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Abstract
We construct a coupling between two seemingly very

different constructions of the standard additive coalescent,

which describes the evolution of masses merging pairwise

at rates proportional to their sums. The first construc-

tion, due to Aldous and Pitman, involves the components

obtained by logging the Brownian continuum random tree

(CRT) by a Poissonian rain on its skeleton as time increases.

The second one, due to Bertoin, involves the excursions

above its running infimum of a linear-drifted standard

Brownian excursion as its drift decreases. Our main tool is

the use of an exploration algorithm of the so-called cut-tree

of the Brownian CRT, which is a tree that encodes the

genealogy of the fragmentation of the CRT.
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1 INTRODUCTION

1.1 Cutting down trees

Starting with a rooted tree, a natural logging operation consists in choosing and removing one of its

edges uniformly at random, thus splitting the tree into two connected components. Iterating and remov-

ing edges one after another, one obtains a fragmentation process of this tree. This model was introduced

by Meir and Moon [31, 32] for random Cayley and recursive trees. They focused on the connected

component containing the root, and investigated the number of cuts needed to isolate it. Since then,
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this subject has brought considerable interest for a number of classical models of deterministic and

random trees, including random binary search trees [25, 26], random recursive trees [8, 12, 21, 27]

and Bienaymé–Galton–Watson trees conditioned on the total progeny [1, 11, 13, 24, 28, 34].

It is remarkable that the so-called standard additive coalescent, which describes the evolution of

masses merging pairwise at rates proportional to their sums, can be defined (after time-reversal) using

a continuous analogue of the cutting procedure on discrete trees.

1.2 The Aldous–Pitman construction

The Aldous–Pitman fragmentation, introduced in [6], describes the evolution of the masses of the

connected components of a Brownian CRT  cut according to a Poissonian rain  of intensity d𝜆⊗dt
on Sk( ) ×R+, where dt is the Lebesgue measure on R+ and 𝜆 is the length measure on the skeleton

Sk( ) on  (see Section 2.1 for precise definitions). We set, for every t ≥ 0,

t ∶= {c ∈ Sk( ),∃ s ∈ [0, t], (c, s) ∈ }.

Then, for every t ≥ 0, we define XAP(t) to be the sequence of 𝜇-masses of the connected components

of  ⧵t, sorted in nonincreasing order, where 𝜇 is the so-called mass measure on  . Then (XAP(t))t≥0

is a fragmentation process with explicit characteristics (see [6] and more generally the book [10] for a

general theory of stochastic coalescence and fragmentation processes, as well as examples and motiva-

tion). Up to time-reversal, XAP is closely related to the well-known standard additive coalescent [6, 22].

It is also interesting to mention that very recently XAP has naturally appeared in the study of random

uniform factorizations of large permutations into products of transpositions [23, 36].

1.3 The Bertoin construction

Bertoin [9] gave another construction of this fragmentation process from a drifted standard Brownian

excursion the following way. Let 𝕖 be a standard Brownian excursion on [0, 1]. For every t ≥ 0, consider

the function ft ∶ [0, 1] → R defined by ft(s) = 𝕖s − ts for s ∈ [0, 1] and denote by XB(t) the sequence

of lengths of the excursions of ft above its running infimum, sorted in nonincreasing order. Bertoin [9]

proves that this process has the same distribution as the Aldous–Pitman fragmentation of a Brownian

CRT (normalized so that it is coded by 2𝕖), that is, that XB and XAP have the the same distribution.

It may be puzzling that these two constructions define the same object, since the Aldous–Pitman

representation involves two independent levels of randomness (the CRT and the Poissonian rain), while

the Bertoin representation only involves a Brownian excursion. For the analog representations in the

discrete framework of finite trees, several connections have been recently discovered. We present them

just after the statement of Theorem 1.1, which is our main contribution: in the continuous framework,

we unify these two constructions and explain why they are actually intimately related.

1.4 Coupling the two constructions

Our main result consists in coupling XB and XAP.

Theorem 1.1. The following assertions hold.

(i) Let  be a Brownian CRT equipped with the Poissonian rain  . On the same prob-
ability space, there is a function F( ,), measurable with respect to ( ,), having
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KORTCHEMSKI and THÉVENIN 19

the law of the Brownian excursion and such that almost surely, for every t ≥ 0, the
nonincreasing rearrangement of the masses of the connected components of  ⧵ t
is the same as the nonincreasing rearrangement of the lengths of the excursions of
(F( ,)(s) − ts)0≤s≤1 above its running infimum.

(ii) Conversely, given a Brownian excursion 𝕖 and an independent sequence of i.i.d. uni-
form random variables on [0, 1], on the same probability space there is a Brownian
CRT  equipped with a Poissonian rain  (which are measurable with respect to 𝕖
and the latter sequence) such that almost surely F( ,) = 𝕖.

Some comments are in order. In (i), the construction of F( ,) from ( ,) is explicit using the

so-called “Pac-man algorithm,” which we briefly describe below. In (ii), unlike (i), 𝕖 alone is not

enough to build ( ,): an additional independent source of randomness is needed (see Section 4 for

details).

Let us first give some underlying intuition. In the discrete world of finite trees, it turns out that there

is a beautiful explicit exact relation, due to Broutin and Marckert [15], between masses of components

obtained after removing edges one after the other, and lengths of excursions above its running infimum

of a certain function. The idea is to use the so-called Prim order to explore an edge-labeled tree. Let

us explain this in more detail.

Consider a rooted tree Tn with n vertices, whose edges are labeled from 1 to n − 1. Its vertices

u1, … , un listed in Prim order are defined as follows: u1 is the root of the tree and, for every i ∈
⟦1, n− 1⟧, ui+1 is the vertex, among all children of a vertex of {uj, j ≤ i}, whose edge to its parent has

minimum label.

Let Tn be a Cayley tree with n vertices (that is, a tree with n vertices labeled from 1 to n, rooted at 1),

whose edges are labeled from 1 to n − 1 uniformly at random conditionally on Tn. Let (ui)1≤i≤n be the

vertices of Tn sorted according to the Prim order. For every 1 ≤ i ≤ n and 1 ≤ k ≤ n − 1, let Xi(k) be

the number of children of ui in the forest Fn(k) obtained by deleting all edges with labels belonging to

⟦n − k, n − 1⟧. Finally, set Sx(k) ∶=
∑⌊xn⌋

i=1
(Xi(k) − 1) for every 0 ≤ x ≤ 1 (which is called the Prim

path of the forest explored in Prim order). Then Broutin and Marckert [15] establish that:

– the lengths of excursions of (Sx(k))0≤x≤1 above its running infimum are equal to the sizes of the

connected components of Fn(k) (see Figure 1);

– the following convergence holds in D(R+,D([0, 1],R)):
(
(Sx(⌊tn⌋))x∈[0,1]

√
n

)

t≥0

(𝑑)
−−−→
n→∞

(
(𝕖x − tx)x∈[0,1]

)

t≥0
,

where, for I ⊂ R ∪ {±∞} an interval and E a metric space, D(I,E) denotes the space of càdlàg

functions from I to E endowed with the J1 Skorokhod topology (we refer to Annex A2 in [29]

for further definitions and details).

Using the fact that the Aldous–Pitman fragmentation is the continuum analog of this discrete log-

ging procedure, this gives another proof of the fact that XB and XAP have the same distribution. This

also indicates that if one couples XB and XAP, then the Brownian excursion appearing in the definition

of XB should represent, in a certain sense, the encoding of the exploration of a Brownian CRT equipped

with a Poissonian rain using an associated Prim order.

Also, still in the discrete world of finite trees, Marckert and Wang [30] couple a uniform Cayley

tree with n vertices and edges labeled from 1 to n − 1 uniformly at random with a uniform Cayley

tree equipped with an independent uniform decreasing edge-labeling (i.e., labels decrease along paths

 10982418, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21206 by C

ochrane France, W
iley O

nline L
ibrary on [16/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 KORTCHEMSKI and THÉVENIN

FIGURE 1 Left: an edge-labeled plane tree. Middle: The forest obtained by labeling the vertices in Prim order and removing

the six edges with largest labels. Right: The Prim path of the forest explored using the Prim order.

directed from the root towards the leaves) in such a way that edge removals give the same sizes of

connected components. A connection with discrete cut-trees is also given (see [30, Section 3]). Indeed,

it turns out that this second tree is closely related to the cut-tree of the first one, which allows Marckert

and Wang to give a nice simple proof of the well-known fact that the number of cuts needed to iso-

late a uniform vertex in a uniform Cayley tree, scaled by
√

n, converges in distribution to a Rayleigh

random variable (see also [30] for other connections between the standard additive coalescent and

other combinatorial and probabilistic models such as size biased percolation and parking schemes

in a tree).

However, how to make such statements precise in the realm of continuous trees remains unclear.

For this reason, we use a different route to define a coupling between XB and XAP. The main tool in

the proof of Theorem 1.1 is the use of the so-called cut-tree , defined by Bertoin and Miermont in

[13], which roughly speaking encodes the genealogy of the fragmentation of a Brownian CRT by a

Poissonian rain. Indeed, one of our contributions is to use the cut-tree to define the “Bertoin” excursion

F( ,) from the Aldous–Pitman fragmentation by using an algorithm which we call the “Pac-Man”

algorithm, roughly described as follows (see Section 3.1 for a precise definition). With every value

h ∈ [0, 1], using a local exploration procedure, we associate a final target point of . Then the value

F( ,)(h) is defined using the genealogy of this exploration. Strictly speaking, the cut-tree  is defined

from ( ,) by using additional randomness (namely a collection of independent i.i.d. points sampled

according to the mass measure). However, the quantity F( ,) can be directly defined as a measurable

function of ( ,)without any reference to the cut-tree, which still serves as a useful tool to check that

F( ,) satisfies the desired properties (see Section 3.5 for details).

Conversely, given the “Bertoin” excursion, we will also see that coupling XB and XAP is closely

related to the question of reconstruction of the original CRT from its cut-tree (see Section 4 for more

details).

Quite interestingly it seems that, while there is no simple analog of the coupling between drifted

excursions and sizes of connected components using Prim’s order in the continuous framework, there is

no simple analog of the coupling between drifted excursions and sizes of connected components using

the cut-tree in the discrete framework. Indeed, in Marckert and Wang’s coupling, given the Cayley

tree, the decreasing edge labeling is random, while in the continuous framework, given the cut-tree,

its labeling is deterministic; see Remark 3.3. In particular, new ideas and techniques are required to

analyze the continuous framework.

Finally, let us mention that the question of reconstructing the Brownian CRT from the “Bertoin”

excursion appears in an independent work by Nicolas Broutin and Jean-François Marckert [16] in the

different context of the study of scaling limits of minimal spanning trees on complete graphs.
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KORTCHEMSKI and THÉVENIN 21

1.5 Perspectives

There has been some recent developments in studying analogs of the Aldous–Pitman fragmentation

for different classes of trees and their associated cut-trees, see [2, 14, 17, 20, 33]. In particular, it has

been shown that by an appropriate tuning (fragmentation along the skeleton and/or at nodes), the law

of the cut-tree is equal to the law of the original tree.

