr ◦ pr(u), . . . , pr|u|(u) = ∅ belonging to J∅, uK are its ancestors. To simplify, we
will sometimes write ku instead of ku(τ). We denote by T the set of all plane trees and
by Tn the set of plane trees with n vertices for each integer n ≥ 1.

Bienaymé–Galton–Watson trees. Let µ be a critical probability measure on Z+, by
which we mean that µ(0) > 0, µ(0)+µ(1) < 1 (to avoid trivial cases) and with expectation∑∞

k=0 kµ(k) = 1. The law of a Bienaymé–Galton–Watson tree with offspring distribution
µ is the unique probability measure BGWµ on T such that for every τ ∈ T,

BGWµ(τ) =
∏
u∈τ

µ(ku).
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For each integer n ≥ 1, we denote by BGWµ
n the law of a Bienaymé–Galton–Watson tree

with offspring distribution µ conditioned to have n vertices; we shall always implicitly
restrict ourselves to the values of n for which this conditioning makes sense.

Coding by the Łukasiewicz path. Fix a tree τ ∈ Tn and let ∅ = u(0) ≺ u(1) ≺
· · · ≺ u(n − 1) be its vertices, listed in lexicographical order. The Łukasiewicz path
W(τ) = (Wj(τ) : 0 ≤ j ≤ n) of τ is defined by W0(τ) = 0 and for every 0 ≤ j ≤ n− 1,

Wj+1(τ) = Wj(τ) + ku(j)(τ)− 1.

One easily checks (see e.g. [28]) that Wj(τ) ≥ 0 for every 0 ≤ j ≤ n− 1 but Wn(τ) = −1.
Observe that Wj+1(τ)−Wj(τ) ≥ −1 for every 0 ≤ j ≤ n− 1, with equality if and only if
u(j) is a leaf of τ . We shall think of such a path as the step function on [0, n] given by
s 7→Wbsc(τ).

Scaling limits. Fix α ∈ (1, 2] and consider a strictly stable spectrally positive Lévy
process of index α: Xα is a random process with paths in the set D([0,∞),R) of càdlàg
functions endowed with the Skorokhod J1 topology (see e.g. Billingsley [4] for details)
which has independent and stationary increments, no negative jump and such that
E [exp(−λXα(t))] = exp(tλα) for every t, λ > 0. Using excursion theory, it is then pos-
sible to define Xex

α , the normalised excursion of Xα, which is a random variable with
values in D([0, 1],R), such that Xex

α (0) = Xex
α (1) = 0 and, almost surely, Xex

α (t) > 0

for every t ∈ (0, 1). We do not enter into details and refer to Bertoin [3] for back-
ground.

An important point is that Xex
α is continuous for α = 2, and indeed Xex

2 /
√

2 is the
standard Brownian excursion, whereas the set of discontinuities of Xex

α is dense in [0, 1]

for every α ∈ (1, 2). We shall therefore treat the two cases separately.
Duquesne [16] (see also [25]) provides the following limit theorem which is the

steppingstone of our convergence results. Fix α ∈ (1, 2] and µ a critical probability
measure on Z+ in the domain of attraction of a stable law of index α. For every n ≥ 1

for which BGWµ
n is well defined, sample Tn according to BGWµ

n. Then there exists
a sequence (Bn)n≥1 of positive numbers satisfying limn→∞Bn = ∞, such that the
convergence in distribution(

1

Bn
Wbnsc(Tn) : s ∈ [0, 1]

)
(d)−→
n→∞

(Xex
α (s) : s ∈ [0, 1]) (2.1)

holds in the space D([0, 1],R). The sequence (Bn)n≥1 is regularly varying with in-
dex 1/α, meaning that if (un)n≥1 and (vn)n≥1 are two sequences of integers tending
to ∞ and such that un/vn → s > 0, then Bun/Bvn → s1/α as n → ∞, and may be
chosen to be increasing (see e.g. [24, Theorem 1.10], which also gives the depen-
dence of Bn in terms of µ). When µ has finite positive variance σ2, one can take
Bn = σ

√
n/2.

2.2 Noncrossing trees

Let τ ∈ Tn be a plane tree with vertices ∅ = u(0) ≺ u(1) ≺ · · · ≺ u(n − 1) listed in
lexicographical order. We set

C(τ) = {(l1, l2, . . . , ln−1) : 0 ≤ lj ≤ ku(j)(τ) for every 1 ≤ j ≤ n− 1}

and
Tdec
n = {(τ, c) : τ ∈ Tn and c ∈ C(τ)}.
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Elements of Tdec
n are called decorated trees, and we can view lj as the label carried by

the vertex u(j). Note that #C(τ) =
∏
u∈τ\{∅}(ku(τ) + 1) for every τ ∈ T.

If θ is a noncrossing tree, we let S(θ) be its shape, which is the plane tree associated
with θ and rooted at the vertex corresponding to the complex number 1 (see Fig. 2 for an
example). If θ is a noncrossing tree with n vertices and ∅ = u(0) ≺ u(1) ≺ · · · ≺ u(n− 1)

are the vertices of its shape listed in lexicographical order, for every 1 ≤ i ≤ n− 1, we
let Li(θ) be the number of children of u(i) lying “on its left” (i.e. which are between
the complex number 1 and u(i) when we equip the circle with the clockwise order), and
set

C(θ) = (L1(θ), L2(θ), . . . , Ln−1(θ)) ∈ C(S(θ)).

The following result is a reformulation of the “left-right” coding of noncrossing trees
in [37].

Proposition 2.1. For every n ≥ 1, the mapping

Φn : NCn −→ Tdec
n

θ 7−→ (S(θ), C(θ))

is a bijection.

Proof. We describe the reverse map Φ−1n ; this will also be useful later. Fix a decorated
tree (τ, (l1, l2, . . . , ln−1)) ∈ Tdec

n . Let ∅ = u(0) ≺ u(1) ≺ · · · ≺ u(n− 1) be the vertices of τ
labelled in lexicographical order. To simplify notation, for every u ∈ τ with u 6= ∅, we set
n(u) = k if u is the k-th child of its parent and we let l(u) be the label carried by u, that
is l(u) = lj if u = u(j). Then, for every u ∈ τ , set

L(u) = # {v ∈K∅, uK : |v| ≥ 2 and n(v) ≤ l(pr(v))} , R(u) = |u| − L(u)− 1,

where we recall that pr(v) is the parent of v. Intuitively speaking, L(u) and R(u)

represent the number of vertices of K∅, uK that will be respectively folded to the left
and to the right of u in the associated noncrossing tree Φ∗n((τ, (l1, l2, . . . , ln−1))) which is
defined as follows.

First map ∅ to the complex number 1. Then, for every 1 ≤ p ≤ n − 1, let kp be the
number of children of u(p). If kp = 0, map u(p) to e−2iπ·(p−R(u(p)))/n. Otherwise, for
1 ≤ i ≤ kp, let Ti be the size of the subtree grafted on the i-th child of u(p) (so that Ti is
the number of its non strict descendants) with the convention T0 = 0. Then map u(p) to
e−2iπ·(p−R(p)+T1+T2+···+Tlp )/n. It is then a simple matter to check that Φn ◦Φ∗n and Φ∗n ◦Φn
are the identity, which completes the proof.

In Section 4, we give sufficient conditions on a sequence (τdecn )n≥1 of decorated
trees which ensure that the associated noncrossing trees (Φ−1n (τdecn ))n≥1 converge to
triangulated laminations, which form a family of compact subsets of the unit disk which
we now define.

3 Triangulations, laminations and triangulated laminations

We denote by D = {z ∈ C : |z| ≤ 1} the closed unit disk. A geodesic lamination of D is
a closed subset of D which can be written as the union of a collection of noncrossing
chords. In the sequel, by lamination we will always mean geodesic lamination of D. A
lamination is said to be maximal when it is maximal for the inclusion relation among
laminations. We call faces of a lamination the connected components of its complement
in D; note that the faces of a maximal lamination are open triangles whose vertices
belong to S1, a maximal lamination is also called a triangulation.
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3.1 Triangulations coded by continuous functions

Let f : [0, 1] → R+ be a continuous function with f(0) = f(1) = 0 and such that the
following assumption (Hf ) holds:

The local minima of f are distinct. (Hf )

This means that if 0 ≤ a < b < c < d ≤ 1 are such that the infimum of f over ]a, b[ is
achieved at a point of ]a, b[, and that over ]c, d[ is achieved at a point of ]c, d[ as well,
then min]a,b[ f 6= min]c,d[ f . We define an equivalence relation on [0, 1] by setting s ∼f t
whenever f(s) = f(t) = min[s∧t,s∨t] f . We then define a subset of D by

L(f) :=
⋃
s∼f t

[
e−2iπs, e−2iπt

]
.

Using the fact that f is continuous and its local minima are distinct, one can prove (see
e.g. [29, Proposition 2.1]) that L(f) is a maximal lamination; we say that L(f) is the
triangulation coded by f .

Now let e = Xex
2 be

√
2 times the standard Brownian excursion. Since e has almost

surely distinct local minima, the lamination L(e) is maximal, it is called the Brownian
triangulation and we also denote it by L2. This set has been introduced first by Aldous
[1].

3.2 Laminations coded by càdlàg functions

Recall that D([0, 1],R) denotes the space of real-valued càdlàg functions on [0, 1]

equipped with the Skorokhod J1 topology. If X ∈ D([0, 1],R) and t ∈ [0, 1], we set
∆X(t) = X(t) − X(t−) with the convention X(0−) = X(0). We fix a function Z ∈
D([0, 1],R) satisfying the following properties:

(H0) Z(0) = Z(1) = 0 and for every t ∈ (0, 1), Z(t) > 0 and ∆Z(t) ≥ 0.

(H1) For every 0 ≤ s < t ≤ 1, there exists at most one value r ∈ (s, t) such that
Z(r) = inf [s,t] Z.

(H2) For every t ∈ (0, 1) such that ∆Z(t) > 0, we have inf [t,t+ε] Z < Z(t) for every
0 < ε ≤ 1− t;

(H3) For every t ∈ (0, 1) such that ∆Z(t) > 0, we have inf [t−ε,t] Z < Z(t−) for every
0 < ε ≤ t;

(H4) For every t ∈ (0, 1) such that Z attains a local minimum at t (which implies ∆Z(t) =

0), if s = sup{u ∈ [0, t] : Z(u) < Z(t)}, then ∆Z(s) > 0 and Z(s−) < Z(t) < Z(s).

