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Let (1,2,..., n) be the n-cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :TiTo -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into n — 1 transpositions).
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For example (multiply from left to right):
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Questions: minimal factorizations

Let (1,2,..., n) be the n-cycle.
Consider the set

N =1{(T1, ..., Tn_1) transpositions :TiTo -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into n — 1 transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#3 = 3.
A~ Question:
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Questions: minimal factorizations

Let (1,2,..., n) be the n-cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :TiTo -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into n — 1 transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#)13 = 3.

A, Question: for n large, what does a typical minimal factorization look
like?
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General framework

Let X(;, be a set of combinatorial objects of “size” n (permutations, partitions,
graphs, functions, paths, matrices, etc.).

Goal: study X,,.

A Find the cardinality of X,,. (bijective methods, generating functions)

A, Understand the typical properties of X,,. Let X,, be an element of X,
chosen uniformly at random. What can be said of X,,?

To answer this question, a possibility is to find a continuous object X
such that X,, — X as n — oo.
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What is it about?

Let (X, )n>1 be a sequence of “discret” objects converging to a “continuous”
object X:

n—oo
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AN~ From the discrete to the continuous: if a certain property P is satisfied by
all the X,, and passes through the limit, X satisfies .
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object X:
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Several uses:

AN~ From the discrete to the continuous: if a certain property P is satisfied by
all the X,, and passes through the limit, X satisfies .

N~ From the continuous to the discrete: if a certain property P is satisfied by
X and passes through the limit, X,, “roughly” satisfies P for n large.
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What is it about?

Let (X, )n>1 be a sequence of “discret” objects converging to a “continuous”
object X:

n—oo

Several uses:

AN~ From the discrete to the continuous: if a certain property P is satisfied by
all the X,, and passes through the limit, X satisfies .

N~ From the continuous to the discrete: if a certain property P is satisfied by
X and passes through the limit, X,, “roughly” satisfies P for n large.

N~ Universality: if (Yy)n>1 is another sequence of objects converging to X,
then X,, and Y,, “roughly” have the same properties for n large.
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What is it about?

Let (X )n>1 be a sequence of “discrete” objects converging to a “continuous”
object X:

n—oo

AN~ In what space do the objects live?
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What is it about?

Let (X )n>1 be a sequence of “discrete” objects converging to a “continuous”

object X:
X, — X

n—oo

AN In what space do the objects live? Here, a metric space (Z, d) (complete
separable).

AN~ What is the sense of this convergence when these objects are random?
Here, convergence in distribution:

E[F(Xn)]  —  E[F(X]]

n—oo

for every continuous bounded function F: Z — R.
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Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.

Igor Kortchemski Large discrete random structures



Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.

AN, Biology: genealogical and phylogenetical trees, etc.

Igor Kortchemski Large discrete random structures



Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.
AN, Biology: genealogical and phylogenetical trees, etc.
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Trees

Random trees

Motivations:

A~ Computer science: data structures, analysis of algorithms, networks, etc.
AN, Biology: genealogical and phylogenetical trees, etc.

A~ Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections,
etc.

AN Probability: trees are elementary pieces of various models of random
graphs, having rich probabilistic properties.
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Trees

Plane trees

A~ Question:
A~ Question:
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Trees

Plane trees

Figure: Two different plane trees

A~ Question:
A~ Question:
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Trees

Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees

A~ Question:
A~ Question:

Igor Kortchemski Large discrete random structures



Trees

Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees

A~ Question: #X, =7
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Trees

Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees

: ] L 2n—2
N~ Question: #X, = £ (7).
A~ Question:
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Trees

Plane trees

Let X,, be the set of all plane trees with n vertices.

Figure: Two different plane trees

Ar Question: #X, = (377,

A, Question: What does a large typical plane tree look like?
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Trees

Coding a tree by its contour function

Code a tree T by its contour function C(71):
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Trees

Coding a tree by its contour function

Knowing the contour function, it is easy to reconstruct the tree:
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Trees

Scaling limits

Let t,, be a uniform plane tree with n vertices.
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Let t,, be a uniform plane tree with n vertices.