We expect that our coupling can be extended to more general classes of trees, with fragmentation

on the skeleton only, such as stable trees (the study of this fragmentation is mentioned in [2, Section

5, (6)]). Indeed, for stable trees, it is known [33] that the analog of Aldous–Pitman fragmentation

can be obtained using the normalized excursion of a stable process. One of the main issues is that in

this case the associated cut-tree is not compact anymore; hence, our main argument, which consists

in comparing distances in this cut-tree, does not apply directly. Furthermore, new results (see [37])

suggest strong connections between the so-called ICRT (inhomogeneous continuum random trees) and

stable trees. Thus similar techniques could work in both cases, and it is plausible that analog couplings

exist. We plan to investigate this in future work.

1.6 Overview of the article

Section 2 is devoted to the definition of our main tool, the cut-tree associated to the fragmenta-

tion of the Brownian CRT; we also prove there some preliminary structural results on this object.

In Section 3, we prove the first part of our main result, Theorem 1.1, with the help of our so-called

Pac-Man algorithm. Finally, we prove Theorem 1.1 (ii) in Section 4, essentially making use of results

from [2].

2 THE CUT-TREE OF THE BROWNIAN CRT

An important object in our study is the cut-tree of a Brownian CRT, which roughly speaking encodes

the genealogy of its fragmentation by a Poissonian rain. We recall here its construction and main

properties, and refer to [2, 13] for details and proofs.

2.1 Definitions

Let us first introduce some definitions and notation for trees.

2.1.1 Real trees

We say that a complete metric space (T , 𝑑) is a real tree if, for every u, v ∈ T:

• there exists a unique isometry fu,v ∶ [0, 𝑑(u, v)]→ T such that fu,v(0) = u and fu,v(𝑑(u, v)) = v;

• for any continuous injective map f ∶ [0, 1] → T such that f (0) = u and f (1) = v, we have

f ([0, 1]) = fu,v([0, 𝑑(u, v)]) =∶ ⟦u, v⟧.

A rooted real tree is a real tree with a distinguished vertex, called the root.

2.1.2 Tree structure

Let  be a real tree. We say that a point x ∈  is a leaf if  ⧵ {x} is connected, and a branchpoint if

 ⧵ {x} has at least three connected components. We denote by ( ) the set of all branchpoints of the

tree  and by ∅ the root of  .
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22 KORTCHEMSKI and THÉVENIN

We let Sk( ) be the skeleton of  , that is, the set of all points of  that are not leaves nor

branchpoints. We emphasize that this definition differs from the usual one, where the skeleton is

defined as the complement of the set of leaves. The reason is that in the sequel of the article, we usually

need to treat differently leaves, branchpoints, and non-branchpoints which are not leaves.

We denote by x the tree which is the set of all (weak) descendents of x in  , rooted at x. If the tree

 is binary (that is, for all x ∈  ,  ⧵ {x} has at most three connected components, and  ⧵ {∅} has

at most two), when x is an ancestor of y, we denote by 
y

x the subtree above x containing y, rooted at

x and by 
y
x the subtree above x not containing y, rooted at x (which is unique if it exists).

Furthermore, for any two vertices x, y ∈  , we write x ≺ y when x is an ancestor of y, and x ≺ y
when x ≺ y and x ≠ y. In particular ∅ ≺ x for every x ∈  and ≺ is a partial order on  called the

genealogical order.

Finally, for x, y ∈  , we denote by x ∧ y their closest common ancestor, that is, the unique z ∈ 
satisfying ⟦∅, x⟧ ∩ ⟦∅, y⟧ = ⟦∅, z⟧.

2.1.3 Brownian excursion and Brownian tree

The Brownian CRT, introduced by Aldous [3–5], is a random real tree constructed from twice a stan-

dard Brownian excursion 𝕖 ∶ [0, 1] → R+ the following way. The function 2𝕖 induces an equivalence

relation∼2𝕖 on [0, 1]: define a pseudo-distance 𝑑 on [0, 1] by setting 𝑑(u, v) = 2𝕖u+2𝕖v−2 min[u,v] 2𝕖,

and say that, for all 0 ≤ u, v ≤ 1, u ∼2𝕖 v if and only if 𝑑(u, v) = 0. Define now  ∶= [0, 1]∕ ∼2𝕖,

endowed with the distance which is the projection of 𝑑 on the quotient space (which we also denote

by 𝑑 by convenience). It is standard that ( , 𝑑) is a real tree, called the Brownian CRT.

2.1.4 Length and mass measures

For any real tree (T , 𝑑), observe that the distance 𝑑 on T induces a length measure 𝜆 on Sk(T), defined

as the only 𝜎-finite measure such that 𝜆(⟦u, v⟧) = 𝑑(u, v) for all u, v ∈ T . In the case of the Brownian

CRT ( , 𝑑), we can furthermore endow it with a mass measure 𝜇, which is the pushforward of the

Lebesgue measure on [0, 1] by the quotient map [0, 1] → [0, 1]∕ ∼2𝕖. Roughly speaking, 𝜇 accounts

for the proportion of leaves in a given component of  .

2.2 Construction of the Brownian cut-tree

We first need some notation. Let  be a Brownian CRT, 𝜇 its mass measure and let  be a Poissonian

rain of intensity d𝜆⊗dt, where 𝜆 denotes the length measure on Sk( ) and dt is the Lebesgue measure

on R+. For every t ≥ 0, we set

t ∶= {c ∈ Sk( ),∃ s ∈ [0, t], (c, s) ∈ }.

The elements of ∞ ∶= ∪t≥0t are called cutpoints. For every t ≥ 0 and x ∈  , we denote by t(x)
the connected component of  ⧵ t containing x and 𝜇t(x) = 𝜇(t(x)) its 𝜇-mass. If x ∈ t, we set

t(x) = ∅ and 𝜇t(x) = 0.

Let U0 = ∅ be the root of  , and let (Ui)i≥1 be a sequence of i.i.d. leaves of  sampled according

to the mass measure 𝜇, independently of  . For every i, j ∈ Z+, we let ti,j ∶= inf{t ≥ 0, t(Ui) ≠
t(Uj)} be the first time a cutpoint appears on ⟦Ui,Uj⟧. Then by [2, 13] there exists almost surely a

metric space C ◦ ∶= (C ◦
, 𝑑

◦
, 𝜌) containing the set {𝜌} ∪ Z+ such that C ◦ =

⋃
i∈Z+

⟦𝜌, i⟧ and for

every i, j ∈ Z+,
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KORTCHEMSKI and THÉVENIN 23

𝑑
◦ (𝜌, i) =

∫

∞

0

𝜇s(Ui) ds and 𝑑
◦ (i, j) =

∫

∞

ti,j

(
𝜇s(Ui) + 𝜇s(Uj)

)
ds.

We denote by  ∶= (, 𝑑 , 𝜌) the completion of this metric space, which is a real tree called the

cut-tree. The sequence (i)i≥1 is dense in , and in particular every branchpoint of  can be written (non

uniquely) as i ∧ j with i, j ≥ 1. We also endow the set of leaves of  with the measure 𝜈 defined as:

𝜈 = lim
n→∞

1

n

n∑

i=1

𝛿i. (1)

For a measurable subset ⊂  with 𝜈() > 0 we use the notation 𝜈 for the probability measure on

 defined by 𝜈(B) = 𝜈( ∩ B)∕𝜈().
The main result of [13] is the following:

Theorem 2.1 (Bertoin and Miermont [13]). The cut-tree of the Brownian CRT has the
law of a Brownian CRT:


(𝑑)
=  .

The cut-tree  encodes the genealogical structure, as time increases, of the cuts of the subtrees

which contain the points (Ui)i≥0, in such a way that branchpoints of  are in correspondence with ∞.

Let us make this more explicit.

Informally speaking, for every i, j ∈ Z+, the branchpoint i∧j of  encodes the (a.s. unique) cutpoint

appearing on ⟦Ui,Uj⟧ at time ti,j. The subtree of  above i ∧ j containing i (resp. j) is then the cut-tree

of the subtree of  ⧵ ti,j containing Ui (resp. Uj).

The measures 𝜇 on  and 𝜈 on  are related in the following way (see [2, Proposition 7]):

𝜇(ti,j (Ui)) = 𝜈( i
i∧j), 𝜇(ti,j (Uj)) = 𝜈( j

i∧j). (2)

In particular, using the fact that  is binary, since ti,j−(Ui) = ti,j−(Uj) = ti,j (Ui) ∪ ti,j (Uj) ∪ {i ∧ j},
we have 𝜇(ti,j−(Ui)) = 𝜈(i∧j).

The leaf 0 ∈  will play a distinguished role in the sequel. In the terminology of [2, Section

3.3], it can be seen as the “image” in  of the root ∅ of  in the following sense: if (Uin )n≥1 is a

sequence converging to∅, then in converges to 0 (this is shown in [2, Section 3.3]). Similarly, for every

branchpoint x of , each of the two subtrees grafted on x comes with a distinguished leaf. Indeed,

consider x ≺ y two points of  with x a branchpoint. Recall that 
y
x denotes the subtree above x

containing y, rooted at x and 
y
x the subtree above x not containing y, rooted at x. Intuitively speak-

ing, Λ(y
x ) is the image of x obtained by considering the Poissonian rain in the the subtree 

y
x rooted

at x, and Λ(y
x) is the image of x obtained by considering the Poissonian rain in the the subtree 

y
x

rooted at x.

More formally, we may find i, j ≥ 1 such that x = i ∧ j, i ∈ y
x and j ∈ y

x. Let c ∈ ⟦Ui,Uj⟧ be the

cutpoint appearing at time ti,j. Consider a sequence (Uin )n≥1 of elements of ti,j(Ui) converging to c and a

sequence (Ujn )n≥1 of elements of ti,j(Uj) converging to c. Then by [2, Section 3.3] the sequence (in)n≥1

converges in 
y
x to a leaf denoted by Λ(y

x ) (which does not depend on the sequence (Uin )n≥1), and the

sequence (jn)n≥1 converges in 
y
x to a leaf denoted by Λ(y

x) (which does not depend on the sequence

(Ujn)n≥1). To see that the limiting points have to be leaves, simply observe that tin,in+1
→

n→∞
+∞, so that
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24 KORTCHEMSKI and THÉVENIN

𝜈

(


in
in∧in+1

)
= 𝜇tin ,in+1

(
Uin

)
→

n→∞
0.

Finally, setting for every x ∈ :

𝜏x =
∫⟦𝜌,x⟧

1

𝜈(z)
𝜆(dz), (3)

we have ti,j = 𝜏i∧j (see e.g., the end of the proof of Theorem 16 in [2]). In other words, the times

at which cutpoints appear can be recovered from the cut-tree. Observe that 𝜏 is increasing along any

branch of .

We end this section with a result which tells how to find the connected components of  ⧵t using

the cut-tree.

Lemma 2.2. Fix t > 0. The connected components of  ⧵ t are in bijection with the
subtrees of  of the form y

x , with x, y ∈  satisfying 𝜏x = t and x ≺ y. Furthermore, this
bijection conserves the masses.