We recall the construction in [26] of a lamination L(Z) from Z. To this end, we define a
relation (not equivalence relation in general) on [0, 1] as follows: for every 0 ≤ s < t ≤ 1,
set

s 'Z t if t = inf {u > s : Z(u) ≤ Z(s−)} ;

then for 0 ≤ t < s ≤ 1, we set s 'Z t if t 'Z s, and we agree that s 'Z s for every
s ∈ [0, 1]. We finally define a subset of D by

L(Z) :=
⋃
s'Zt

[
e−2iπs, e−2iπt

]
. (3.1)

Using the above properties, it is proved in [26, Proposition 2.9] that L(Z) is a lamination,
called the lamination coded by Z.
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Recall that Xex
α denotes the normalised excursion of a spectrally positive strictly

stable Lévy process for α ∈ (1, 2]. For every α ∈ (1, 2), Xex
α fulfils the above properties

with probability one ([26, Proposition 2.10]), we can therefore set

Lα := L(Xex
α ),

which is called the stable lamination of index α.
We recall from [26, Proposition 3.10] the description of the faces of L(Z) (this

reference actually only covers the case where Z = Xex
α , but the arguments carry out in

this setting as well), which are the connected components of the complement of L(Z)

in D. The faces of L(Z) are in one-to-one correspondence with the jump times of Z
(observe that the latter set is countable since Z is càdlàg). For every s, t ∈ (0, 1), let
H(s, t) be the open half-plane bounded by the line containing e−2iπs and e−2iπt, which
does not contain the complex number 1. Then for every jump time s of Z, letting
t = inf{u > s : Z(u) = Z(s−)}, the face Vs of L(Z) associated with s is the unique one
contained in H(s, t) whose boundary contains the chord [e−2iπs, e−2iπt]. Moreover, the
“boundary” of the face Vs which belongs to S1 is given by

Bs := Vs ∩ S1 =

{
r ∈ [s, t] : Z(r) = inf

[s,r]
Z

}
, (3.2)

where we identify the interval [0, 1) with the circle S1 via the mapping t 7→ e−2iπt to ease
notation.

3.3 Triangulated laminations

We next define triangulations which are, informally, obtained from L(Z) by “triangu-
lating” all its faces, i.e. for each face of L(Z) we choose a special vertex on its boundary
on S1 and join it to all the other vertices of this face by chords.

Fix Z ∈ D([0, 1],R) satisfying (H0), . . . , (H4). Let J(Z) = {u ∈ [0, 1] : ∆Z(u) > 0} be
the set of all jump times of Z, and let ` = (`u;u ∈ J(Z)) be a sequence of nonnegative
real numbers indexed by these jump times such that 0 ≤ `u ≤ 1 for every u ∈ J(Z). By
convention, we shall always assume that `u = 0 if u 6∈ J(Z). The sequence ` will be
called a jumps labelling. For every u ∈ J(Z), set

pu(`) = inf {r ≥ u : Zr = Zu −∆Z(u) · `u} (3.3)

and

Cu(`) =
⋃
r∈Bu

[
e−2iπpu(`), e−2iπr

]
,

where we recall that Bu is defined by (3.2). Note that pu(`) ∈ Bu for every u ∈ J(Z).
Finally define

L(Z, `) := L(Z) ∪
⋃

s∈J(Z)

Cs(`). (3.4)

Intuitively speaking, L(Z, `) is obtained from L(Z) by triangulating each face as follows:
inside every face Vs of L(Z) indexed by a jump time s, choose a special vertex on its
boundary Bs indexed by ps(`), and draw chords from this special vertex to all the other
points of Bs. The point is that the latter set is uncountable, so some care is needed to
define the special vertex, hence the purpose of the jumps labelling `. Roughly speaking,
x ∈ [0, 1] 7→ inf {u ≥ s : Zu = Zs −∆Z(s) · x} ∈ Bs plays the role of the inverse of the
local time of vertices of Bs (that is a measurement of the evolution of “number” of
vertices of Bs as one goes around S1) and allows to identify [0, 1] with Bs.
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Proposition 3.1. Under the assumptions (H0), . . . , (H4), for every jumps labelling `,
the set L(Z, `) is a triangulation of D.

Proof. First note that the chords defining L(Z, `) in (3.4) are noncrossing: there exists
no 4-tuple 0 ≤ s < s′ < t < t′ ≤ 1 such that both chords [e−2iπs, e−2iπt] and [e−2iπs

′
, e−2iπt

′
]

belong to L(Z, `). Indeed, suppose there exists such a 4-tuple. Clearly, we cannot have
[e−2iπs, e−2iπt] ⊂ Cu(`) and [e−2iπs

′
, e−2iπt

′
] ⊂ Cu(`) for any u ∈ J(Z) and neither do we

have [e−2iπs, e−2iπt] ⊂ L(Z) and [e−2iπs
′
, e−2iπt

′
] ⊂ L(Z) since L(Z) is a lamination.

Assume next that [e−2iπs, e−2iπt] ⊂ Cu(`) for a certain u ∈ J(Z) and [e−2iπs
′
, e−2iπt

′
] ⊂

L(Z); then s, t ∈ Bu so u ≤ s < s′ < t < t′ and Z(t) = inf [u,t] Z. It follows that Z(t) ≤
Z(s′−) which contradicts t′ = inf{r > s′ : Z(r) ≤ Z(s′−)}. The case [e−2iπs

′
, e−2iπt

′
] ⊂

Cu(`) for a certain u ∈ J(Z) and [e−2iπs, e−2iπt] ⊂ L(Z) yields a similar contradiction.
The last case to consider is [e−2iπs, e−2iπt] ⊂ Cu(`) for a certain u ∈ J(Z) and

[e−2iπs
′
, e−2iπt

′
] ⊂ Cu′(`) for a certain u′ ∈ J(Z) with u′ 6= u. Let v = inf{r > u : Z(r) =

Z(u−)} and v′ = inf{r > u′ : Z(r) = Z(u′−)}; then u ≤ s < t ≤ v and u′ ≤ s′ < t′ ≤ v′.
If u′ < u, then u′ < u ≤ s < s′ < t; with the same reasoning as above, we conclude
that ∆Z(u) = ∆Z(s′) = 0 and Z(u) = Z(s′) = Z(t) = inf [u′,t] Z which contradicts
(H1). Similarly, if u′ > u, then u < u′ ≤ s′ < t < t′ ≤ v′ < v and we conclude that
∆Z(u′) = ∆Z(t) = 0 and Z(u′) = Z(t) = Z(t′) = inf [u,t′] Z.

Next, we need to show that L(Z, `) is closed. Consider a sequence of points of
the plane (xn)n≥1 on L(Z, `) which converges as n → ∞ to x ∈ D. Let us show that
x ∈ L(Z, `). If x ∈ D \ L(Z), then there exists a face V of the latter such that x ∈ V and,
moreover, xn ∈ V for every n large enough. Note that if u is the jump time of Z associated
with V , then V ∩ L(Z, `) is the union of the open chords

⋃
t∈Bu ]e−2iπpu(`), e−2iπt[. Thus,

for every n large enough, xn belongs to a chord [e−2iπpu(`), e−2iπtn ], where tn ∈ Bu. Since
Bu is compact, tn converges along a subsequence to a certain t ∈ Bu and we conclude
that x ∈ [e−2iπpu(`), e−2iπt].

Finally, we show that L(Z, `) is a maximal lamination. We argue by contradiction that
for every a, b ∈ S1 with a 6= b, the open chord ]a, b[= [a, b] \ {a, b} must intersect L(Z, `),
otherwise L(Z, `) ∪ [a, b] would be a bigger lamination. Fix 0 ≤ s < t ≤ 1 and suppose
that ]e−2iπs, e−2iπt[∩L(Z, `) = ∅. Then ]e−2iπs, e−2iπt[ belongs to a face Vu for a certain
u ∈ J(Z). As a consequence s, t ∈ Bu, so that, setting v = inf{r > u : Z(r) = Z(u−)},
we have s, t ∈ [u, v], Z(s) = inf [u,s] Z and Z(t) = inf [u,t] Z. We claim that Z(s) 6= Z(t)

and so Z(s) > Z(t). Indeed suppose Z(s) = Z(t) and observe that Z is continuous
at s by (H3); either Z(r) > Z(s) for every r ∈ (s, t) and then [e−2iπs, e−2iπt] ⊂ L(Z),
or there exists r ∈ (s, t) such that Z(s) = Z(r) = Z(t), which contradicts (H1). Let
x = inf{r > u : Z(r) ≤ (Z(s)+Z(t))/2}, then x ∈ (s, t)∩Bu. Finally, note that (s, t) 6= (u, v)

so, similarly, there exists y ∈ Bu ∩ ((u, s) ∪ (t, v)). Since pu(`) ∈ Bu \ {s, t}, we conclude
that one of the open chords ]e−2iπpu(`), e−2iπx[ or ]e−2iπpu(`), e−2iπy[ belonging to L(Z, `)

intersects ]e−2iπs, e−2iπt[.

As a consequence, note that Cu(`) is compact for every u ∈ L(Z).

Remark 3.2. For α ∈ (1, 2), the triangulation L̂α introduced in [31] is a particular case
of a triangulated lamination. More precisely, we have L̂α = L(Xex

α , `) with `s = 0 for
every s. In other words, L̂α is obtained from the stable lamination Lα by drawing chords
from the “leftmost” vertex of a face to all the other vertices of this face.

An interesting example of a triangulated lamination is the so-called uniform α-stable
triangulation, which is defined as follows. For α ∈ (1, 2), conditionally given Xex

α , let
`U = (`s)s∈J(Xex

α ) be a sequence of i.i.d. uniform random variables on [0, 1]. The uniform
stable triangulation LUα is then defined to be

LUα := L(Xex
α , `

U ).
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We will see that this set is the distributional limit of certain simply generated noncrossing
trees as well as large critical Bienaymé–Galton–Watson trees in the domain of attraction
of a stable law of index α which are uniformly embedded in a noncrossing way.