Theorem (Aldous '93)

where ¢ Is the normalized Brownian excursion.
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Scaling limits

Let t,, be a uniform plane tree with n vertices.

Theorem (Aldous '93)

where © is the normalized Brownian excursion. The convergence holds in
distribution in the space C(|0,1],R), | - |lc0).
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Trees

Scaling limits

Let t,, be a uniform plane tree with n vertices.

Theorem (Aldous '93)
We have:

1 (d)
1o, (tn)) @ o))y eq
<\/ m 0<t<1 ISt

where © is the normalized Brownian excursion. The convergence holds in
distribution in the space C(|0,1],R), | - |lc0).

Remarks

AN~ The function & codes a “continuous’ tree T, called the Brownian
continuum random tree.
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Trees

Scaling limits

Let t,, be a uniform plane tree with n vertices.

Theorem (Aldous '93)
We have:

1
(\/T—n(:%mt(tn)) n%o (®(t))0<t<1 !

0<t<1

where © is the normalized Brownian excursion. The convergence holds in
distribution in the space C(|0,1],R), | - |lc0).

Remarks

AN~ The function & codes a “continuous’ tree T, called the Brownian
continuum random tree.

A ldea: t,, is a (conditioned) random walk, use (a conditioned) Donsker’s
Invariance principle.
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Trees

Scaling limits

Let t,, be a uniform plane tree with n vertices.

Theorem (Aldous '93)

where © is the normalized Brownian excursion. The convergence holds in
distribution in the space C(|0,1],R), | - |lc0).

A~ Consequence 1: for every a > 0,

P |Height(t,,) > a n} —  P(supe > a)

n—oo
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Trees

Scaling limits

Let t,, be a uniform plane tree with n vertices.

Theorem (Aldous '93)

We have:
1 (d)

—— Cone(t =
( /—zn 2nt( n))0<t<1 Moo <t<

where © is the normalized Brownian excursion. The convergence holds in
distribution in the space C(|0,1],R), | - |lc0).

A~ Consequence 1: for every a > 0,

P |Height(t,,) > a n} —  P(supe > a)

n—o0
(4k?a® — 1)6_2k2 a*

k=1
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Trees

Scaling limits
Let t,, be a uniform plane tree with n vertices.

Theorem (Aldous '93)

We have: .
(d)
(—cgnt(tn)) “  e®)ocrer

V2n 0<t<1

where © is the normalized Brownian excursion. The convergence holds in
distribution in the space C(|0,1],R), | - |lc0).

AN~ Consequence 2: for every ¢ > 0,

P (there exists a vertex of t,, with 3 grafted subtrees of sizes > en) — 0.
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Trees

Universality

The Brownian continuum random tree is the scaling limit of:
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Trees

Universality

The Brownian continuum random tree is the scaling limit of:

» different families of trees: non-plane trees (Marckert & Miermont,
Panagiotou & Stufler, Stufler), Markov-branching trees (Haas &
Miermont), cut-trees (Bertoin & Miermont).
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Trees

Universality

The Brownian continuum random tree is the scaling limit of:

» different families of trees: non-plane trees (Marckert & Miermont,
Panagiotou & Stufler, Stufler), Markov-branching trees (Haas &
Miermont), cut-trees (Bertoin & Miermont).

> different families of tree-like structures: stack triangulations (Albenque &
Marckert), graphs from subcritical classes (Panagiotou, Stufler & Weller),

dissections (Curien, Haas & K), various maps (Janson & Stefansson,
Bettinelli, Caraceni, K & Richier).
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Triangulations & dissections

I. TREES

II. TRIANGULATIONS & DISSECTIONS

II1I. MINIMAL FACTORIZATIONS
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Triangulations & dissections

Triangulations

A~ Question:
A~ Question:
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Triangulations & dissections

Triangulations

Figure: A triangulation of Xyp.

A~ Question:
A~ Question:
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Triangulations & dissections

Triangulations

Let X(,, be the set of all triangulations of the polygon whose vertices are
2i71)

e~ (j=0,1,...,n—1).

Figure: A triangulation of Xyp.