Proof. Let C be a connected component of  ⧵t, and let xC ∈  be the most recent com-

mon ancestor of the leaves C ∶= {i ∈ Z+ ∶ Ui ∈ C}. Notice that xC is not necessarily

a branchpoint (indeed xC belongs to the skeleton when the component C is the same at

times t and t−).

First let us show that 𝜏xC = t. Since  is a CRT, almost surely there exists a sequence

of branchpoints of the form in ∧ jn converging to x with in, jn ∈ C. For all n, since Uin
and Ujn are in the same connected component of  ⧵ t it follows that 𝜏in∧jn ≥ t for every

n ≥ 1. Since z → 𝜏z is continuous, we obtain that 𝜏xC ≥ t. Now assume by contradiction

that 𝜏xC > t. Then, again by continuity of z → 𝜏z and since  is a CRT, there exists a

branchpoint b such that b ≺ xC and 𝜏b > t. Now take two leaves j ∈ xC
b and i ∈ C. We

have i ∧ j = b and thus ti,j = 𝜏b > t, so that j ∈ C. This contradicts the definition of xC.

Hence, 𝜏xC = t.
Now take i ∈ C and set

Φ(C) =  i
xC .

Let us check that Φ is well defined by showing that for i, j ∈ C we have  i
xC = 

j
xC . To

this end, observe that by definition xC ≺ i ∧ j, and argue by contradiction assuming that

i ∧ j = xC. Then ti,j = 𝜏xC = t, so that Ui and Uj do not belong to the same connected

component of  ⧵t. Hence, i and j cannot be both in C, which leads to a contradiction.

Finally, let us establish thatΦ is bijective. To this end, we exhibit the reverse bijection.

Consider a subtree of  of the form 
y
x , with x ∈  satisfying 𝜏x = t and x ≺ y. Consider

i ∈ Z+ such that i ∈ y
x and denote by C the connected component of  ⧵ t containing

Ui. We set

Ψ(y
x ) = C.

The map Ψ is well defined since, if i, j ∈ y
x then ti,j > 𝜏x = t so that the connected

component of  ⧵ t containing Ui also contains Uj.

Now, if C is a connected component of  ⧵t, then Ψ ◦Φ(C) = C. Indeed, let i ∈ Z+
be such that Ui ∈ C. By definition of Φ, i ∈ Φ(C). In turn by definition of Ψ, Ψ ◦Φ(C) is

the connected component of  ⧵ t containing Ui, which is precisely C.
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KORTCHEMSKI and THÉVENIN 25

Conversely, consider a subtree of  of the form 
y
x , with x ∈  satisfying 𝜏x = t and

x ≺ y. We check that Φ ◦Ψ(y
x ) = y

x . Let i ∈ Z+ be such that i ∈ y
x . Then C = Ψ(y

x ) is

the connected component of  ⧵t containing Ui. It follows thatΦ(C) =  i
xC . In particular,

x, xC ∈ ⟦𝜌, i⟧ and 𝜏x = 𝜏xC = t. Since 𝜏 is increasing on ⟦∅, i⟧, it follows that x = xC, and

thus 
y
x =  i

xC . This completes the proof.

The fact that this bijection conserves the masses is a consequence of the fact that

Φ(C) = ∪i∶Ui∈C⟦xC, i⟧ for every connected component C of  ⧵ t and that 𝜈 =
limn→∞

1

n

∑n
i=1
𝛿i and 𝜇 = limn→∞

1

n

∑n
i=1
𝛿Ui . ▪

Recall that our main result, Theorem 1.1, consists in coupling both processes XAP and XB. First in

Section 3 we start from the Aldous–Pitman fragmentation on a CRT and we construct an excursion-type

function, which we show to be continuous and to be equal in law to a Brownian excursion, thus proving

Theorem 1.1 (i). Then in Section 4 we explain how to recover the Brownian CRT with its Poissonian

rain from the “Bertoin excursion,” proving Theorem 1.1 (ii).

3 DEFINING THE “BERTOIN” EXCURSION FROM THE
ALDOUS–PITMAN FRAGMENTATION

Here we start from a Brownian CRT  equipped with a Poissonian rain  , and using the the cut-tree

 of  we construct a function F having the law of a Brownian excursion, in such a way that, for all

t ≥ 0, the nonincreasing rearrangement of the masses of the connected components of  ⧵ t are the

same as the nonincreasing rearrangement of the lengths of the excursions of (F(s) − ts)0≤s≤1 above its

running infimum.

The algorithm used to construct the function F, which we call the Pac-Man algorithm and which

we define in Section 3.1, consists in exploring the cut-tree  from its root 𝜌, associating with each

element h ∈ [0, 1] a final target point 𝜋h in  in a surjective way, and a value F(h). We then investigate

the properties of this function F, showing that it is continuous (Section 3.2) and that it has the law of

a Brownian excursion (Section 3.4).

3.1 Defining an excursion-type function from the Aldous–Pitman representation

We keep the notation of Section 2.2. Here we shall construct an excursion-type function F from a

Brownian CRT  equipped with a Poissonian rain  which will turn out to meet the requirements of

Theorem 1.1 (i). To this end, we shall use the Brownian cut-tree  associated with  as defined in

Section 2.

With every value h ∈ [0, 1] we shall associate one point 𝜋h of  using a recursive procedure. It

can be informally presented as follows. Imagine Pac-Man starting at the root of  and wanting to eat

exactly an amount h of mass. It has an initial target leaf 𝓁, and starts going towards this target. As

soon as it encounters a point x such that the subtree 𝓁x containing the target leaf has mass at most

h, Pac-Man eats this subtree; if this mass was strictly less than h, then it turns out that this point was

necessarily a branchpoint, and Pac-Man continues his journey in the remaining subtree equipped with

a new target. Pac-Man stops when it has eaten an amount h of mass, and we denote by 𝜋h the ending

point of the process.

Given a tree T = (T , r, 𝜈) with root r and mass measure 𝜈, a distinguished leaf 𝓁 and a value

0 ≤ h ≤ 𝜈(T), we set
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26 KORTCHEMSKI and THÉVENIN

B(T ,𝓁, h) = inf
{

x ∈ ⟦r,𝓁⟧ ∶ 𝜈
(
T𝓁x

)
≤ h

}
.

Observe that B(T ,𝓁, 0) = 𝓁, B(T ,𝓁, 𝜈(T)) = r and that for 0 < h < 𝜈(T), if B(T ,𝓁, h) is a point of the

skeleton of T , then necessarily 𝜈(T𝓁B(T ,𝓁,h)) = h.

3.1.1 Pac-Man algorithm

Given h ∈ [0, 1], we define a sequence (Bi,Li,Hi)0≤i<N+1 with N ∈ Z+ ∪ {+∞} as follows (we drop

the dependence in h to simplify notation). First, set B0 = 𝜌, L0 = 0, H0 = h. Then, by induction, if

(Bi,Li,Hi)0≤i≤k have been constructed, we set:

Bk+1 = B
(


Lk
Bk
,Lk,Hk

)
, Hk+1 = h − 𝜈

(


Lk
Bk+1

)
.

If Hk+1 = 0, we set N = k + 1 and stop, otherwise we set Lk+1 = Λ
(


Lk
Bk+1

)
and continue (see Figure 2

for an illustration). In particular, observe that h =
∑

1≤k<N+1
𝜈

(


Lk−1

Bk

)
by construction. When N < ∞,

we set 𝜋h = BN . When N = ∞, we define 𝜋h as the point which is the limit (Bi)i≥0 (we will later see

that when N = ∞ the point 𝜋h is necessarily a leaf). Observe that the limit exists by compactness,

since the sequence (Bi)i≥0 is increasing for the genealogical order.

Finally, we set

F(h) =
∑

1≤k<N+1

𝜏Bk ⋅ 𝜈
(


Lk−1

Bk

)
, (4)

where we recall from (3) the notation 𝜏x for x ∈ . In order to unify the treatment, here and in the

sequel, when N = ∞, the notation
∑

1≤i<N+1
simply means

∑∞
i=1

; similarly (⋅)1≤i<N+1 means (⋅)i≥1.

Remark 3.1. Observe that the Pac-Man algorithm is initialized with the target leaf 0,

which is the “image” of ∅ in the cut-tree . Changing the initial target leaf amounts

to rerooting the tree  , and will produce another function F (for which the assertion of

Theorem 1.1 (i) still holds).

It is rather straightforward to check that (4) defines a bounded function on [0, 1].

FIGURE 2 Two illustrations of the construction: Pac-Man’s trajectory in the cut-tree is represented in green and the eaten

subtrees in red. For example, when reaching B1, Pac-Man eats the subtree containing L0 (it is the first time the mass of the

subtree above is less than h), and continues in direction of L1. The value F(h) is obtained by summing weighted masses of the

eaten subtrees.
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KORTCHEMSKI and THÉVENIN 27

Lemma 3.2. We have suph∈[0,1] F(h) ≤ Height().

Proof. Take h ∈ [0, 1] and keep the previous notation. To simplify notation, set mk =
𝜈(Lk−1

Bk
) for 1 ≤ k < N + 1. Since Bi is an ancestor of Bj for i < j, for every 0 ≤ i < N + 1

we have

∫⟦Bi,Bi+1
⟧

1

𝜈(z)
𝜆(dz) ≤ 𝑑(Bi,Bi+1)∑

i+1≤j<N+1
mj
.

It readily follows that for every 1 ≤ k < N + 1:

𝜏Bk = ∫⟦𝜌,Bk⟧

1

𝜈(z)
𝜆(dz) ≤

k−1∑

i=0

𝑑(Bi,Bi+1)∑
i+1≤j<N+1

mj
.

Thus

F(h) ≤
∑

1≤k<N+1

mk

k−1∑

i=0

𝑑(Bi,Bi+1)∑
i+1≤j<N+1

mj
=

∑

0≤i<N+1

∑

i+1≤k<N+1

mk∑
i+1≤j<N+1

mj
𝑑(Bi,Bi+1)

=
∑

0≤i<N+1

𝑑(Bi,Bi+1),

and the desired conclusion follows. ▪

Remark 3.3. Given the rescaled convergence of discrete cut-trees to continuous cut-trees

[13], it is natural to expect that when one equips the discrete cut-trees with labels corre-

sponding to cutting times, a joint convergence holds towards  equipped with the labeling

(𝜏x)x∈ . It is interesting to notice that in the discrete case, given the cut-tree, the labeling

is random (see [30, Section 3]), while in the continuous case, given , the labeling (𝜏x)x∈
is deterministic.

3.2 Continuity of the function F

We now prove that the function F constructed this way is a.s. continuous. To this end, we rely on the

fact that  is distributed as a Brownian CRT, comparing as in Lemma 3.2 values of F with distances

in .

Proposition 3.4. Almost surely, F is continuous on [0, 1].