Remark 3.3. If f : [0, 1] → R+ is a continuous function such that f(0) = f(1) = 0 but
which does not fulfill (Hf ), one can still adapt the construction of L(f) in Section 3.1
to define a (non-maximal) lamination from f , see Curien & Le Gall [11, Proposition
2.5]. As shown in [26], the stable laminations Lα can be coded in this sense by Hex

α ,
the normalised excursion of the so-called height process associated with Xex

α . In the
same way, the sets L(Xex

α , `) could also be defined from Hex
α (although in a different

sense than that of Curien & Le Gall since it would involve `). Nonetheless, Hex
α is a more

complicated object than Xex
α , the definition of pu and the invariance principles of Section

4 would be more technical and may even require more assumptions (see Remark 4.4
below).

Conversely, if L is a maximal lamination, by adapting the argument of [29, Proposition
2.2] and using [17, Corollary 1.2], we believe that there exists a continuous function
f : [0, 1]→ R+ with f(0) = f(1) = 0 satisfying (Hf ) such that L = L(f). However, if L is
the lamination

L = [1, e−iπ/2] ∪ [e−iπ/2,−1] ∪ [−1, eiπ/2] ∪ [eiπ/2, 1] ∪ [−1, 1],

there does not exist a continuous function f : [0, 1]→ R+ with f(0) = f(1) = 0 such that
L = L(f) in the sense of Curien & Le Gall, and there does not exist a càdlàg function
Z ∈ D([0, 1],R) satisfying (H0), . . . , (H4) such that L = L(Z) either. In the same way,
L(Xex

α , `) cannot be coded by a continuous nor a càdlàg function in this manner for
α ∈ (1, 2).

3.4 The Hausdorff dimension of triangulated stable laminations

If L is a lamination, we denote by A(L) ⊂ S1 the set of all end-points of its chords.
We denote by dim(K) the Hausdorff dimension of a subset K of C, and refer to Mattila
[32] for background. Recall that Xex

α is the normalised excursion of the α-stable Lévy
process.

Theorem 3.4. For every α ∈ (1, 2) and for every jumps labelling `, almost surely,

dim(A(L(Xex
α , `))) =

1

α
and dim(L(Xex

α , `)) = 1 +
1

α
. (3.5)

These results should be compared with [26, Theorem 5.1], where these dimensions
are calculated for stable laminations:

dim(A(L(Xex
α ))) = 1− 1

α
and dim(L(Xex

α )) = 2− 1

α
. (3.6)

We mention that (3.6) also holds for α = 2 by results of Aldous [1] and Le Gall & Paulin
[29] when L(Xex

2 ) is taken to be the Brownian triangulation. Also, Theorem 3.4 is
established in [31] in the particular case where `s = 0 for every s. The general case only
requires mild modifications, but we give a full proof for completeness.

Remark 3.5. We see that the dimensions of the sets in (3.5) and (3.6) have the same
limit as α ↑ 2. Indeed, the stable lamination and actually any triangulated stable
lamination converges to the Brownian triangulation in this limit. On the other hand, we
also see that

(dim(L(Xex
α )),dim(L(Xex

α , `))) −→
α↓1

(1, 2).
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Let us give an intuitive explanation of this fact. Informally, as α ↓ 1, the process Xex
α

converges towards the deterministic function f : [0, 1] → R defined by f(0) = 0 and
f(x) = 1− x for every x ∈ (0, 1] (f is not càdlàg, but we refer to [10, Theorem 3.6] for a
precise statement and proof). If we try then to define L(f) and L(f, `) mimicking (3.1)
and (3.4), we obtain L(f) = S1 and L(f, `) = D.

Proof of Theorem 3.4. Fix a face V of L(Xex
α , `) and let s be the jump-time of Xex

α asso-
ciated with V . Notice from (3.4) that all the chords of L(Xex

α , `) which lie in V either
belong to the boundary ∂V or are of the form [e−2iπps(`), e−2iπr] for r ∈ V ∩S1. To simplify
notation, denote by LV the lamination L(Xex

α , `)∩V and by AV the set of all its end-points,
so that

AV = V ∩ S1.
and dim(AV ) = 1/α by [26, Theorem 5.1]. As a consequence, since A(L(Xex

α , `)) =⋃
V AV , where the union runs over the countable set of faces of L(Xex

α ), we have

dim(A(L(Xex
α , `))) = sup

V face of L(Xex
α )

dim(AV ) = dim(V ∩ S1) =
1

α
.

Similarly, we have
dim(L(Xex

α , `)) = sup
V face of L(Xex

α )

dim(LV )

so it only remains to show that for any given face V of L(Xex
α ), we have

dim(LV ) = 1 + dim(AV ) = 1 +
1

α
. (3.7)

If s is the jump time associated with V , it is actually sufficient to establish (3.7) with
LV replaced by the compact set Cs(`), which is the union of the chords [e−2iπps(`), z] for
z ∈ AV . Indeed as we remarked previously, LV \ Cs(`) ⊂ L(Xex

α ) which, by (3.6), has
Hausdorff dimension 2 − 1

α < 1 + 1
α for every α ∈ (1, 2). We adapt the argument of Le

Gall & Paulin [29, Proposition 2.3] to show that dim(Cs(`)) = 1 + dim(AV ).
We first show that dim(Cs(`)) ≥ 1 + dim(AV ). Fix 0 < γ < dim(AV ); thanks to

Frostman’s lemma [32, Theorem 8.8], there exists a non-trivial finite Borel measure ν
supported on AV such that ν(B(x, r)) ≤ rγ for every x ∈ C and every r > 0, where B(x, r)

is the Euclidean ball centred at x and of radius r. Next, for every x ∈ AV , denote by λx
the one-dimensional Lebesgue measure on the chord joining x to e−2iπps(`). We define a
finite Borel measure Λ on C, supported on Cs(`), by setting for every Borel set B

Λ(B) =

∫
ν(dx)λx(B).

Fix 0 < R < 1 such that Λ(B(0, R)) > 0; let z0 ∈ B(0, R) ∩ Cs(`) and then x0 ∈ AV such
that the chord [x0, e

−2iπps(`)] contains z0. Fix ε ∈ (0, 1]; every x ∈ AV such that the chord
[x, e−2iπps(`)] intersects the ball B(z0, ε) must satisfy |x− x0| ≤ Cε, where the constant C
only depends on R. We conclude that

Λ(B(z0, ε)) =

∫
|x−x0|≤Cε

ν(dx)λx(B(z0, ε)) ≤ C ′ε1+γ ,

where the constant C ′ does not depend on ε nor z0. Appealing again to Frostman’s
lemma, we obtain dim(Cs(`)) ≥ 1 + γ, whence, as γ < dim(AV ) is arbitrary, dim(Cs(`)) ≥
1 + dim(AV ).

It remains to show the converse inequality. We denote respectively by dimM (K) and
dimM (K) the lower and upper Minkowski dimensions of a subset K of C (see e.g. Mattila

EJP 21 (2016), paper 11.
Page 13/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/16-EJP4559
http://ejp.ejpecp.org/


Triangulating stable laminations

[32, Chapter 5]); recall that for every K ⊂ D, we have dim(K) ≤ dimM (K) ≤ dimM (K).
Observe from the proof of Theorem 5.1 in [26] (in particular, Proposition 5.3 there) that
we have dim(AV ) = dimM (AV ). Fix β > dim(AV ) = dimM (AV ); there exists a sequence
(εk; k ≥ 1) which decreases to 0 such that for every k ≥ 1, there exists a positive integer
M(εk) ≤ ε−βk and M(εk) disjoint subarcs of S1 with length less than εk and which cover
AV . It follows that the two-dimensional Lebesgue measure of the εk-enlargement of Cs(`)
is bounded above by Cε1−βk , where the constant C does not depend on k. We conclude
from [32, page 79] that dim(Cs(`)) ≤ dimM (Cs(`)) ≤ 1 + β for every β > dim(AV ), which
completes the proof.

4 Invariance principles for triangulated laminations

In this section, we establish invariance principles for different classes of noncrossing
trees which converge to triangulated stable laminations. As an application, we obtain
limit theorems for large discrete random trees embedded in a noncrossing way.

4.1 The continuous case

If τ is a plane tree, we let H(τ) = maxu∈τ |u| be its height. Recall that W(τ) is its
Łukasiewicz path.

Proposition 4.1. Let f : [0, 1]→ R+ be a continuous function satisfying (Hf ) and such
that f(0) = f(1) = 0. For every n ≥ 1, let θn be a noncrossing tree with n vertices and
let τn be its shape. Assume that, as n→∞,

(i) H(τn)/n→ 0;

(ii) There exists a sequence Bn →∞ such that W(τn)/Bn → f for the uniform topology.

Then the convergence θn → L(f) holds for the Hausdorff topology.

In other words, as soon as the Łukasiewicz path of the shape of a sequence of
noncrossing trees converges to a continuous function having distinct local minima, the
limit of the noncrossing trees is a triangulation that only depends on their shapes and
not on their embeddings, provided that their height is negligible compared to their total
size. Notice that Assumption (i) is crucial, as it is simple to construct a sequence of
noncrossing trees satisfying (ii) but which does not converge for the Hausdorff topology.

As a direct application of Proposition 4.1, we obtain a limit theorem for Bienaymé–
Galton–Watson trees conditioned to be large, embedded in the disk, as well as noncross-
ing trees with a prescribed degree sequence.

Corollary 4.2. Let µ be critical offspring distribution with finite variance. For every
n ≥ 1, let Θn be a random noncrossing tree with n vertices such that its shape has the
law BGWµ

n. Then Θn converges in distribution to the Brownian triangulation as n→∞.

This result simply follows from Proposition 4.1 by applying Skorokhod’s representa-
tion theorem and combining (2.1) with the well-known fact that H(S(Θn))/

√
n converges

in distribution to a positive random variable as n→∞.