A~ Question:
A~ Question:

Igor Kortchemski Large discrete random structures



Triangulations & dissections

Triangulations

Let X(,, be the set of all triangulations of the polygon whose vertices are
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e~ (j=0,1,...,n—1).

Figure: A triangulation of Xyp.

A~ Question: #X,, =7
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Triangulations & dissections

Triangulations

Let X(,, be the set of all triangulations of the polygon whose vertices are
2i71)

e~ (j=0,1,...,n—1).

Figure: A triangulation of Xyp.

Ar Question: #X,, = ﬁ (2$:34).
A~ Question:
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Triangulations & dissections

Triangulations

Let X(,, be the set of all triangulations of the polygon whose vertices are
2i71)

e~ (j=0,1,...,n—1).

Figure: A triangulation of Xyp.

A~ Question: #X, = — (2$:34).

A, Question: What does a large typical triangulation look like?
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Triangulations & dissections

What space for triangulations?
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Triangulations & dissections

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z, d).
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Triangulations & dissections

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d). If
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}

are the r-neighborhoods of X and Y
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Triangulations & dissections

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d). If
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}
are the r-neighborhoods of X and Y, we set

du(X,Y) =inf{r >0; X C Y, and Y C X,}.
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Triangulations & dissections

The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d). If
Xy ={ze Z;d(z,X) <1}, Y. ={ze Z;d(z,Y) <1}
are the r-neighborhoods of X and Y, we set

du(X,Y) =inf{r >0; X C Y, and Y C X,}.
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices.
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. 2% Lie)

n—oo
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. 2% Lie)
n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. 2% Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. 2% Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

N ]
.....
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that
d
Tn —2%  L(e),

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(&), with the change
of variable length = 2 sin(710).
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Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that
d
Tn —2%  L(e),

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(&), with the change
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Theorem (Aldous '94)

Forn > 3, let T,, be a uniform triangulation with n vertices. Then there exists
a random compact subset L(e) of the unit disk such that

T. 2% Lie)

n—oo

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L(e) is called the Brownian triangulation (coded by the Brownian excursion).

AN~ Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L(&), with the change
of variable length = 2 sin(710).
It is the probability measure with density:
1 30 —1
mO2(1—0)2y/1— 20

(Aldous, Devroye—Flajolet—Hurtado—Noy—-Steiger)

1 do.

<0<

NI

1
3
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

04 06 08 1
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

04 06 08 1

Let t be a time of local minimum.
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

ol.ft t Olﬁ ols 1

Let t be a time of local minimum.
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

ol.ft t Olﬁ ols 1

Let t be a time of local minimum. Set gy = sup{s < t; &s = ¢} and
di =inf{s > t; e = e¢}.
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

08 1

Let t be a time of local minimum. Set g = sup{s < t; &s = @} and
di = inf{s > t; s = e¢}.
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

L e

08 1

Let t be a time of local minimum. Set g = sup{s < t; &s = @} and

d¢ = inf{s > t; @s = e¢}. Draw the chords |e 279, e 2ITt| [~ 2Tt o~ 2imdy]
et [e2m9t e 2],
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

6—2?;71'6175
e—Qiﬂgt

\ 6—2i7rt

08 1

Let t be a time of local minimum. Set g; = sup{s < t; & = @} and

di = inf{s > t; s = @¢}. Draw the chords [e 279t e 2I7t| [e ATt e—2imdy]
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

6—2?;71'6175
e—Qiﬂgt

—2mt

\ €

08 1

Let t be a time of local minimum. Set g; = sup{s < t; & = @} and

di = inf{s > t; s = @¢}. Draw the chords [e 279t e 2I7t| [e ATt e—2imdy]

Do this for all the times of local minimum.
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

L e

0. 02 04 06 08 1

Let t be a time of local minimum. Set g = sup{s < t; &s = @} and

d¢ = inf{s > t; @s = e¢}. Draw the chords |e 279, e 2ITt| [~ 2Tt o~ 2imdy]
et [e2m9t e 2],

Do this for all the times of local minimum.
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Triangulations & dissections

Constructing the Brownian triangulation

Start with the Brownian excursion e:

L e

0. 02 04 06 08 1

Let t be a time of local minimum. Set g = sup{s < t; &s = @} and

d¢ = inf{s > t; @s = e¢}. Draw the chords |e 279, e 2ITt| [~ 2Tt o~ 2imdy]
ot [e—zmgt, e—2i7tdt].