In order to establish the continuity of the function F, it is useful to define a “backward” construc-

tion. Fix x ∈ . We define a sequence (Bi,Li)0≤i<N+1 with N ∈ Z+ ∪ {+∞} as follows (we drop the

dependence in x to simplify notation). Set B0 = 𝜌,L0 = 0. Then, by induction, if (Bi,Li)0≤i≤k have

been constructed, we define Bk+1 by:

⟦Bk, x⟧ ∩ ⟦Bk,Lk⟧ = ⟦Bk,Bk+1⟧, Lk+1 =
⎧
⎪
⎨
⎪
⎩

Λ
(


Lk
Bk+1

)
if Bk+1 is a branchpoint

Bk+1 otherwise

If x = Bk+1 we set N = k+ 1 and stop, otherwise we continue. We say that (Bi,Li)0≤i<N+1 is the record
sequence associated with x (see Figure 3 for an illustration).
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28 KORTCHEMSKI and THÉVENIN

FIGURE 3 Illustration of the backward construction: on the left, x is a leaf and the record sequence associated with x is

infinite; in the middle, x is a branchpoint and (Bi,Li)0≤i≤3 is the associated record sequence; on the right, x belongs to the

skeleton and (Bi,Li)0≤i≤3 is the associated record sequence.

The next result characterizes points of  whose record sequence is infinite.

Lemma 3.5. When N = ∞, x is a leaf, and (Bi)i≥0 converges to x.

Proof. First, let us show that if x is not a leaf, then N < ∞. It suffices to show that N < ∞
when x is a branchpoint (this will entail that N < ∞ when x ∈ Sk() by considering a

descendent of x which is a branchpoint). To this end, recall from Section 2.2 that x can

be written as i ∧ j for some i, j ≥ 1. Let c ∈ ⟦Ui,Uj⟧ be the cutpoint appearing at time

ti,j (observe that c is the first cutpoint falling on ⟦Ui,Uj⟧). Let (cp)1≤p≤M be the cutpoints

falling on ⟦∅,Ui⟧∪ ⟦∅,Uj⟧ before time ti,j, ordered by their time of appearance (observe

that almost surely M < ∞, and that all these points fall on ⟦∅,Ui ∧Uj⟧ except for c). We

construct a subsequence (cpk )1≤k≤N of cutpoints precisely corresponding to (Bk)1≤i≤N in 

as follows. Set p1 = 1. If c = c1, we set N = 1. Otherwise, assuming that (pk)1≤k≤n has

been defined, set pn+1 = min{p > pn ∶ cpn ≺ cp}; if cpn+1
= c we set N = pn+1 and stop,

otherwise we continue. It is clear that, for all 1 ≤ k ≤ N, cpk = Bk. Furthermore, since

M < ∞, this procedure eventually stops, thus showing that N < ∞.

Next, argue by contradiction and assume that N = ∞, x is a leaf and (Bk)k≥0 converges

to a point u ∈  with u ≠ x (observe that (Bk)k≥0 always converges as it is increasing).

Since Bk ≺ x for every k ≥ 0, we have u ≺ x. Choose a branchpoint b ∈  such that

u ≺ b ≺ x. Then the record sequence associated with b has infinitely many terms, in

contradiction with the previous paragraph. ▪

When x is a branchpoint (then N < ∞), we set:

𝓁(x) = LN−1, 𝓁(x) = LN . (5)

In terms of the Pac-Man construction, these leaves can be interpreted as follows: when passing at x
during its journey, if possible, the Pac-Man eats the subtree above x containing 𝓁(x) and continues

towards 𝓁(x); otherwise it continues towards 𝓁(x).
We also define for every x ∈ :

h1(x) =
∑

1≤k<N+1

𝜈

(


Lk−1

Bk

)
. (6)
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KORTCHEMSKI and THÉVENIN 29

Then, by Lemma 3.5, for every x ∈ , if one takes h = h1(x) in the Pac-Man construction, one precisely

gets the sequence (Bk,Lk)0≤k<N+1 with 𝜋h
1
= x.

The following result is an immediate consequence of the definition:

Lemma 3.6. For every branchpoint B, h1 is decreasing on ⟦B,𝓁(B)⟧.

When x is a branchpoint, we also set

h2(x) =
∑

1≤k≤N+1

𝜈

(


Lk−1

Bk

)
; (7)

observe that if one takes h = h2(x) in the Pac-Man construction, we also get 𝜋h
2
= x (see Figure 4 for

an illustration). Also note that h2(x) = h1(x) + 𝜈(𝓁(x)x ).
Finally, we define

𝕙2 = {h2(x) ∶ x ∈ ()}, (8)

where we recall that () denotes the set of all branchpoints of , and, to simplify notation, when

x ∈  is not a leaf, we set

h0(x) =
⎧
⎪
⎨
⎪
⎩

h1(x) − 𝜈(x) if x ∈ Sk()
h1(x) − 𝜈

(

𝓁(x)
x

)
if x ∈ ().

(9)

The following result is also an immediate consequence of the definition of the Pac-Man construc-

tion, which we record for future use.

Lemma 3.7. Fix x ∈ .

– If x ∈ Sk(), then for every h ∈ (h0(x), h1(x)], the final target point 𝜋h belongs to x.

Conversely, each element of x is the final target point of an element h ∈ (h0(x), h1(x)].
– If x ∈ (), then for every h ∈ (h0(x), h1(x)], the final target point 𝜋h belongs to 𝓁(x)x

and for every h ∈ [h1(x), h2(x)], 𝜋h belongs to 𝓁(x)x . Conversely, every point of 𝓁(x)x

is the final target point of some h ∈ (h0(x), h1(x)], and every point of 𝓁(x)x is the final
target point of some h ∈ [h1(x), h2(x)].

FIGURE 4 Illustration of the definitions of h1(x) and h2(x): on the left, x is a leaf and h1(x) is the sum of the masses of the red

subtrees (there are infinitely many of them); in the middle, x is a branchpoint and h1(x) is the sum of the masses of the three red

subtrees; on the right, x is the same branchpoint as in the middle and h2(x) is the sum of the masses of the four red subtrees.

 10982418, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21206 by C

ochrane France, W
iley O

nline L
ibrary on [16/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



30 KORTCHEMSKI and THÉVENIN

Before proving the continuity of F, we gather some preparatory lemmas.

Lemma 3.8. Let 𝓁 ∈  be a leaf. Then

𝜈(x) ⋅ 𝜏x →x→𝓁 0.

Proof. Write

𝜈(x) ⋅ 𝜏x = 𝜈(x) ⋅
∫⟦𝜌,x⟧

1

𝜈(z)
𝜆(dz) =

∫⟦𝜌,𝓁⟧

𝜈(x)
𝜈(z)

𝟙z∈⟦𝜌,x⟧𝜆(dz).

Then observe that the quantity 𝜈(x)∕𝜈(z)𝟙z∈⟦𝜌,x⟧ is bounded by 1 and tends to 0 since

𝜈(x) → 0 as x → 𝓁. The conclusion follows by dominated convergence. ▪

The next lemma compares the difference between two values of h with masses of subtrees in the

cut-tree .

Lemma 3.9. Take x ≺ y in  with x ∈ Sk() and assume that 𝜋h′ = y. Then:

(i) when y ∈ Sk() we have |h1(x) − h′| ≤ 𝜈(x ⧵ y).
(ii) |h1(x) − h′| ≤ 𝜈(x);

Proof. Let (B1

i ,L1

i )0≤i<N
1
+1 and respectively (B2

i ,L2

i )0≤i<N
2
+1 be the record sequences asso-

ciated with x and y. Since x ≺ y, we have N1 ≤ N2. Also, x is not a leaf, so that

N1 < ∞ and x = B1

N
1

. Observe that we may have B1

N
1

≠ B2

N
1

(e.g., if x ∈ Sk()). Then

(B1

i ,L1

i )0≤i<N
1
= (B2

i ,L2

i )0≤i<N
1

and B2

N
1

∈ ⟦x,L1

N
1
−1
⟧,

Recall the notation 𝕙2 from (8). Then

h1(x) =
∑

1≤k<N
1
+1

𝜈

(


L1

k−1

B1

k

)
and h′ =

∑

1≤k<N
2
+1

𝜈

(


L2

k−1

B2

k

)
+ 𝟙h′∈𝕙

2
𝜈

(


L2

N2

B2

N2

)

,

so that

h1(x) − h′ =
∑

N
1
≤k<N

2
+1

𝜈

(


L2

k−1

B2

k

)
+ 𝟙h′∈𝕙

2
𝜈

(


L2

N2

B2

N2

)

− 𝜈
(


L1

N1−1

B1

N1

)

.

Now define

 = 
L1

N1−1

B1

N1

,  =
⋃

N
1
≤k<N

2
+1


L2

k−1

B2

k
.

Observe that the union defining  is disjoint. When y ∈ Sk() we have h′ ∉ 𝕙2, ⧵ ⊂
x ⧵ y. When y is a branchpoint, setting ′ =  ∪ L2

N
B2

N
, observe that this union is disjoint

and ⧵  ⊂ x. The conclusion follows. ▪

The next lemma bounds from above the difference between two values of F.

Lemma 3.10. Take x ≺ y in  and h, h′ ∈ [0, 1] such that 𝜋h = x and 𝜋h′ = y. Then

|F(h) − F(h′)| ≤ 𝜏x|h − h′| + 𝑑(x, y).
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KORTCHEMSKI and THÉVENIN 31

Proof. We keep the notation introduced in the beginning of Lemma 3.9 (in particular it

may be helpful to also refer to Figure 5): we denote by (B1

i ,L1

i )0≤i<N
1
+1 and respectively

(B2

i ,L2

i )0≤i<N
2
+1 the record sequences associated with x and y, so that N1 ≤ N2, x is not a

leaf, N1 < ∞, x = B1

N
1

, (B1

i ,L1

i )0≤i<N
1
= (B2

i ,L2

i )0≤i<N
1

and B2

N
1

∈ ⟦x,L1

N
1
−1
⟧. Recall the

definitions of F in (4) and of h1, h2 in (6), (7).

We have

h =
∑

1≤k<N
1
+1

𝜈

(


L1

k−1

B1

k

)
+ 𝟙h∈𝕙

2
𝜈

(


L1

N1

B1

N1

)

, F(h) =
∑

1≤k<N
1
+1

𝜏B1

k
𝜈

(


L1

k−1

B1

k

)
+ 𝟙h∈𝕙

2
𝜏B1

N1

𝜈

(


L1

N1

B1

N1

)

,

and

h′ =
∑

1≤k<N
2
+1

𝜈

(


L2

k−1

B2

k

)
+ 𝟙h′∈𝕙

2
𝜈

(


L2

N2

B2

N2

)

, F(h′) =
∑

1≤k<N
2
+1

𝜏B2

k
𝜈

(


L2

k−1

B2

k

)
+ 𝟙h′∈𝕙

2
𝜏B2

N2

𝜈

(


L2

N2

B2

N2

)

.