Corollary 4.3. For every n ≥ 1, fix a sequence d(n) = (di(n); i ≥ 0) of nonnegative
integers such that ∆(n) := max{i ≥ 0 : di(n) > 0} <∞ and sample then a noncrossing
tree Θn uniformly at random in the set of all noncrossing trees with shape having di(n)

vertices with i children for every i ≥ 0. Set |d(n)| :=
∑
i≥0 di(n) = 1 +

∑
i≥0 idi(n) the

total number of vertices of Θn and then

pi(n) :=
di(n)

|d(n)| (i ≥ 0), and σ2(n) :=
∑
i≥0

i2pi(n)− 1.
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If, as n → ∞, we have |d(n)| → ∞, ∆(n) = o(|d(n)|1/2), pi(n) → pi for each i ≥ 0 where∑
i≥0 pi =

∑
i≥0 ipi = 1 and σ2(n) → σp where σp :=

∑
i≥0 i

2pi − 1 ∈ (0,∞), then Θn

converges in distribution to the Brownian triangulation as n→∞.

As previously, this follows from Proposition 4.1 and Skorokhod’s representation
theorem since, under these assumptions, Broutin & Marckert [5, Theorem 3] have shown
the convergence in distribution as n → ∞ of the rescaled Łukasiewicz path of S(Θn)

towards the Brownian excursion, and that of H(S(Θn))/
√
|d(n)| to a positive random

variable.

Remark 4.4. In [9, Sec. 3.2], a similar result to Proposition 4.1 is established using the
contour function with the additional assumptions that the leaves of τn are “uniformly
distributed” and that the local minima of f are dense. An important point is that we
do not require the local minima of f to be dense in Proposition 4.1, which in particular
allows triangulations with nonempty interior. We lift these restrictions by using the
Łukasiewicz path instead of the contour function. Another advantage of this approach
is that invariance principles are usually simpler to establish for the Łukasiewicz path
than for the contour function. Furthermore, the fact that the leaves of τn are “uniformly
distributed” does not necessarily follow from a functional invariance principle.

We start with a preliminary observation which will be crucial in the proof of Propo-
sition 4.1: roughly speaking, if the height of a plane tree is small compared to its size,
then in any possible embedding of this plane tree as a noncrossing tree, the position of
every vertex having a small number of descendants is known, up to a small error. In
addition, if a vertex is such that only one of the subtrees grafted on its children is large,
then it can only have two possible locations in the noncrossing embedding, up to a small
error.

Lemma 4.5. Let θ be a noncrossing tree with shape τ having n vertices. Denote by
∅ = u0 ≺ u1 ≺ · · · ≺ un−1 the vertices of τ labelled in lexicographical order. Fix
η, ε ∈ (0, 1). Let 0 ≤ k ≤ n− 1 and denote by Sk the number of (strict) descendants of uk.
Assume that H(τ)/n ≤ ε.

(i) Assume that Sk ≤ ηn. Then ∣∣∣e−2iπk/n − uk∣∣∣ ≤ 7(ε+ η),

where we identify uk with its associated complex number in the noncrossing tree θ.

(ii) Let Mk be the size of the largest subtree grafted on a child of uk. Assume that
Sk −Mk ≤ ηn. Then

min
(∣∣∣e−2iπk/n − uk∣∣∣ , ∣∣∣e−2iπ(k+Sk)/n − uk∣∣∣) ≤ 7(ε+ η).

Proof. Let Pk ∈ {0, 1, . . . , n − 1} be such that the vertex uk is the complex number
exp(−2iπPk/n) in θn. Then

|k − Pk| ≤ H(τ) + Sk.

This readily follows from the description of the bijection Φ−1n given in the proof of
Proposition 2.1: the error H(τ) corresponds to the vertices belonging to K∅, ukJ which
may be folded to the right of uk in θn, and the error Sk corresponds to all the vertices
after uk (in the lexicographical order) which may be folded to the left of uk. Assertion (i)
then follows from the fact that |e−2iπs − e−2iπt| ≤ 2π|s− t| for s, t ∈ [0, 1].

For (ii), let ũ be a child of uk having Mk descendants (including itself). Then either ũ
is folded to the right of uk in θ, in which case all these Mk descendants are also folded
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to the right of uk in θ, so that |k − Pk| ≤ H(τ) + Sk −Mk, or ũ is folded to the left of uk
in θ, in which case all these Mk descendants are also folded to the left of uk in θ, so
that |k + Mk − Pk| ≤ H(τ) + Sk −Mk (the errors Sk −Mk come from the descendants
of uk which are not descendants of ũ and which may be folded to the left of uk). This
completes the proof.

We next prove Proposition 4.1.

Proof of Proposition 4.1. Since D is compact, the space of compact subsets of D
equipped with the Hausdorff distance is compact as well. Furthermore the space
of laminations is closed, therefore the sequence (θn)n≥1 converges along a subsequence
towards a lamination L of D and we aim at showing that L = L(f). Since L(f) is maximal,
it suffices to check that L(f) ⊂ L. To simplify notation, we assume that θn → L without
extracting a subsequence.

Fix 0 < s < t < 1 such that s ∼f t and let us show that [e−2iπs, e−2iπt] ⊂ L. To this

end, we fix ε ∈ (0, (t− s)/10) and show that [e−2iπs, e−2iπt] ⊂ θ(49ε)n for every n sufficiently
large, where X(ε) is the ε-enlargement of a closed subset X ⊂ D. Observe from (Hf )
that either f(s) = f(t) < f(r) for every r ∈ (s, t), or there exists a unique r ∈ (s, t)

such that f(s) = f(t) = f(r) and neither s nor t are times of a local minimum. We may
restrict our attention to the first case since, in the second one, there exists s′ ∈ (s− ε, s)
and t′ ∈ (t, t + ε) such that f(s′) = f(t′) < f(r) for every r ∈ (s′, t′). We assume in the
sequel that f(s) = f(t) < f(r) for every r ∈ (s, t) and that n is sufficiently large so that
H(τn)/n ≤ ε.

The strategy of the proof is to define, for every n ≥ 1 large enough, two integers
rn < ln such that the geodesic path in θn going from the rn-th vertex of τn to its ln-th
is close to [e−2iπs, e−2iπt] for the Hausdorff distance. A number of intermediate times is
needed.

We start with some preliminary observations. Let W(n) be the Łukasiewicz path of τn
and denote by ∅ = u

(n)
0 ≺ u(n)1 ≺ · · · ≺ u(n)n−1 the vertices of τn labelled in lexicographical

order. It is well known that u(n)i is an ancestor of u(n)j if and only if i ≤ j and W
(n)
i =

min[i,j] W
(n) (see e.g. [28, Proposition 1.5]). As a consequence, for every 0 ≤ k ≤ n− 1,

if S(n)
k denotes the number of (strict) descendants of u(n)k , we have

|u(n)k | = #

{
0 ≤ j ≤ k − 1 : W

(n)
j = min

[j,k]
W(n)

}
,

and
S
(n)
k = min

{
j ≥ k : W

(n)
j <W

(n)
k

}
− k − 1.

Since f(r) > f(s) = f(t) for every r ∈ (s, t), there exists z ∈ (s, s + ε) such that
inf{u > z : f(u) ≤ f(z)} ∈ (t− ε, t). As a consequence, setting η = (z − s)/10, for every n
sufficiently large, there exists zn ∈ {1, . . . , n− 1} such that

z − η ≤ n−1zn ≤ z + η and t− 2ε < n−1 min
{
i > zn : W

(n)
i ≤W(n)

zn

}
< t. (4.1)

Similarly, since f(s) < inf [z−4η,z+2η] f , we can find yn ∈ {1, . . . , n− 1} such that
s ≤ n−1yn ≤ z − 4η,

t− 2ε < n−1 min
{
i > yn : W

(n)
i ≤W

(n)
yn

}
,

n−1 min
{
i > yn : W

(n)
i <W

(n)
yn

}
< t.

(4.2)

We claim that for every n sufficiently large there exists integers r0n < j0n ≤ zn such
that
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z − 3η < n−1r0n, z − 2η < n−1j0n, and W
(n)
r0n

>W
(n)
j0n
. (4.3)

Indeed, if this were not the case, for every j ∈ ((z−2η)n, zn), we would have W
(n)
r ≤W

(n)
j

for every r ∈ ((z − 3η)n, j), yielding W
(n)
r = min[r,zn] W

(n) for every (z − 3η)n < r <

(z − 2η)n, which would imply that |u(n)zn | ≥ ηn and contradict Assumption (i).

u( r n )

u(pn )

u( ln )

pn r n j n znj 0nr 0n
ln

pn r n j n znj 0nr 0n
ln

mn

mn

Figure 4: Illustration of the proof. On the left, the sizes of the dashed subtrees are small
compared to the size of the three grey subtrees. On the top right is illustrated the case
where W

(n)
pn+1 > mn (so that rn = pn + 1), and on the bottom right is illustrated the case

where W
(n)
pn+1 = mn (so that rn > pn + 1).

Choose r0n < j0n ≤ zn ∈ {1, . . . , n− 1} such that (4.3) holds. Set

mn = min
[r0n,zn]

W(n), pn = max
{
i < r0n : W

(n)
i < mn

}
, rn = min

{
i > pn;W

(n)
i > mn

}
,

as well as

jn = min
{
i > rn : W

(n)
i = mn

}
, ln = min

{
i > pn : W

(n)
i < mn

}
,

so that

yn ≤ pn < rn < jn ≤ zn < ln and W
(n)
i = mn for every pn < i < rn.

For the first inequality, note that pn < yn would imply W
(n)
yn ≥ mn and so min{i > yn :

W
(n)
i ≤W

(n)
yn } ≤ zn which, by (4.1), contradicts (4.2). In addition, for every n sufficiently

large,

s ≤ n−1pn, n−1jn < s+ 2ε, n−1jn − n−1pn ≤ 2ε, t− 2ε < n−1ln < t.