Thus, setting

mk = 𝜈
(


L2

k−1

B2

k

)
for k < N2, mN

2
= 𝜈

(


L2

N2−1

B2

N2

)

+ 𝟙h′∈𝕙
2
𝜈

(


L2

N2

B2

N2

)

with the convention that mN
2
= 0 if N2 = ∞ and remembering that x = B1

N
1

, we have

F(h) − F(h′) = 𝜏x𝜈

(


L1

N1−1

B1

N1

)

+ 𝟙h∈𝕙
2
𝜏x𝜈

(


L1

N1

B1

N1

)

−
∑

N
1
≤k<N

2
+1

𝜏B2

k
mk,

and

h − h′ = 𝜈
(


L1

N1−1

B1

N1

)

+ 𝟙h∈𝕙
2
𝜈

(


L1

N1

B1

N1

)

−
∑

N
1
≤k<N

2
+1

mk.

It follows that

F(h) − F(h′) = 𝜏x(h − h′) +
∑

N
1
≤k<N

2
+1

(𝜏x − 𝜏B2

k
)mk. (10)

In particular,

|F(h) − F(h′)| ≤ 𝜏x|h − h′| +
∑

N
1
≤k<N

2
+1

(𝜏B2

k
− 𝜏x)mk.

To control the sum, we perform an Abel transformation by setting 𝜎k = 𝜏B2

k
− 𝜏B2

k−1

for

N1 < k < N2 + 1 and 𝜎N
1
= 𝜏B2

N1

− 𝜏x. Then

∑

N
1
≤k<N

2
+1

(𝜏B2

k
− 𝜏x) ⋅ mk =

∑

N
1
≤k<N

2
+1

∑

i∈⟦N
1
,k⟧
𝜎i ⋅ mk =

∑

N
1
≤i<N

2
+1

𝜎i
∑

k∈⟦i,N
2
+1⟦

mk.

Then observe that, as in the proof of Lemma 3.9, for every N1 ≤ i < N2 + 1

we have
∑

k∈⟦i,N
2
+1⟦ mk ≤ 𝜈

(
B2

i

)
. Also, 𝜎N

1
≤ 𝑑

(
x,B2

N
1

)
∕𝜈

(
B2

N1

)
and 𝜎i ≤

𝑑(B2

i−1
,B2

i )∕𝜈
(
B2

i

)
for N1 < i < N2 + 1. The conclusion follows. ▪
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32 KORTCHEMSKI and THÉVENIN

FIGURE 5 Illustration of the proof of Lemma 3.9 when x, y ∈ Sk(). Here N1 = 2 and N2 = 4. Left: The sum of the masses

of the two red subtrees is h1(x). Middle: The sum of the masses of the four red subtrees is h1(y). Right: The difference

|h1(x) − h′| is at most the mass of the blue subtree ⧵ .

FIGURE 6 Illustration of the first case when z is a leaf (left) and the second case where z ∈ Sk() (right).

We can now prove the continuity of the function F.

Proof of Proposition 3.4. Fix h ∈ [0, 1]. We want to prove that F is continuous at h. We

distinguish several cases according to the nature of the final target point z ∶= 𝜋h.

⋆ First case: z is a leaf (see Figure 6, left). Fix 𝜀 > 0. Using in particular Lemma 3.8

and the fact that  is a Brownian CRT, we may choose x ∈ Sk() such that x ≺ z and

𝜏x 𝜈(x) ≤ 𝜀, 𝜈(x) ≤ 𝜀 and Diam(x) < 𝜀. Observe that h1(x) − 𝜈(x) < h < h1(x) by

Lemma 3.7. Then, by Lemmas 3.9 (ii) and 3.10, we have

|F(h1(x)) − F(h)| ≤ 𝜏x|h1(x) − h| + 𝑑(x, z) ≤ 𝜏x𝜈(x) + 𝜀 ≤ 2𝜀.

Next, take h′ ∈ (h1(x) − 𝜈(x), h1(x)). By Lemma 3.7, there exists y ∈ x such that

𝜋h′ = y. Then, as before, again by Lemmas 3.9 (ii) and 3.10, we have

|F(h1(x)) − F(h′)| ≤ 𝜏x|h1(x) − h′| + 𝑑(x, z) ≤ 𝜏x𝜈(x) + 𝜀 ≤ 2𝜀.

We conclude that |F(h) − F(h′)| ≤ 4𝜀.

⋆ Second case: z ∈ Sk() (see Figure 6, right). Fix 𝜖 > 0. Let (Bi,Li)0≤i<N+1 be the

record sequence associated with z, so that z = BN and z ∈⟧BN−1,LN−1⟦. Fix z′ ∈ 
such that z ≺ z′ ≺ LN−1. Take 𝜀 > 0. Then choose u, v ∈ Sk() such that BN−1 ≺ u ≺
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KORTCHEMSKI and THÉVENIN 33

z ≺ v ≺ z′ such that 𝜈(u ⧵ v) ≤ 𝜀∕𝜏z′ and Diam(u ⧵ v) ≤ 𝜀. Then, by Lemmas 3.9

(i) and 3.10, we have

|F(h1(u)) − F(h)| ≤ 𝜏u|h1(u) − h| + 𝑑(u, z) ≤ 𝜏z′𝜈(u ⧵ z) + 𝜀
≤ 𝜏z′𝜈(u ⧵ v) + 𝜀 ≤ 2𝜀.

Next, observe that by Lemma 3.6 we have h1(v) < h < h1(u). Take h′ ∈ (h1(v), h1(u)).
By Lemma 3.7, since v ∈ u, we have h1(u)−𝜈(u) < h1(v), so we have h1(u)−𝜈(u) <
h′ < h1(u).

By Lemma 3.7, there exists y ∈ u such that 𝜋h′ = y. Then, again by Lemma 3.10,

we have

|F(h1(u)) − F(h′)| ≤ 𝜏u|h1(u) − h′| + 𝑑(u, y) ≤ 𝜏z′ (h1(u) − h1(v)) + 𝜀
≤ 𝜏z′𝜈(u ⧵ v) + 𝜀 ≤ 2𝜀,

where we have also used Lemma 3.9 (i) to write h1(u)−h1(v) ≤ 𝜈(u⧵v). We conclude

that |F(h) − F(h′)| ≤ 4𝜀.

⋆ Third case: z is a branchpoint. Let (Bi,Li)0≤i<N+1 be the record sequence associated

with z with N < ∞. We consider two subcases.

⋆⋆ First subcase: h is of the form h = h1(z) (see Figure 7). We first show that

F is right-continuous at h. Fix 𝜖 > 0. Choose a point u ∈ Sk() such that

z ≺ u ≺ LN and 𝜈(u) ≤ 𝜀∕𝜏u and Diam(u) < 𝜀. By definition of the

Pac-Man construction, h1(u) = h + 𝜈(u) and F(h1(u)) = F(h) + 𝜏u𝜈(u). In

particular, |F(h1(u)) − F(h)| ≤ 𝜀.

Now take h′ ∈ (h, h + 𝜈(u)). Since h1(u) − 𝜈(u) < h′ < h1(u), by

Lemma 3.7, there exists y ∈ u such that 𝜋h′ = y. Then, as before, by

Lemma 3.10, we have

|F(h1(u)) − F(h′)| ≤ 𝜏y|h1(u) − h′| + 𝑑(u, y) ≤ 𝜏u𝜈(u) + 𝜀 ≤ 2𝜀.

We conclude that |F(h) − F(h′)| ≤ 3𝜀.

Let us next show that F is left-continuous at h. Fix a point v ∈ Sk()
such that z ≺ v ≺ LN−1. Take 𝜀 > 0 and choose a point u ∈ Sk() such that

z ≺ u ≺ v and 𝜈(LN−1

z ⧵ u) ≤ 𝜀∕𝜏v and Diam(LN−1

z ⧵ u) < 𝜀. Observe that

by definition of the Pac-Man construction, h1(u) + 𝜈(
LN−1

z ⧵ u) = h. Take

FIGURE 7 Illustration of the case h = h1(z). Left: Proof of the left-continuity; Right: Proof of the right-continuity.
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34 KORTCHEMSKI and THÉVENIN

FIGURE 8 Illustration of the case h = h2(z). Left: Proof of the left-continuity; Right: Proof of the right-continuity.

h′ ∈ (h1(u), h). By Lemma 3.7, there exists y ∈ LN−1

z ⧵ u such that 𝜋h′ = y.

Then, as before, by Lemma 3.10, we have

|F(h) − F(h′)| ≤ 𝜏z|h − h′| + 𝑑(z, y) ≤ 𝜏v𝜈(
LN−1

z ⧵ u) + 𝜀 ≤ 2𝜀.

⋆⋆ Second subcase: h is of the form h = h2(z) (see Figure 8).

Let us first show that F is left-continuous at h. Fix a point v ∈ Sk() such

that z ≺ v ≺ LN . Take 𝜀 > 0 and choose a point u ∈ Sk() such that z ≺ u ≺ v,

𝜈(LN
z ⧵ u) ≤ 𝜀∕𝜏v and Diam(LN

z ⧵ u) < 𝜀. Observe that by definition of

the Pac-Man construction, h1(u)+ 𝜈(
LN−1

z ⧵u) = h. Take h′ ∈ (h1(u), h). By

Lemma 3.7, there exists y ∈ LN−1

z ⧵ u such that 𝜋h′ = y. Then, as before, by

Lemma 3.10, we have

|F(h) − F(h′)| ≤ 𝜏z|h1(z) − h′| + 𝑑(z, y) ≤ 𝜏v𝜈(
LN−1

z ⧵ u) + 𝜀 ≤ 2𝜀.

Let us next show that F is right-continuous at h. Take 𝜀 > 0 and fix a point u ∈ Sk()
such that BN−1 ≺ u ≺ z, 𝜈(u ⧵ z) ≤ 𝜀∕𝜏z and Diam(u ⧵ z) < 𝜀. Observe that by

definition of the Pac-Man construction, h1(u) = h + 𝜈(u ⧵ z). Take h′ ∈ (h, h1(u)). By

Lemma 3.7, there exists y ∈ u ⧵ z such that 𝜋h′ = y. Then, as before, by Lemma 3.10,

we have

|F(h) − F(h′)| ≤ 𝜏u|h − h′| + 𝑑(u, y) ≤ 𝜏z𝜈(u ⧵ z) + 𝜀 ≤ 2𝜀.

This completes the proof. ▪

3.3 The function F codes the Aldous–Pitman fragmentation of the CRT

We have constructed a continuous excursion-type function F from the Aldous–Pitman fragmentation

of the Brownian CRT  . In order to prove Theorem 1.1 (i), before showing that F is in law the Brownian

excursion, we first show the following result.

Proposition 3.11. A.s. for every t ≥ 0, the nonincreasing rearrangement of the masses of
the connected components of  ⧵ t is the same as the nonincreasing rearrangement of
the lengths of the excursions of (F(h) − th)0≤h≤1 above its running infimum.

To simplify notation, set Ft(h) = F(h) − th for 0 ≤ h ≤ 1.
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KORTCHEMSKI and THÉVENIN 35

Lemma 3.12. Take x ≺ y in  and h, h′ ∈ [0, 1] such that 𝜋h = x and 𝜋h′ = y. Then
F𝜏x (h

′) > F𝜏x (h).

Proof. This readily follows from the identity (10) appearing in the proof of Lemma 3.10.

Indeed, keeping the same notation, if x = B1

N
1

= B2

N
1

then N2 > N1 and 𝜏x < 𝜏B2

k
for every

N1 < k < N2 + 1 since x is an ancestor of B2

k . If x = B1

N
1

≠ B2

N
1

then similarly 𝜏x < 𝜏B2

N1

. ▪

Proof of Proposition 3.11. By Lemma 2.2, for every t ≥ 0, the connected components of

 ⧵ t are in bijection with subtrees of  of the form 
𝓁(x)
x or 

𝓁(x)
x for x ∈  with 𝜏x = t;

and this bijection conserves the masses. If C is a connected component, recall that we

denote by Φ(C) the corresponding subtree of  (in particular 𝜈(Φ(C)) = 𝜇(C)).
Let C be a connected component of  ⧵ t and x ∈  with 𝜏x = t. Observe that then

x is not a leaf; we denote by (Bi,Li)0≤i≤N the record sequence of x. Recall from (9) the

definition of h0(x).
We claim that Ft(h0(x)) = Ft(h1(x)) and that

∀h ∈ (h0(x), h1(x)), Ft(h) > Ft(h1(x)); ∀h ∈ (0, h0(x)), Ft(h) > Ft(h1(x)). (11)

This implies that when x ∈ Sk(), we have an excursion of length 𝜈(x) of Ft above its

running infimum, and when x is a branchpoint we have an excursion of length 𝜈(𝓁(x)x ) of

Ft above its running infimum.

To check that Ft(h0(x)) = Ft(h1(x)), observe that by definition

x = BN , t = 𝜏BN , h1(x) =
∑

1≤k≤N
𝜈

(


Lk−1

Bk

)
, F(h1(x)) =

∑

1≤k≤N
𝜏Bk ⋅ 𝜈

(


Lk−1

Bk

)
,

so

Ft(h1(x)) =
∑

1≤k≤N
𝜏Bk ⋅ 𝜈

(


Lk−1

Bk

)
− 𝜏BN

∑

1≤k≤N
𝜈

(


Lk−1

Bk

)
.

In addition, observe that

h0(x) =
∑

1≤k≤N−1

𝜈

(


Lk−1

Bk

)
= h1(BN−1).

It follows that 𝜋h
0
(x) = BN−1, and

F(h1(BN−1)) =
∑

1≤k≤N−1

𝜏Bk ⋅ 𝜈
(


Lk−1

Bk

)
.

Hence

Ft(h0(x)) = Ft(h1(BN−1)) =
∑

1≤k≤N−1

𝜏Bk ⋅ 𝜈
(


Lk−1

Bk

)
− 𝜏BN

∑

1≤k≤N−1

𝜈

(


Lk−1

Bk

)
= Ft(h1(x)).

The first inequality in (11) readily follows from Lemma 3.12, since the final target point

𝜋h of any element h ∈ (h0(x), h1(x)) belongs to x ⧵ {x} by Lemma 3.7.
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36 KORTCHEMSKI and THÉVENIN

To establish the second inequality in (11), take h ∈ (0, h0(x)). Let 1 ≤ m ≤ N − 1 be

such that
∑

1≤k≤m−1

𝜈

(


Lk−1

Bk

)
≤ h <

∑

1≤k≤m
𝜈

(


Lk−1

Bk

)
= h1(Bm).

Then 𝜋h ∈ Lm−1

Bm
, so that by Lemma 3.12 we have F𝜏Bm

(h) ≥ F𝜏Bm
(h1(Bm)) (with the

inequality being strict if 𝜋h ≠ Bm). Since t ≥ 𝜏Bm , this entails Ft(h) ≥ Ft(h1(Bm)). It

remains to note that

Ft(h1(Bm)) ≥ Ft(h1(x))

with the inequality being strict if m < N − 1. Indeed,

Ft(h1(Bm)) =
∑

1≤k≤m
𝜏Bk ⋅ 𝜈

(


Lk−1

Bk

)
− 𝜏BN

∑

1≤k≤m
𝜈

(


Lk−1

Bk

)
,

so

Ft(h1(Bm)) − Ft(h1(x)) = 𝜏BN

∑

m+1≤k≤N−1

𝜈

(


Lk−1

Bk

)
−

∑

m+1≤k≤N−1

𝜏Bk ⋅ 𝜈
(


Lk−1

Bk

)
,

which entails the result since 𝜏BN > 𝜏Bk for m + 1 ≤ k ≤ N − 1. Since one of the two

inequalities Ft(h) ≥ Ft(h1(Bm)) or Ft(h1(Bm)) ≥ Ft(h1(x)) is strict (because h < h0(x) so

𝜋h ≠ BN−1), the second inequality in (11) follows.

To finish the proof, assume that x is a branchpoint. We claim that Ft(h1(x)) = Ft(h2(x))
and that

∀h ∈ (h1(x), h2(x)), Ft(h) > Ft(h1(x)). (12)

This implies that we have an excursion of length 𝜈

(

𝓁(x)
x

)
of Ft above its running infimum.

The fact that Ft(h1(x)) = Ft(h2(x)) is proved exactly in the same way as the identity

Ft(h0(x)) = Ft(h1(x)), by using the definition of Ft. Finally, (12) follows from Lemma 3.12

by observing that when h ∈ (h1(x), h2(x)), 𝜋h belongs to x ⧵ {x}. ▪

We establish the following result for future use.

Lemma 3.13. The probability measure 𝜈 on  is the push-forward of the Lebesgue
measure on [0, 1] by h → 𝜋h.

Proof. Recall that for x ∈  the tree x is the set of all (weak) descendents of x in . First,

observe that {x ∶ x ∈ Sk()} is a generating 𝜋-system of . Hence, if two probability

measures 𝜈 and 𝜈̃ supported on the set of leaves of  satisfy

∀x ∈ Sk(), 𝜈(x) = 𝜈̃(x),

then 𝜈 = 𝜈̃.

Now, let 𝜈̃ be the push-forward of the Lebesgue measure Leb on [0, 1] by 𝜋. For x ∈
Sk(), keeping the notation of (9), by Lemma 3.7 we have

𝜈̃(x) = Leb{x ∈ [0, 1] ∶ 𝜋x ∈ x} = Leb([h0(x), h1(x)]) = 𝜈(x),

and the desired result follows. ▪
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KORTCHEMSKI and THÉVENIN 37

Remark 3.14. By [2, Proposition 12], {𝜌}∪N are i.i.d. with law 𝜈 and conditionally given

(, 𝜈,N), for b ∈ (), 𝓁(b) has law 𝜈

𝓁(b)
b

and these random variables are independent.

Indeed, in the notation of the latter reference, we have Zy
b = 𝓁(b) for y ∈ 𝓁(b)b since by

definition 𝓁(b) is the image of b in 𝜈

𝓁(b)
b

.

3.4 The function F is a Brownian excursion

In order to prove that F is distributed as a Brownian excursion 𝕖, we show that both F and 𝕖 satisfy a

same recursive equation, which has a unique solution in distribution.

For every continuous function f ∶ [0, 1] → R+, define (Pt(f ), t ≥ 0) as follows:

∀t > 0, Pt(f ) = inf {u > 0, f (u) − tu = 0}.

Proposition 3.15. Let f ∶ [0, 1] → R+ be a (random) continuous function satisfying the
following:

(i) f (0) = 0 a.s.

(ii) The two processes (Pt(f ))t≥0 and
(

1

1+St

)

t≥0

have the same law, where S is a 1∕2-stable

subordinator with Laplace exponent Φ(𝜆) = (2𝜆)1∕2
.

(iii) Define (ti, ai, bi)i≥1 as follows: {ti, i ≥ 1} is the set of jump times of (Pt(f ), t ≥ 0)
and, for all i ≥ 1, (ai, bi) =

(
Pti(f ),Pti−(f )

)
. Furthermore, the ti’s are

sorted in nonincreasing values of bi − ai. Then, conditionally given (Pt(f ))t≥0,{(
(bi − ai)−1∕2(f (ai + (bi − ai)u) − ti(ai + (bi − ai)u))

)

0≤u≤1

}

i≥1

are i.i.d. random
variables distributed as (f (u), 0 ≤ u ≤ 1).

Then f and 𝕖 have the same law.

In particular, observe that if f satisfies these assumptions, then f (1) = 0 a.s.

Lemma 3.16. The standard Brownian excursion 𝕖 on [0, 1] satisfies (i)–(iii).

In order to prove that 𝕖 satisfies these properties, we need the following result from Chassaing and

Janson [19].

Theorem 3.17 ([19, Theorem 2.6]). Consider b and 𝕖, respectively a Brownian bridge
and a Brownian excursion on [0, 1], extended on R so that they are 1-periodic. For all
a ≥ 0, define the following two processes:

• Xa the reflected Brownian bridge |b| conditioned to have local time at time 1 at 0 equal
to a;

• Za = Ψa𝕖, where Ψaf (t) = f (t) − at − inf−∞<s≤t{f (s) − as}.

Denote by Lt(Xa) the local time of Xa up to time t, and V ∈ [0, 1] the unique point at
which t → Lt(Xa) − at is maximum. Then,

Za
(𝑑)
= Xa(V + ⋅).

Let us show Lemma 3.16.
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38 KORTCHEMSKI and THÉVENIN

Proof of Lemma 3.16. First observe that it is clear by the Markov property and [9, Propo-

sition 11] that 𝕖 satisfies (i) and (ii). Let us prove that it satisfies (iii). To this end, observe

that almost surely Xa(V) = 0 by definition of V . Hence, the excursions of Za, ordered by

non-increasing order of length, are distributed as the excursions, ordered by non-increasing

order of length, of Xa. As a consequence, conditionally given their endpoints, the excur-

sions of Xa ordered by non-increasing order of length, are independent and distributed as

appropriately rescaled standard Brownian excursions (see e.g., the proof of [35, Lemma

12]). This proves that 𝕖 satisfies (iii). ▪

Let us now prove Proposition 3.15.

Proof of Proposition 3.15. It thus remains to check that these assumptions characterize

the distribution of f . Let f be a function satisfying (i)–(iii). For every 𝜀 > 0 we shall

construct a coupling (f , 𝕖) such that P(||f − 𝕖|| > 𝜀) < 𝜀, which will imply that f and 𝕖
have the same law (indeed, this implies e.g., that the Lévy-Prokhorov distance between

the laws of f and 𝕖 is at most 𝜀). To simplify notation, set

 =
⋃

k∈Z+

N
k
.

If s ∈ Nk
with k ≥ 0 we set |s| = k. Consider a family of i.i.d. 1∕2-stable subordinators

(Ss)s∈ with the law of S, where by convention N0 = {∅}. For each s ∈  , set Zs
t =

(1 + Ss
t )−1

for t ≥ 0. Denote by Ts ∶= (ts
i )i≥1 the set of jump times of Ss

, ordered by

decreasing values of 𝑑
s
i − gs

i , where 𝑑
s
i = Zs

ti− and gs
i = Zs

ti (in case of equality, sort them

by increasing value of gs
i ).