The first inequality follows from the fact that pn ≥ yn, the second one from the fact that
n−1jn ≤ n−1zn ≤ z + η ≤ s+ 2ε, the third one from the first two, and the last one from
(4.1) and (4.2). Observe that W(n)

yn <W
(n)
pn < mn; we also have,

n−1 min
{
i > pn : W

(n)
i <W(n)

pn

}
< t (4.4)

by (4.2).
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Note that either W
(n)
pn+1 > mn, in which case rn = pn + 1 and u(n)rn is the first child of

u
(n)
pn , or W

(n)
pn+1 = mn and so u(n)pn+1, . . . , u

(n)
rn−2 all have one child, and u(n)rn is the first child

of u(n)rn−1.
This implies (see Fig. 4 for an illustration) that:

(a) u(n)ln
is a child of u(n)pn , since W

(n)
pn ≤W

(n)
ln

<W
(n)
i for every pn < i < ln;

(b) the number of descendants of u(n)rn is not greater than 2εn, since, similarly, W(n)
jn

<

W
(n)
rn so that S(n)

rn ≤ rn − jn ≤ rn − pn ≤ 2εn;

(c) the number of descendants of u(n)ln
is not greater than 2εn since

S
(n)
ln
≤ min

{
i ≥ ln : W

(n)
i <W

(n)
ln

}
− ln ≤ nt− (t− 2ε)n ≤ 2εn,

where we have used (4.4) for the second inequality.

(d) Fix pn ≤ i ≤ rn−1. If M (n)
i denotes the size of the largest subtree grafted on a child

of u(n)i , then S
(n)
i −M (n)

i ≤ 4εn. Indeed, note that this is trivial if pn < i < rn − 1

since we observed that u(n)i then has only one child; in the two other cases, we

have S(n)
i ≤ nt− pn using (4.4), and in addition, M (n)

i ≥ ln − jn, so that

S
(n)
i −M (n)

i ≤ (nt− ln) + (jn − pn) ≤ 4εn.

We finally show that the path Ju(n)rn , u
(n)
ln

K in θn is close to the chord [e−2iπs, e−2iπt] for
the Hausdorff distance.

Step 1: Control of the positions of u(n)rn and u(n)ln
. We claim that∣∣∣e−2iπs − u(n)rn

∣∣∣ ≤ 35ε and
∣∣∣e−2iπt − u(n)ln

∣∣∣ ≤ 35ε. (4.5)

Indeed, By Lemma 4.5 (i), we have |e−2iπrn/n − u(n)rn | ≤ 21ε by (b) and |e−2iπln/n − u(n)ln
| ≤

21ε by (c). Our claim then follows by the triangular inequality since |e−2iπrn/n − e−2iπs| ≤
7|rn/n− s| ≤ 14ε and |e−2iπln/n − e−2iπt| ≤ 7|ln/n− t| ≤ 14ε.

Step 2: Control of the path between u
(n)
rn and u

(n)
pn . By (d), for every vertex u(n)k ∈

Ju(n)pn , u
(n)
rn J or, equivalently, for every pn ≤ k ≤ rn − 1, we have S(n)

k −M (n)
k ≤ 4εn, so an

application of Lemma 4.5 (ii) yields

min
(∣∣∣e−2iπk/n − u(n)k

∣∣∣ , ∣∣∣e−2iπ(k+S(n)
k )/n − u(n)k

∣∣∣) ≤ 35ε.

Note that |e−2iπk/n − e−2iπs| ≤ 7|k/n − s| ≤ 7(rn/n − s) ≤ 7(jn/n − s) ≤ 14ε. Also,

S
(n)
k + k ≤ ln < nt, so that |e−2iπ(k+S(n)

k )/n − e−2iπt| ≤ 7|(k+ S
(n)
k )/n− t| ≤ 7(t− ln) ≤ 14ε.

Therefore
min

(∣∣∣e−2iπs − u(n)k

∣∣∣ , ∣∣∣e−2iπt/n − u(n)k

∣∣∣) ≤ 49ε. (4.6)

Since u(n)ln
is a child of u(n)pn by (a), we conclude from (4.5) and (4.6) that for every

u ∈ Ju(n)rn , u
(n)
ln

K,

min
(∣∣e−2iπs − u∣∣ , ∣∣∣e−2iπt/n − u∣∣∣) ≤ 49ε.

Therefore, letting L(n) be the path Ju(n)rn , u
(n)
ln

K in the noncrossing tree, we get that

L(n) ⊂ [e−2iπs, e−2iπt](49ε). Since L(n) is a union of finite segments joining u(n)rn to u(n)ln
, we

get that [e−2iπs, e−2iπt] ⊂ (L(n))(49ε) ⊂ θ
(49ε)
n , which establishes our original claim and

completes the proof.
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4.2 The càdlàg case

Recall the definition of ps(`) from Sec. 3.3.

Proposition 4.6. Let θn be a noncrossing tree with n vertices and shape τn. Denote by
∅ = u

(n)
0 ≺ u

(n)
1 ≺ · · · ≺ u

(n)
n−1 the vertices of τn listed in lexicographical order, let k(n)i

be the number of children of u(n)i and let L(n)
i be the number of children of u(n)i lying to

the “left” of u(n)i in θn. Let Z ∈ D([0, 1],R) be a càdlàg function satisfying (H0), . . . , (H4).
Assume that there exists a sequence Bn →∞ and a sequence ` = (`s : s ∈ J(Z)) indexed
by the jump times of Z such that the following properties hold:

(i) We have H(τn)/n→ 0 as n→∞.

(ii) The convergence W(τn)/Bn → Z holds for the Skorokhod J1 topology.

(iii) For every s ∈ (0, 1), if in ∈ {0, 1, . . . , n − 1} is such that limn→∞ k
(n)
in
/Bn > 0 and

in/n→ s, then L(n)
in
/k

(n)
in
→ `s.

(iv) For every s ∈ J(Z), Z does not attain a local minimum at ps(`).

Then θn → L(Z, `) for the Hausdorff topology.

Roughly speaking, Condition (iv) ensures that the special vertex from which each
face is triangulated is not an endpoint of a chord of L(Z, `) (but of course belongs to the
closure of the endpoints of chords).

Proof. As in the proof of Proposition 4.1, we assume that θn converges towards a
lamination L and we aim at showing that L = L(Z, `). Again, since L(Z, `) is maximal, it
suffices to check that L(Z, `) ⊂ L.

We first show that L(Z) ⊂ L. To this end, fix ε > 0 and choose 0 ≤ s < t ≤ 1 such
that s 'Z t. If ∆Z(s) = 0, then Z(t) = Z(s) = inf [s,t] Z and ∆Z(t) = 0. Arguments

similar to those of the proof of Proposition 4.1 show that [e−2iπs, e−2iπt] ⊂ θ
(49ε)
n for n

sufficiently large. If ∆Z(s) > 0, then t = inf{u > s : Z(t) = Z(s−)} and for every
ε > 0 we have inf [s−ε,s] Z < Z(s−) by (H3) and inf [t,t+ε] Z < Z(t) by (H2). Using these
inequalities, again similar arguments to those of the proof of Proposition 4.1 entail that
[e−2iπs, e−2iπt] ⊂ θ(49ε)n for n sufficiently large. We leave the (merely technical) details to
the reader, and refer to [31, Proof of Theorem 7.1] for detailed arguments.

Next, let s ∈ J(Z), set s′ = inf{t > s : Z(t) = Z(s−)} and fix t ∈ [s, s′] such that Z(t) =

inf [s,t] Z (observe that (H3) implies ∆Z(t) = 0). We shall show that [e−2iπps(`), e−2iπt] ⊂
θ
(ε)
n for n sufficiently large. Let in as in (iii) and set

S
(n)
in

= min
{
j ≥ in + 1 : W

(n)
j = W

(n)
in+1 − L

(n)
in

}
− in − 1,

the total number of (strict) descendants of the first L(n)
in

children of u(n)in
. Then, by

definition of L(n)
in

, ∣∣∣u(n)in
− e−2iπ(in+S

(n)
in

)/n
∣∣∣ ≤ 7

H(τn)

n
,

where the error term corresponds to the vertices belonging to J∅, u(n)in
J which may be

folded to the right of u(n)in
in θn. Since k(n)in

/Bn → ∆Z(s), we have L(n)
in
/Bn → ∆Z(s)`s.

In addition, W(n)
in
/Bn → Z(s). By (iv), Z does not attain a local minimum at ps(`), so by

continuity properties of first passage times for the Skorokhod topology,

n−1 min
{
j ≥ in : W

(n)
j = W

(n)
in+1 − L

(n)
in

}
−→
n→∞

inf {t ≥ s : Zt = Zs −∆Z(s)`s} = ps(`).
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Therefore n−1(S
(n)
in

+ in)→ ps(`), implying, by the previous bound and (i) that∣∣∣e−2iπps(`) − u(n)in

∣∣∣ −→
n→∞

0. (4.7)

j n
n

t
t j n

n

r
s ∼ in

n
s ∼ in

n

Figure 5: Illustration of the choice of jn. On the left, the case where Z(r) > Z(t) for
every r ∈ (s, t] and on the right, the case where there exists (a unique) r ∈ (s, t) such
that Z(r) = Z(t).

We claim that there exists jn ∈ {0, 1, . . . , n− 1} such that jn/n→ t, u(n)jn
is a child of

u
(n)
in

and the number of descendants of u(n)jn
is o(n) as n→∞. Indeed, suppose first that

Z(r) > Z(t) for every r ∈ (s, t). Fix ε ∈ (0, t−s); from (H3), the infimum of Z over [s, t−ε]
is achieved at some point of this interval. Therefore, for n large enough, there exists an
integer jn such that jn/n ∈ [t− ε, t], Wm >Wjn for every integer m ∈ [in + 1, jn − 1], and
inf{l > jn : Wl = Wjn − 1} ≤ jn + nε; the claim then follows. Suppose next that there
exists r ∈ (s, t) such that Z(r) = Z(t) = inf [s,t] Z; then note that r must be a time of local
minimum by (H3), so this can only occur when Z(t) > Z(s−) because otherwise it would
contradict (H4), also t cannot be a time of a local minimum by (H1). We conclude that for
every ε > 0, we can find t′ ∈ (t, t + ε) such that Z(s) < Z(t′) < Z(r) for every r ∈ (s, t′)

and the previous approximation thus applies.
This implies that |e−2iπjn/n − u(n)jn

| → 0 by Lemma 4.5 (i), so that∣∣∣e−2iπt − u(n)jn

∣∣∣ −→
n→∞

0. (4.8)

Combining (4.7) and (4.8), since u(n)jn
is a child of u(n)in

, we get that for every n sufficiently
large [

e−2iπps(`), e−2iπt
]
⊂
[
u
(n)
in
, u

(n)
jn

](ε)
⊂ θ(ε)n .