Now we define by induction sets of points (s)s∈ as follows. Define intervals

[as
, bs]s∈ as:

• for s = ∅, a∅ = 0, b∅ = 1;

• for s ≠ ∅, let s ∈  , i ∈ N be such that s = s ⋅ i. Then, we define

as ∶= as +
(

bs − as
)

gs
i , bs ∶= as +

(
bs − as

)
𝑑

s
i .

For every 𝜀 > 0, we shall now use the subordinators (Ss)s∈ to construct a coupling

between f and 𝕖 such that P(||f −𝕖|| > 𝜀) < 𝜀. For every fixed k ≥ 1, setk ∶= {as
, |s| ≤

k} ∪ {bs
, |s| ≤ k}. Since f and 𝕖 both satisfy (ii) and (iii), we can couple them using the

subordinators (Ss)|s|≤k, so that a.s.

∀u ∈ k, f (u) = 𝕖(u).

Next, for every 𝜖 > 0, one can find K𝜖 ∈ Z+ such that

P
(
sup{b − a ∶ a, b ∈ K

𝜖
, (a, b) ∩K

𝜖
= ∅} > 𝜖

)
< 𝜖.

Furthermore, since 𝕖 and f are continuous on [0, 1], they are uniformly continuous. In

particular, there exists C𝜂 > 0 such that P
(
𝜔(𝕖) > C𝜂

)
< 𝜂 and P

(
𝜔(f ) > C𝜂

)
< 𝜂. Now,
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KORTCHEMSKI and THÉVENIN 39

on the event that {sup{b − a ∶ a, b ∈ K
𝜖
, (a, b) ∩K

𝜖
= ∅ < 𝜖, 𝜔(𝕖) < C𝜂, 𝜔(f ) < C𝜂},

we have clearly ||f − 𝕖|| < 2C𝜂𝜖. Thus P(||f − 𝕖|| > 2C𝜂𝜖) ≤ 𝜀 + 2𝜂 (observe that the

choice of C𝜂 is independent of 𝜖). This completes the proof. ▪

Proposition 3.18. We have

(F(t), 0 ≤ t ≤ 1)
(𝑑)
= (𝕖t, 0 ≤ t ≤ 1).

Proof. We need to prove that F is continuous and satisfies (i)–(iii) in Proposition 3.15.

We immediately obtain (i) from Lemma 3.8 applied to the leaf 0, continuity from Propo-

sition 3.4 and (ii) from [9, Theorem 1 and Proposition 11] combined with invariance by

uniform rerooting of the Brownian CRT. Finally, (iii) comes from [18, Corollary 2.3]. ▪

Remark 3.19. The previous considerations entail that  can be decomposed as follows,

where we set Pt = Pt(F) and yt = Pt− − Pt to simplify notation.

Step 1. The branch ⟦𝜌,𝓁(𝜌)⟧ isometric to a line segment with length ∫
∞

0
Psds.

Step 2. For every t > 0 such that Pt < Pt− there is a branchpoint bt on ⟦𝜌,𝓁(𝜌)⟧ at distance ∫
t

0
Psds

from the root, and on bt is grafted the tree obtained by iteration with the function F(t)
defined by F(t) = y−1∕2

t (F(Pt + syt) − t(Pt + syt))0≤s≤1, with distances renormalized by y1∕2

t .

The leaf 𝓁(bt) is then the leaf associated with bt in the first step of this iteration. This

construction provides us with an increasing sequence of trees (for the inclusion), and  is

the completion of the union of these trees.

In order to see this, observe that each t such that Pt ≠ Pt−, we have Pt = 𝜇t(∅). By monotonicity

and density of such instants, this holds for all t ≥ 0. In particular, for each branchpoint b ∈ ⟦𝜌,𝓁(𝜌)⟧
corresponding to a cutpoint appearing at time t, we have

𝑑(𝜌, bt) =
∫

t

0

𝜇s(∅)𝑑s =
∫

t

0

Psds.

Letting t → ∞, we have 𝑑(𝜌,𝓁(𝜌)) = ∫ ∞
0

Psds. In order to show Step 2, consider a branchpoint

bt ∈ ⟦𝜌,𝓁(𝜌)⟧ and a branchpoint b′u ∈ ⟦bt,𝓁(bt)⟧ corresponding to a cutpoint c appearing at time

u > t. Again, it holds that

𝑑(bt, b′u) =
∫

u

t
𝜇s(c)ds = y1∕2

t
∫

y1∕2

t (u−t)

0

Ps(F(t))ds,

as 𝜇s(c) = 𝜇t(c) ⋅ Py1∕2

t (s−t)(F
(t)) = yt ⋅ Py1∕2

t (s−t)(F
(t)) for all s ≥ t by the same argument.

3.5 Proof of Theorem 1.1 (i)

Roughly speaking, to establish Theorem 1.1 (i), we shall consider the function F obtained by the

Pac-Man algorithm from the Brownian CRT  and the Poissonian rain  . However, one has to be

slightly careful since the Pac-Man algorithm has been defined using the cut-tree , which is itself

defined by using an additional source of randomness, namely the points (Ui)i≥1, so it is not clear

whether the function F defined this way is a measurable function of ( ,).
To overcome this issue, we explain how the “Bertoin function” F can be directly defined from

( ,) in a measurable way. Recall that for every t ≥ 0 and x ∈  , we denote by t(x) the connected
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40 KORTCHEMSKI and THÉVENIN

component of  ⧵ t containing x and 𝜇t(x) = 𝜇(t(x)) its 𝜇-mass. We first set F( ,)(0) = 0. Now,

take h ∈ (0, 1]. There are three cases:

(i) If there exists t1 ≥ 0 such that 𝜇t
1
(∅) = h, then we set F( ,)(h) = t1h.

(ii) If there exists t1 ≥ 0 such that 𝜇t
1
−(∅) = h, then we set F( ,)(h) = t1h.

(iii) Otherwise, there exists t1 ≥ 0 such that 𝜇t
1
(∅) < h < 𝜇t

1
−(∅).

In case (iii), notice that there exists a unique cutpoint c1 ∈ ∞ that has appeared at time t1.

Furthermore, c1 ∈ t
1
−(∅). We now reason inductively. There are again three cases:

(i) If there exists t2 ≥ t1 such that 𝜇t
1
(∅)+𝜇t

2
(c1) = h, then we set F( ,)(h) = t1𝜇t

1
(∅)+t2𝜇t

2
(c1).

(ii) If there exists t2 ≥ t1 such that 𝜇t
1
(∅) + 𝜇t

2
−(c1) = h, then we set F( ,)(h) = t1𝜇t

1
(∅) +

t2𝜇t
2
−(c1).

(iii) Otherwise, there exists t2 ≥ t1 such that 𝜇t
2
(c1) < h − 𝜇t

1
(∅) < 𝜇t

2
−(c1).

Thus, there are finally three cases, depending on h:

(a) either there exists a finite sequence c1, … , ck of cutpoints appeared at respective times

t1, … , tk such that h =
∑k

i=1
𝜇ti (ci−1), ci ∈ ti−(ci−1) for all i ≤ k; in this case, F( ,)(h) =

∑k
i=1

ti𝜇ti(ci−1);
(b) there exists a finite sequence c1, … , ck of cutpoints appeared at respective times t1, … , tk such

that h =
∑k−1

i=1
𝜇ti (ci−1) + 𝜇tk−(ck−1), in which case F( ,)(h) =

∑k−1

i=1
ti𝜇ti(ci−1) + tk𝜇tk−(ck−1);

(c) there exists an infinite sequence c1, … of cutpoints appeared at respective times t1, … , tk
such that h =

∑∞
i=1
𝜇ti (ci−1), in which case F( ,)(h) =

∑∞
i=1

ti𝜇ti (ci−1).

We shall now prove that F( ,) meets the requirements of Theorem 1.1 (i).

Proof of Theorem 1.1(i). Consider a Brownian CRT  , the Poissonian rain  on  and

and let U = (Ui)i≥1 be a sequence of i.i.d. leaves of  sampled according to the mass

measure, independently of  . Denote by F( ,U), the function defined by (4) using the

Pac-Man algorithm. By the correspondence between cutpoints in  and branchpoints in

 and the associated masses (Lemma 2.2), almost surely F( , ,) = F( ,).
By Propositions 3.11 and 3.18, almost surely, F( ,) has the law of the Brownian excur-

sion and almost surely, for every t ≥ 0, the nonincreasing rearrangement of the masses

of the connected components of  ⧵ t is the same as the nonincreasing rearrangement

of the lengths of the excursions of (F( ,)(s) − ts)0≤s≤1 above its running infimum. This

completes the proof. ▪

4 RECOVERING THE ORIGINAL TREE TOGETHER WITH ITS
POISSONIAN RAIN

Let  be a Brownian CRT with mass measure 𝜇, U ∶= (Ui)i≥1 a sequence of i.i.d. leaves of  with

common distribution 𝜇, and  a Poissonian rain on Sk( ) independent of U. An important question in

the literature (see [2, 14, 18]) concerns the problem of reconstruction of the original tree: is it possible

to reconstruct ( ,U,) being given the cut-tree?

It turns out that there is a loss of information when one goes from a triple ( ,U,) to the cut-tree

(,N), where N denotes the subset {i ∶ i ≥ 1} of points of  built in Section 2.2. More precisely, the

following holds:
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KORTCHEMSKI and THÉVENIN 41

Theorem 4.1 ([18, Theorem 3.2 (c)]). Let  be a Brownian CRT. Then there exists a
(random) tree shuff( ) such that in distribution:

( , shuff( ))
(𝑑)
= (Cut( ),  ).

Here one recovers  from Cut( ) only in distribution. Later, Addario-Berry et al. [2] have shown

that, if one considers an enrichment of the cut-tree transform with information called routings, it is

possible to almost surely recover the initial tree (along with U and ) from this enriched cut-tree (see

[14] for an extension to ICRT). In short, routing variables are a collection of uniform points in every

subtree dangling on the branchpoints.

More precisely, recall that for every b ∈ () the subtree b of all descendents of b is b =

𝓁(b)
b ∪ 𝓁(b)b . Denote by  the set of all subtrees of the form 

𝓁(b)
b or 

𝓁(b)
b for b ∈ (). Consider the

set of so-called routing variables Z = (Z, ∈ ) where Z

𝓁(b)
b

is the image Λ(𝓁(b)b ) of b in 
𝓁(b)
b and

Z

𝓁(b)
b

is the image Λ(𝓁(b)b ) of b in 
𝓁(b)
b . By [2, Proposition 12], for every ∈  the random variable

Z has law 𝜈, and these random variables are conditionally independent given (, 𝜈,N). We also have:

Theorem 4.2 ([2, Proposition 12 and Corollary 17]). There exists a (deterministic)
measurable map Φ such that, almost surely:

( ,U,) = Φ((,N,Z)).

The question answered by Theorem 1.1 (ii) is quite similar: being given the “Bertoin” Brownian

excursion 𝕖, is it possible to construct a map Ψ such that Ψ(𝕖) has the law of ( ,) and FΨ(𝕖) = 𝕖?

The answer is positive, when adding an independent source of randomness.

The strategy of the proof is divided in two steps: first, in Section 4.1 we show that having the

“Bertoin” excursion F( ,) obtained from ( ,) is equivalent to having the cut-tree , along with

“half” of the routing variables. Second, in Section 4.2 we add the additional information (the remaining

“half” routings) that allows us to reconstruct a tree with a Poissonian rain.

4.1 From Bertoin’s excursion to the semi-enriched cut-tree

We first prove that having the “Bertoin” excursion F( ,) obtained from ( ,) is equivalent to having

the cut-tree , along with a collection of points that we call half-routings, a notion which we shall now

define.

Let T be a compact binary real tree with root 𝜌, and recall that(T) denotes the set of branchpoints

of the tree T . We call half-routings on T a collection of leaves H ∶= {Hb, b ∈ (T)} such that Hb ∈ Tb
for every b ∈ (T), where we recall that Tb is set of all (weak) descendents of b in T . For every

b ∈ (T), we define its associated record sequence (bi)i≥0 ∈ ((T) ∪ {𝜌})Z+ by induction as follows.

Set b0 = 𝜌. Then for every k ≥ 0, assuming that (bi)0≤i≤k has been defined, we set bk+1 = 𝓁bk ∧ b.

Since (bk)k≥0 is increasing for the genealogical order, it converges in T .

We say that the collection H of half-routings is consistent if the following holds:

∀b ∈ (T) ∪ {𝜌},∃Nb ≥ 0, bNb = b.

In particular, when H is consistent, then for all b ∈ (T) the sequence (bk)k≥0 is stationary after time

Nb and, for all k ≥ 1 such that bk ≠ b, we have 𝓁bk ∈ T
𝓁bk−1

bk
. Indeed, by definition, bk = 𝓁bk−1

∧ b,
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42 KORTCHEMSKI and THÉVENIN

so that b ∈ T
𝓁bk−1

bk
. Thus, if we had 𝓁bk ∈ T

𝓁bk−1

bk
, then it would follow that bk+1 = 𝓁bk ∧b = bk and hence

bj = bk for j ≥ k, so that b = bk since H is consistent. Furthermore, every branchpoint has a finite

record sequence. Finally, denote by THR the set of compact rooted binary real trees enriched with the

a consistent collection of half-routings and a mass measure supported on its set of leaves.

Observe that the Pac-Man algorithm can be applied mutatis mutandis to any enriched tree

(T ,H,M), where H is a consistent collection of half-routings on T and M a probability measure on T .

We denote by X(T ,H,M) the function obtained from this algorithm.

We keep the notation ( ,U,) for a Brownian CRT along with a sequence of i.i.d. leaves and a

Poissonian rain on its skeleton,  its associated cut-tree, and set  ∶=
{
𝓁(b), b ∈ ()

}
, with 𝓁(b)

defined by (5). Observe that  is a.s. a consistent collection of half-routings on . Indeed, it is clear

by (5) that 𝓁(b) ∈ b for all b ∈ (). In addition, by Lemma 3.5, the collection on  is consistent.

Denoting by C([0, 1], [0,∞]) the set of continuous maps from [0, 1] to [0,∞], we have the following

result:

Proposition 4.3. There exists a (deterministic) map Ξ ∶ C([0, 1], [0,∞]) → THR such
that the following properties hold almost surely:

(i) We have Ξ ◦X(,, 𝜈) = (,, 𝜈).
(ii) Let 𝕖 be a standard Brownian excursion. Then X ◦Ξ(𝕖) = 𝕖.

Proof of Proposition 4.3. Let us start by defining the map Ξ. By construction, we have

X(,, 𝜈) = F( ,). Since F( ,) follows the law of a Brownian excursion by Theorem 1.1

(i), it is therefore enough to define Ξ(𝕖). We use a stick-breaking construction in the spirit

of [7] to define Ξ(𝕖) = (̃, ̃, 𝜈̃). We start with {𝜌̃}, which will be the root of the tree Ξ(𝕖).

Step 1. Construct a branch ⟦𝜌̃, 𝓁̃(𝜌̃)⟧ isometric to a line segment with length ∫
∞

0
Psds, where

Ps ∶= inf{u > 0, 𝕖u = su}.
Step 2. For every t > 0 such that Pt < Pt− we put a branchpoint b̃t on ⟦𝜌̃, 𝓁̃(𝜌̃)⟧ at distance

∫
t

0
Psds from the root, and on b̃t we graft the tree obtained by iteration with the

function 𝕖(t) defined by 𝕖(t) = (Pt− − Pt)−1∕2(𝕖Pt+s(Pt−−Pt) − t(Pt + s(Pt− − Pt))0≤s≤1,

which is a Brownian excursion by Proposition 3.15. In the first step of this iteration,

a leaf, denoted by 𝓁̃(b̃t), is associated with b̃t.

This construction provides us with an increasing sequence of trees (for the inclusion).

We denote by ̃ the completion of the union of these trees with a collection of half-routings

̃ = (𝓁̃(b̃) ∶ b̃ ∈ (̃) ∪ {𝜌̃}).
We check that ̃ is compact and establish (i) at the same time. Since the desired

properties involve only the law of 𝕖, without loss of generality, we may assume that

𝕖 = X(,, 𝜈) = F( ,). Observe that by Remark 3.19, the tree  satisfies the same

recursive construction as ̃. As a consequence, setting 𝓁(𝜌) = 0 (which we recall to

be the “image” in  of the root ∅ of  ), the trees 0 ∶=
⋃

b∈()∪{𝜌}⟦b,𝓁(b)⟧ and

̃
0 ∶=

⋃
b̃∈(̃)∪{𝜌̃}⟦b̃, 𝓁̃(b̃)⟧ are isometric, and so are their completions, which implies

that  = ̃.

Now let us explain how to endow ̃ with a mass measure. Roughly speaking, given

h ∈ [0, 1], we explain how to define the final target point of the Pacman algorithm just

from X(,, 𝜈). We construct a sequence of branchpoints associated with h as follows.

If there exists t such that Pt ≠ Pt− and h = Pt or h = Pt−, let t1(h) = †. Otherwise, let

t1(h) ∶= inf{t ∈ [0, 1],Pt ≠ Pt−,Pt < h}. From Step 2 above, with t1(h) is associated

a branchpoint in ̃ denoted by b1(h). Then, as for the stick breaking construction of ,
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KORTCHEMSKI and THÉVENIN 43

we iterate this in the excursion 𝕖(t1(h)). In the end, we obtain an increasing sequence (for

the genealogical order) of branchpoints associated with h. Also observe that this sequence

stops at † only for countably many values of h ∈ [0, 1]. For every h ∈ [0, 1] for which this

does not happen, we define 𝓁(h) as the limit of the sequence (bi(h))i≥1. Then given the

description of the Pacman algorithm in the beginning of Section 3.5 we have 𝓁(h) = 𝜋h,

in the sense that 𝓁(h) is the final target point of h in  by the Pacman algorithm. We then

define the mass measure 𝜈̃ on ̃ as the pushforward of the Lebesgue measure on [0, 1] by

𝓁, which by Lemma 3.13 coincides with 𝜈.

We finally prove (ii). By step (i), we have X(Ξ(𝕖))
(𝑑)
= 𝕖, so it suffices to check that

they coincide a.s. on a dense subset of [0, 1]. Now, for any t ≥ 0 such that Pt− ≠ Pt, by the

discussion in the beginning of Section 3.5 we have X(Ξ(𝕖))(Pt) = 𝕖Pt and X(Ξ(𝕖))(Pt−) =
𝕖Pt− . Iterating this with the functions 𝕖(t), we obtain that a.s. X(Ξ(𝕖)) and 𝕖 coincide on a

dense set, and this completes the proof. ▪

Remark 4.4. By Remark 3.14 the previous proof also shows that if (,, 𝜈) = Ξ(𝕖) with

 = (𝓁(b), b ∈ ()), then conditionally given (, 𝜈,N), 𝓁(b) has law 𝜈

𝓁(b)
b

for b ∈ (),
and these random variables are independent.

4.2 From the semi-enriched cut-tree to the initial tree

To establish Theorem 1.1 (ii) we apply the map Ξ introduced in Proposition 4.3 to a Brownian excur-

sion, which allows to reconstruct a cut-tree. We then want to apply Theorem 4.2 to reconstruct a

Brownian CRT with its Poissonian rain, and to this end we need a set of routing random variables.

Additional randomness is required because Ξ gives only “half” of the rootings.

Proof of Theorem 1.1(ii). Consider a Brownian excursion 𝕖 and an independent sequence

of i.i.d. uniform random variables on [0, 1]. Recall from Proposition 4.3 the map Ξ. Set

(,, 𝜈) = Ξ(𝕖)with = (𝓁(b), b ∈ ()). Recall also from the proof of Proposition 4.3

the map 𝜋 ∶ [0, 1] → .

For convenience, we split the i.i.d. uniform random variables on [0, 1] into two inde-

pendent collections of i.i.d. uniform random variables on [0, 1]: the first one (Vi)i≥1

indexed by N and the second one (Wb)b∈() indexed by the branchpoints of  (this can be

done in a deterministic measurable way).

We set i = 𝜋(Vi) ∈  for every i ≥ 1, so that N ∪ {𝜌} are i.i.d. with law 𝜈, where 𝜌 is

the root of .

We shall now define routing variables Z = (Z, ∈ ) such that for every ∈  the

random variable Z has law 𝜈, and these random variables are conditionally independent

given (, 𝜈), where we recall that  denotes the set of all subtrees of the form 
𝓁(b)
b or

b ⧵ 𝓁(b)b ∪ {b} for b ∈ ().
First, for every b ∈ () we set Z


𝓁(b)
b

= 𝓁(b). Then, by Remark 4.4 the random

variables (Z

𝓁(b)
b
∶ b ∈ () ∪ {𝜌}) have respective laws 𝜈


𝓁(b)
b

, and these random variables

are conditionally independent given (,N).
Second take b ∈ (). To define Z

b⧵
𝓁(b)
b ∪{b} we proceed as follows. Assume for con-

venience that b ∈ ⟦𝜌, 0⟧. Keeping the notation introduced in the proof of Proposition 4.3,

with b is associated a time t ≥ 0 such that Pt ≠ Pt−. Then set Z
b⧵

𝓁(b)
b ∪{b} = 𝜋WbPt .
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44 KORTCHEMSKI and THÉVENIN

Define it in the same way for every b ∈ (), in the spirit of the previous stick-breaking

construction.

Finally define Z = (Z, ∈ ). By construction, for every  ∈  the random

variable Z has law 𝜈, and these random variables are conditionally independent given

(,N, 𝜈).
Applying to (,N,Z) the map Φ of [2, Corollary 17] provides a triple Φ(,N,Z) hav-

ing the law of ( ,U,), such that almost surely, by Proposition 4.3, FΦ(,N,Z) = 𝕖. This

completes the proof. ▪
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