This completes the proof.

4.3 The uniform stable triangulation

If τ is a plane tree with n vertices, we set ΘU (τ) = Φ−1n (τ,C), where C is a random
element of C(τ) chosen uniformly at random. In other words, ΘU (τ) is a noncrossing
tree obtained by a “uniform” embedding of τ .

Our next result establishes an invariance principle for large critical Bienaymé–Galton–
Watson trees in the domain of attraction of a stable law of index α ∈ (1, 2) which are
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embedded uniformly in a noncrossing way. The distributional limit is the uniform stable
triangulation, which was introduced in Sec. 3.3.

Theorem 4.7. Fix α ∈ (1, 2). For every critical offspring distribution µ belonging to the
domain of attraction of a stable law of index α, if Tn is a Bienaymé–Galton–Watson tree
with offspring distribution µ conditioned to have n vertices, the convergence

ΘU (Tn)
(d)−→
n→∞

LUα

holds in distribution for the Hausdorff distance on the space of all compact subsets of D.

Proof. We want to apply Skorokhod’s representation theorem and Proposition 4.6 with
Z = Xex

α . Assumptions (i) and (ii) hold by (2.1) as well as the fact Bn
n H(Tn) converges in

distribution to a positive random variable as n → ∞ [16]. To see that Assumption (iii)
holds, denote by ∅ = u

(n)
0 ≺ u(n)1 ≺ · · · ≺ u(n)n−1 the vertices of Tn listed in lexicographical

order, let k(n)i be the number of children of u(n)i and let L(n)
i be the number of children

of u(n)i lying to the “left” of u(n)i in ΘU (Tn). By definition, conditionally given Tn, L(n)
i is

uniformly distributed in {0, 1, . . . , k(n)i }, and the random variables (L
(n)
i : 0 ≤ i ≤ n−1) are

independent. In particular, conditionally on k(n)in
→∞, L(n)

in
/k

(n)
in

converges in distribution
to a uniform random variable on [0, 1]. Finally, Assumption (iv) holds: almost surely, for
every s ∈ J(Xex

α ), Xex
α does not attain a local minimum at ps(`

U ), where, conditionally
given Xex

α , `U = (`s)s∈J(Xex
α ) is a sequence of i.i.d. uniform random variables on [0, 1].

Indeed, almost surely, the times at which Xex
α attains a local minimum are at most

countable, so for every s ∈ J(Xex
α ), the probability that ps(`

U ) is such a time is zero and,
almost surely, J(Xex

α ) is countable.

5 Applications to simply generated noncrossing trees

In this section, we consider simply generated noncrossing trees, as defined by
(1.1). We first prove that such trees are almost Bienaymé–Galton–Watson trees, and
then establish Theorem 1.1 by using the invariance principles obtained in the previous
section.

We denote by BGWµ∅,µ the law of a modified Bienaymé–Galton–Watson tree, where
the offspring distribution of the root is µ∅, and that of the other vertices is µ. For every
integer n, we denote by BGWµ∅,µ

n the law of such a tree conditioned to have n vertices.

5.1 Simply generated noncrossing trees are almost Bienaymé–Galton–Watson
trees

As we have seen, every noncrossing tree θ carries a planar structure, canonically
rooted at the vertex corresponding to the complex number 1, which is called the shape
of θ and is denoted by S(θ). If Θn a random noncrossing tree uniformly distributed on
NCn, then Theorem 1 in [30] shows that S(Θn) is a modified Bienaymé–Galton–Watson
tree, where the root has a different offspring distribution, conditioned to have size n.
Our next result extends this to simply generated noncrossing trees.

Theorem 5.1. Assume that

ρ :=

(
lim sup
k→∞

w(k)1/k
)−1

> 0.

Fix b ∈ (0, ρ), set

a =

( ∞∑
k=0

(k + 1)w(k + 1)bk

)−1
and c =

( ∞∑
k=1

w(k)bk

)−1
,
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and define {
µ(k) = a(k + 1)w(k + 1)bk (k ≥ 0),

µ∅(k) = cw(k)bk (k ≥ 1).
(5.1)

Then the law of the shape of a noncrossing tree sampled according to Pwn is BGWµ∅,µ
n .

Observe that
∞∑
j=1

jµ∅(j) =
bc

a
, whence

kµ∅(k)∑∞
j=1 jµ∅(j)

= µ(k − 1). (5.2)

We shall see that the probability that the root of a modified Bienaymé–Galton–Watson
tree conditioned to have n vertices has k children converges towards kµ∅(k)∑∞

j=1 jµ∅(j) as

n → ∞. The above identity then translates roughly the fact that in a large modified
Bienaymé–Galton–Watson tree as above, the law of the degree of the root is close to that
of the other vertices, as it is the case for a simply generated noncrossing tree.

Remark 5.2. The condition (1.2) appearing in Theorem 1.1 is equivalent to the fact
that the probability measure µ defined by (5.1) can be chosen to be critical; in this case,
it is unique. Indeed, consider the function

Ψ : x ∈ [0, ρ) 7−→
∑∞
k=0 k(k + 1)w(k + 1)xk∑∞
k=0(k + 1)w(k + 1)xk

. (5.3)

Janson [23, Lemma 3.1] observed that Ψ is null at 0, continuous and increasing. There-
fore, for every value m ∈ (0,Ψ(ρ)), where Ψ(ρ) := limx↑ρ Ψ(x), there exists a unique
probability measure µ of the form (5.1) with expectation m. In particular, one can choose
µ to be critical if and only if

lim
x↑ρ

Ψ(x) ≥ 1,

in which case, b > 0 is the unique number such that

∞∑
k=0

(k + 1)(k − 1)w(k + 1)bk = 0. (5.4)

Remark 5.3. Consider the uniform distribution on noncrossing trees: w(k) = 1 for
every k ≥ 1. Then (5.4) holds with b = 1/3. A simple calculation yields a = 4/9 and c = 2,
so that (5.1) reads {

µ(k) = 4(k + 1)3−(k+2) (k ≥ 0),

µ∅(k) = 2× 3−k (k ≥ 1).
(5.5)

In particular, Theorem 5.1 recovers the special case of Marckert & Panholzer [30,
Theorem 1].

Proof of Theorem 5.1. Fix n ≥ 1 and denote by Qwn the law of the shape of a random
noncrossing tree sampled according to Pwn . We aim at showing that Qwn = BGWµ∅,µ

n .
To this end, fix τ ∈ Tn, and let k0, k1, . . . , kn−1 be the number of children of its vertices
listed in lexicographical order (in particular, k0 is the number of children of its root). By
definition,

BGWµ∅,µ(τ) = µ∅(k0)

n−1∏
i=1

µ(ki) = cw(k0)bk0
n−1∏
i=1

a(ki + 1)w(ki + 1)bki .

Note that
∑n−1
i=0 ki = n− 1, whence

BGWµ∅,µ
n (τ) =

c(ab)n−1

BGWµ∅,µ(Tn)
w(k0)

n−1∏
i=1

(ki + 1)w(ki + 1).
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Next, observe that Pwn (θ) only depends on S(θ) and that #{θ ∈ NCn : S(θ) = τ} =

#C(τ) =
∏n−1
i=1 (ki + 1) by Proposition 2.1. It follows that

Qwn (τ) =
∑

θ∈NCn:S(θ)=τ

Pwn (θ) =
1

Zwn
#C(τ)

∏
u∈τ

w(deg u) =
1

Zwn
w(k0)

n−1∏
i=1

(ki + 1)w(ki + 1).

Since Qwn and BGWµ∅,µ
n are both probability measures on Tn, we conclude that we have

the identity c(ab)n−1/BGWµ∅,µ(Tn) = 1/Zwn and the claim follows.

5.2 Largest subtree of the root of large modified Bienaymé–Galton–Watson
trees

Finally, Theorem 1.1 will readily follow from Propositions 4.1 and 4.6, as in the proof
of Theorem 4.7, using the next convergence, which extends Duquesne’s theorem (2.1) to
modified Bienaymé–Galton–Watson trees.

Theorem 5.4. Fix α ∈ (1, 2]. Let µ∅ be a probability measure on N with finite mean and
µ a probability measure on Z+ which is critical and belongs to the domain of attraction
of a stable law with index α. For every integer n ≥ 1, sample Tn according to BGWµ∅,µ

n

(provided that BGWµ∅,µ
n is well defined). Then the convergence in distribution(

1

Bn
Wbnsc(Tn) : s ∈ [0, 1]

)
(d)−→
n→∞

(Xex
α (s) : s ∈ [0, 1]),

holds in the space D([0, 1],R), where (Bn)n≥1 is the same sequence as in (2.1).

Marckert & Panholzer [30] obtained this limit theorem in the case where µ∅ and
µ are given by (5.5). We follow the same approach in the general case, which roughly
speaking consists in comparing BGWµ∅,µ

n and BGWµ
n. However, Marckert & Panholzer

crucially use the fact that the support of µ and that of µ∅ differ only at 0. This is not
the case when µ∅ and µ are given by (5.1) as soon as w(k) = 0 for some k ≥ 1, so some
care is needed (see Remark 5.8). Our approach also gives a limit theorem for the size
of the maximal subtree grafted on the root of a size-conditioned (possibly modified)
Bienaymé–Galton–Watson tree.

We start by proving Theorem 1.1, assuming that Theorem 5.4 holds.

Proof of Theorem 1.1. Recall that the Hausdorff dimension of LUα has been computed in
Theorem 3.4. Define µ and µ∅ by (5.1), so that the shape of Θn has law BGWµ∅,µ

n by
Theorem 5.1. In addition, the proof of Theorem 5.1 also shows that conditionally given
the shape S(Θn), the random variable C(Θn) is uniformly distributed on the set of all its
possible values. Under the assumption of Theorem 1.1, µ is critical and in the domain
of attraction of a stable law of index α. Since µ∅ has finite mean by (5.2), we can apply
Theorem 5.4; moreover we will see in Remark 5.9 that the height of the shape of Θn

is small compared to n so we conclude as in the proofs of Corollary 4.2 and Theorem
4.7.

Remark 5.5. If k 7→ w(k+ 1) is a critical probability distribution on Z+ belonging to the
domain of attraction of a stable law of index α ∈ (1, 2), a simply generated noncrossing
tree with weights w will converge to the Brownian triangulation (and its shape to
the Brownian CRT), but a simply generated plane tree with weights w will converge,
appropriately rescaled, to the α-stable random tree, and embedded in a uniform manner
it will converge to the uniform α-stable triangulation.

We fix for the rest of this section µ∅ a probability measure on N with finite mean
and µ a probability measure on Z+ which is critical and belongs to the domain of
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attraction of a stable law with index α ∈ (1, 2]. We further assume that µ is aperiodic
to avoid unnecessary complications, meaning that gcd{i > 0 : µ(i) > 0} = 1 so that
BGWµ(|T| = n) > 0 for every n sufficiently large. The key estimate in order to prove
Theorem 5.4 is the following, which may be of independent interest. Denote by N0(τ)

the number of children of the root of a plane tree τ and by M(τ) the size of the largest
subtree that stems from one of these children.

Proposition 5.6. Let N be a random variable with law given by

P (N = k) =
kµ∅(k)∑
j≥1 jµ∅(j)

(k ≥ 1)

and let (Yi)i≥1 be an independent sequence of i.i.d. random variables having the law of
the total size of a BGWµ tree. Then, for every k ≥ 0 and L ≥ 1,

BGWµ∅,µ
n (n− 1−M = k,N0 = L) −→

n→∞
P (Y1 + Y2 + · · ·+ YL−1 = k,N = L) .

Note that this implies that for every k ≥ 0,

BGWµ∅,µ
n (n− 1−M = k) −→

n→∞
P (Y1 + Y2 + · · ·+ YN−1 = k) .

In particular, under BGWµ∅,µ
n , M/n converges to 1 in probability as n→∞, which was

proved by Marckert & Panholzer when µ∅ and µ are given by (5.5). Note also that this
result covers the case of Bienaymé–Galton–Watson trees by taking µ∅ = µ.

We establish Proposition 5.6 in several steps and first introduce some notation. Let
S = (Sn)n≥0 be the random walk starting from 0 with step distribution (µ(k+1) : k ≥ −1).
Observe that S is an aperiodic centred random walk with step distribution in the domain
of attraction of a stable law with index α. Recall the spectrally positive Lévy process Xα

introduced in Sec. 2.1 and denote by p1 the density of Xα(1); the latter is known to be
positive, continuous and bounded (see e.g. Zolotarev [40, I. 4]). We will use the local
limit theorem (see Ibragimov & Linnik [22, Theorem 4.2.1]), which tells us that

sup
k∈Z

∣∣BnP(Sn = k)− p1(B−1n k)
∣∣ −→

n→∞
0. (5.6)

For every k ≥ 1, denote by T−k the first hitting time of −k by the random walk S. We
will need Kemperman’s formula, which states that

P (T−k = n) =
k

n
· P (Sn = −k) (5.7)

for every k ≥ 1 and n ≥ 1 (see e.g. [38, Chap. 6]). In particular, the total size Y1 of
a BGWµ tree belongs to the domain of attraction of a stable law of index 1/α, since
P (Y1 = n) = P (T−1 = n) = n−1P (Sn = −1) ∼ (nBn)−1p1(0) as n→∞.

The main tool to prove prove Proposition 5.6 is the following lemma.

Lemma 5.7. (i) We have

BGWµ∅,µ(|T| = n) ∼
n→∞

1

|Γ(−1/α)| ·

∑
k≥1

kµ∅(k)

 · 1

n ·Bn
.

(ii) We have

BGWµ∅,µ
n (N0 = k) −→

n→∞

kµ∅(k)∑
j≥1 jµ∅(j)

uniformly in k. (5.8)
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(iii) Fix k ≥ 1; for every n ≥ k, consider a forest of k independent Bienaymé–Galton–
Watson trees with offspring distribution µ, conditioned to have total size n and
denote by Mµ,k

n the size of the largest tree. Then, as n→∞, n−Mµ,k
n converges

in distribution to the total size of k− 1 independent Bienaymé–Galton–Watson trees
with offspring distribution µ.

In particular, with the notation of (iii), n−1Mµ,k
n → 1 in probability as n→∞.

Proof. Observe that under BGWµ∅,µ, the Łukasiewicz path associated with the tree is
distributed as a random walk issued from 0, with first step distributed as (µ∅(k + 1) :

k ≥ 0) and the next ones as (µ(k + 1) : k ≥ −1), stopped at its first hitting time of −1. As
a consequence, by decomposing the Łukasiewicz path after the first step, for every k ≥ 1

we have:

BGWµ∅,µ(|T| = n) =

n−1∑
k=1

µ∅(k)P (T−k = n− 1) =

n−1∑
k=1

kµ∅(k)

n− 1
P (Sn−1 = −k) , (5.9)

where we have used Kemperman’s formula (5.7) for the last equality. Next note that for
every fixed k ≥ 1, we have

kµ∅(k)Bn−1P(Sn−1 = −k) = kµ∅(k)
(
p1(−B−1n−1k) + o(1)

)
−→
n→∞

kµ∅(k)p1(0).

Since
∑
k≥1 kµ∅(k) <∞ and p1 is bounded, the above convergence yields also∑

k≥1

kµ∅(k)Bn−1P(Sn−1 = −k) −→
n→∞

∑
k≥1

kµ∅(k)p1(0).

Recall from [18, Lemma XVII.6.1] that p1(0) = |Γ(−1/α)|−1. Moreover, since (Bn)n≥1 is
regularly varying with index 1/α, we have Bn−1/Bn → 1 as n → ∞. Assertion (i) then
follows.

We now establish (ii). As in the proof of (i), also using (5.7), we have

BGWµ∅,µ
n (N0 = k) =

µ∅(k)P(T−k = n− 1)

BGWµ∅,µ(|T| = n)
= kµ∅(k) · BnP (Sn−1 = −k)

(n− 1)BnBGWµ∅,µ(|T| = n)

By (i) and the local limit theorem (5.6), the convergence in (5.8) therefore holds for
every k fixed. To obtain a uniform convergence, fix any ε > 0 and let K ≥ 1 be such that∑
j≥K jµ∅(j) < ε. Then

sup
1≤k≤K

∣∣kµ∅(k)BnP(Sn−1 = −k)− p1(0)kµ∅(k)
∣∣ −→

n→∞
0,

and, from (5.6),

sup
k≥K

∣∣kµ∅(k)BnP(Sn−1 = −k)− p1(0)kµ∅(k)
∣∣ ≤ ε(2‖p1‖+ o(1)),

which establishes (ii).

We finally prove (iii). Let T1, . . . ,Tk be k independent Bienaymé–Galton–Watson trees
with offspring distribution µ. To simplify notation, set Zj =

∑j
i=1 |Ti| for 1 ≤ j ≤ k. Fix

m ≥ 0. Note that, for n > 4m,{
sup

1≤i≤k
|Ti| = n−m,Zk = n

}
=

k⋃
i=1

{|Ti| = n−m,Zk = n} ,
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where the union is taken on disjoint events. As a consequence, by exchangeability of the
vector (|T1|, . . . , |Tk|) under the conditional distribution P( · | Zk = n), we have

P

(
sup

1≤i≤k
|Ti| = n−m

∣∣∣∣ Zk = n

)
=

k∑
i=1

P(|Ti| = n−m | Zk = n)

= k · P(Z1 = n−m | Zk = n).

Next, we have for n > 4m,

k · P(Z1 = n−m | Zk = n) = k · P(Z1 = n−m)P(Zk−1 = m)

P(Zk = n)
.

Since Zk has the same law as the first hitting time of −k by the random walk S, Kemper-
man’s formula (5.7) yields

k · P(Z1 = n−m)

P(Zk = n)
= k ·

1
n−mP(Sn−m = −1)

k
nP(Sn = −k)

−→
n→∞

1,

where the convergence follows from the local limit theorem (5.6) and Bn−m/Bn → 1. It
follows that

P

(
sup

1≤i≤k
|Ti| = n−m

∣∣∣∣ Zk = n

)
−→
n→∞

P(Zk−1 = m)

for every m ≥ 0, which completes the proof.

We finally prove Proposition 5.6 and Theorem 5.4.

Proof of Proposition 5.6. Observe that for every L ≥ 1 fixed, under the conditional
distribution BGWµ∅,µ

n ( · | N0 = L), the L subtrees of the root are distributed as a forest
of L independent Bienaymé–Galton–Watson trees with the same offspring distribution µ,
conditioned to have total size n− 1. Therefore, with the notation of Lemma 5.7 and its
proof, for every L ≥ 1 and k ≥ 0, the quantity

BGWµ∅,µ
n (M = n− 1− k,N0 = L)

is equal to
P(Mµ,L

n−1 = n− 1− k) · BGWµ∅,µ
n (N0 = L),

which, thanks to Lemma 5.7 (ii) and (iii), converges as n→∞ to

P(ZL−1 = k) · P (N = L) .

This completes the proof.

Remark 5.8. In order to prove that under BGWµ∅,µ
n , M/n→ 1 in probability as n→∞

when µ∅ and µ are given by (5.5), Marckert & Panholzer crucially use the fact that for
every k ≥ 1, conditionally given N0 = k, the laws BGWµ∅,µ

n and BGWµ
n are the same.

However, in the general case, µ∅ and µ may have different supports. For this reason, we
use an additional idea which consists in estimating the size of the largest tree in a forest
of Bienaymé–Galton–Watson trees (Lemma 5.7 (iii)) and which also allows us to obtain a
joint convergence in distribution in Proposition 5.6.

Proof of Theorem 5.4. We see from Proposition 5.6 that under BGWµ∅,µ
n , with proba-

bility tending to 1 as n → ∞, the root has one subtree, say τn, of size Mn = n − o(n).
Furthermore, conditional on Mn, this subtree is distributed as BGWµ

Mn
. We conclude

from (2.1) that its associated rescaled Łukasiewicz path (B−1Mn
WbMnsc(τn), s ∈ [0, 1]) con-

verges in distribution towards to (Xex
α (s) : s ∈ [0, 1]) as n → ∞. Since all the other

subtrees have total size o(n) with high probability, their contribution does not affect the
limit by standard properties of the Skorokhod topology, and the claim follows.
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Remark 5.9. As in [30, Section 3.4], under the assumptions of Theorem 5.4, we have in
fact the joint convergence in distribution of the rescaled Łukasiewicz path, the height
process and the contour process of the trees to (Xex

α , H
ex
α , H

ex
α ). Indeed, more than (2.1),

Duquesne [16] obtained this convergence for (non-modified) conditioned Bienaymé–
Galton–Watson trees and the above argument extends verbatim. A consequence is for
example that the height of the shape of Θn is of order n/Bn, which was crucial for the
proof of Theorem 1.1.

5.3 Application to degree-constrained noncrossing trees

Our goal is now to prove Theorem 1.4. Recall that NCA
n is the set of all noncrossing

trees having n vertices and with degrees only belonging to A ⊂ N. Recall also from
Section 2 the notation C(τ) for a plane tree τ and the bijection Φn between NCn and
Tdec
n . We first introduce some notation. Denote by TA

n the set of all plane trees having n
vertices and with degrees only belonging to A and set TA,dec

n = {(τ, c) ∈ Tdec
n : τ ∈ TA

n }.
It is clear that Φn also yields a bijection between NCA

n and TA,dec
n .

Proof of Theorem 1.4. It is clear that A 6= {1}, otherwise NCA
n = ∅ for every n ≥ 2. We

first construct a uniform element of NCA
n as follows. Set w(k) = 1k∈A. Recalling the

definition of Ψ in (5.3), we have

Ψ(1) =

∑
k∈A,k>1(k − 1)k

1 +
∑
k∈A,k>1 k

.

Then note that ∑
k∈A,k>1

(k − 1)k −
∑

k∈A,k>1

k =
∑

k∈A,k>1

k(k − 2) > 1,

since A 6= {1, 2}. As a consequence, there exists b ∈ (0, 1) such that (1.2) holds, and we
can consider the probability measures µA and µA

∅ given by Theorem 5.1. More precisely,

µA(k) = a(k + 1)bk1k+1∈A, µA
∅(k) = cbk1k∈A,

with a = (
∑
i+1∈A(i + 1)bi)−1 and c = (

∑
i∈A b

i)−1. Let Tn having the law BGW
µA
∅,µ

A

n

and conditionally given Tn, let C(Tn) be a uniform element of C(Tn). Finally, set ΘA
n =

Φ−1n ((Tn,C(Tn))). Then ΘA
n is uniformly distributed in NCA

n . Indeed, this simply follows
from the fact that Φn is a bijection between NCA

n and TA,dec
n and that Tn is uniformly

distributed on TA
n by Theorem 5.1.

Now fix τ ∈ TA
n and c ∈ C(τ). By the previous discussion, we have

1

#NCA
n

= P ((Tn,C(Tn)) = (τ, c))

= P (Tn = τ) · 1

#C(τ)

=
BGWµA

∅,µ
A

(T = τ)

BGWµA
∅,µ

A

(|T| = n)
· 1∏

u∈τ\{∅}(ku + 1)
.

However, by definition,

BGWµA
∅,µ

A

(T = τ) = cbk∅ ·
∏

u∈τ\{∅}

a(ku + 1)bku = c · (ab)n−1 ·
∏

u∈τ\{∅}

(ku + 1).

As a consequence #NCA
n = c−1 · (ab)−(n−1) · BGWµA

∅,µ
A

(|T| = n). Since µA has finite
variance, say, σ2

A, an adaptation of Lemma 5.7 (i) to the possibly periodic case yields

BGWµ∅,µ(|T| = n) ∼
n→∞

gcd(A− 1) · 1√
4π
·

∑
k≥1

kµ∅(k)

 · 1

n · σA
√
n/2

,
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where n is chosen so that n ≡ 2 (mod gcd(A− 1)). Hence

#NCA
n ∼

n→∞
gcd(A− 1)

1√
2πσ2

A

·

∑
k≥1

kµA
∅(k)

 · 1

c
· (ab)−(n−1) · n−3/2.

The conclusion follows by definition of a and c.

6 Iterating laminations, ad libitum

Recall that in Section 3.3, we have constructed a triangulation L(Xex
α , `) from the

stable lamination L(Xex
α ) by triangulating each face. In the last part of this paper, we

propose other ways to fill-in the faces of stable laminations.
The study of multiple iterated real-valued processes has been triggered by the work

of Curien & Konstantopoulos [8], which were motivated by the iteration of two Brownian
motions considered by Burdzy [6]. Casse & Marckert [7] recently studied the iteration of
reflected Brownian motion as well as the iteration of stable processes. Here we propose
to iterate laminations, in a sense that will be made precise in the following lines.

Definition 6.1. Let V be a face of a lamination of D. If V is a triangle, we say that V is
decorated by convention. Otherwise, a decoration of V is an order preserving surjection
φV : S1 → ∂V ∩ S1. Intuitively, we can view φV as an inverse of the evolution of the
“number” of vertices belonging to ∂V ∩S1 as one goes around S1. A decorated lamination
is by definition a lamination with a decoration associated with every face.

Let (V, φV ) be a decorated face and L be a lamination of D. If F is a face of L, set

VF =
⋃

[u,v]∈∂F

[φV (u), φV (v)]

and then
V (L) = V ∪

⋃
F face of L

VF ,

which is a lamination such that every face of V (L) is the “interior” of VF for some face F
of L. In addition, if L is a decorated lamination of D, V (L) can be seen as a decorated
lamination by setting φVF = φV ◦ φF for every decorated face (F, φF ) of L.

Now let L0 be a decorated lamination, and let L = (LV )V face of L0 be a collection of
laminations indexed by the faces of L0. Then set

L ◦ L0 =
⋃

V face of L0

V (LV ).

It is possible to check that L ◦ L0 is a lamination. Intuitively, it is obtained from L0 by
inserting the lamination LV inside each face V of L0. In addition, if L = (LV )V face of L0 is
a collection of decorated laminations, then L ◦ L0 is a decorated lamination.

An important example is the α-stable lamination L(Xex
α ), which can be seen as a

decorated lamination: if α ∈ (1, 2) and if u is a jump time of Xex
α , the bijection pu defined

by (3.3) is a decoration of the face coded by u (with the usual identification of S1 with
[0, 1]). It is actually possible to check that given a stable lamination Lα, we can recover
the decorations pu in a measurable way up to scaling factors by using approximations of
local times, but we do not enter into the details since we do not require this fact.

Definition 6.2. Fix n ≥ 1 and let α1, . . . , αn−1 ∈ (1, 2) and αn ∈ (1, 2]. Set α =

(α1, . . . , αn). Then Lα is the random decorated lamination defined recursively as follows.
First, L(α1) is just the α1-stable lamination (which is a decorated lamination as seen
above). Next, conditionally given L(α1,...,αn−1), let Lαn = (LFαn)F face of L(α1,...,αn−1)

be a

EJP 21 (2016), paper 11.
Page 28/31

ejp.ejpecp.org

http://dx.doi.org/10.1214/16-EJP4559
http://ejp.ejpecp.org/


Triangulating stable laminations

collection of independent αn stable laminations indexed by the faces of L(α1,...,αn−1),
which we view as decorated as explained above. Then set

L(α1,...,αn−1,αn) = Lαn ◦ L(α1,...,αn−1).

Intuitively, L(α1,...,αn−1,αn) is obtained from L(α1,...,αn−1) by inserting independent αn-
stable laminations inside every face of L(α1,...,αn−1).

Note that the lamination L(α1,...,αn) is maximal if and only if αn = 2. We believe that
the Hausdorff dimension dim(L(α1,...,αn)) is almost surely equal to

max

(
2− 1

α1
, 1 +

1

α1

(
1− 1

α2

)
, . . . , 1 +

1

α1α2 · · ·αn−1

(
1− 1

αn

))
. (6.1)

Indeed, the decorations of the faces of L(α1,...,αk) are closely related to the iteration of
stable subordinators of indices 1/α1, 1/α2, . . . , 1/αk, and one should be able to adapt
[26, Section 5] to show that the the boundaries of the faces of L(α1,...,αk) restricted to S1

have Hausdorff dimension (α1 · · ·αk)−1, so that L(α1,...,αk) \ L(α1,...,αk−1) has Hausdorff

dimension 1 + 1
α1α2···αk−1

(
1− 1

αk

)
. However, we have not worked out the details.

Question 6.3. If α 6= α′, is it true that the laws of Lα and Lα′ are singular with respect
to each other?

If (α1, α2) 6= (α′1, α
′
2), assuming that (6.1) holds, one can check that dim(L(α1,α2)) 6=

dim(L(α1,α2)). However, still assuming that (6.1) is true, we have dim(L(1.1,1.2,2)) =

dim(L(1.2,1.1,2)). Another direction would be to find out what happens to L(α1,...,αn) as
n→∞.

We believe that L(α1,...,αn) is the scaling limit of a modified version of random dissec-
tions considered in [26]: instead of just choosing a random dissection of a large polygon
according to critical Boltzmann weights in the domain of attraction of a stable law, first
sample a random dissection with such Boltzmann weights in the domain of attraction of
an α1-stable law, then inside each face of the dissection independently sample again a
random dissection with Boltzmann weights in the domain of attraction of an α2-stable law,
and so on. Similarly, as in [27], one can consider a random noncrossing partition with
Boltzmann weights in the domain of attraction of an α1-stable law, then partition each
block independently at random using a noncrossing partition with Boltzmann weights in
the domain of attraction of an α2-stable law, and so on.

Question 6.4. In a certain sense, the α-stable random lamination can be seen as the
dual of the α-stable tree. As was suggested to us by Nicolas Curien, iterating stable
laminations can be alternatively seen as iterating stable trees. Roughly speaking, start
with a stable tree of index α1, and then “explode” each branch point by gluing inside a
stable tree of index α2, and so on. What is the Hausdorff dimension of the random tree
constructed in this way? What happens as the number of iterations tends to infinity? We
hope to investigate this in a future work.

Note that if one starts with a stable tree and explodes each branch point by simply
gluing inside a “loop”, one gets the so-called stable looptrees which were introduced and
studied in [10]. More generally, one can imagine exploding branchpoints in stable trees
and glue inside any compact metric space equipped with a homeomorphism with [0, 1].
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