Do this for all the times of local minimum.

The closure of this union, L(e), is called the Brownian triangulation.
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Triangulations & dissections

Dissections

Let P,, be the polygon whose vertices are e j=0,1,..., n—1).
)
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Triangulations & dissections

Dissections

Let P,, be the polygon whose vertices are e j=0,1,...,n—1).

A dissection of P, is the union of the sides of P,, and of a collection of
non-crossing diagonals.

Igor Kortchemski Large discrete random structures



Triangulations & dissections

Dissections

Let P,, be the polygon whose vertices are e j=0,1,...,n—1).

e

A dissection of P, is the union of the sides of P,, and of a collection of
non-crossing diagonals.
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Triangulations & dissections

Dissections

A~ Question:
A~ Question:
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Triangulations & dissections

Dissections

e

Figure: A dissection of a 10-gon.

A~ Question:
A~ Question:
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Triangulations & dissections

Dissections

Soit X, I'ensemble des dissections du polygone dont les sommets sont
2i71)

e~ (j=0,1,...,n—1).

e

Figure: A dissection of a 10-gon.

A~ Question:
A~ Question:
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Triangulations & dissections

Dissections

Soit X, I'ensemble des dissections du polygone dont les sommets sont
2i71)

e~ (j=0,1,...,n—1).

e

Figure: A dissection of a 10-gon.

A~ Question: #X,, =7
A~ Question:

Igor Kortchemski Large discrete random structures



Triangulations & dissections

Dissections

Soit X, I'ensemble des dissections du polygone dont les sommets sont
2i71)

e~ (j=0,1,...,n—1).

e

Figure: A dissection of a 10-gon.

A Question: #X,, = no explicit simple formula.

A~ Question:
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Triangulations & dissections

Dissections

Soit X, I'ensemble des dissections du polygone dont les sommets sont
2i71)

e~ (j=0,1,...,n—1).

e

Figure: A dissection of a 10-gon.

A Question: #X,, = no explicit simple formula.

A, Question: What does a large typical dissection look like?
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Triangulations & dissections

Large typical dissections
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Theorem (Curien & K. '12).

For n > 3, let D,, be a uniform dissection of P,.
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Theorem (Curien & K. '12).

For n > 3, let D,, be a uniform dissection of P,,. Then the convergence

D. —2y 1(e),

n—oo
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4 . . )
Theorem (Curien & K. '12).
\ J

For n > 3, let D,, be a uniform dissection of P,,. Then the convergence

(d)

D, Lie),

n—oo

holds in distribution for the Hausdorff distance on compact subsets of
the unit disk.
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4 . . )
Theorem (Curien & K. '12).
\ J

For n > 3, let D,, be a uniform dissection of P,,. Then the convergence

(d)

D, Lie),

n—oo

holds in distribution for the Hausdorff distance on compact subsets of
the unit disk.

A~ Consequence: The distribution of the length of the longest chord of D,
with the change of variable length = 2sin(7t0) converges in distribution to the
probability measure with density

1 30 —1

- do.
m02(1 —0)2y/1 — 20

1

<0<

Wl
NI|—
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4 . . )
Theorem (Curien & K. '12).
\ J

For n > 3, let D,, be a uniform dissection of P,,. Then the convergence

(d)

D, Lie),

n—oo

holds in distribution for the Hausdorff distance on compact subsets of
the unit disk.

Figure: The dual tree of a dissection.
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Minimal factorizations

I. TREES

II. TRIANGULATIONS

II1I. MINIMAL FACTORIZATIONS
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Minimal factorizations

Minimal factorizations

A~ Question:

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

A~ Question:

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,...,1) be the n cycle.

Consider the set
N, ={(t1,...,Tn_1) transpositions : T1To---Th_1 = (1,2,..., 1)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question:

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,...,1) be the n cycle.

Consider the set
N, ={(t1,...,Tn_1) transpositions : T1To---Th_1 = (1,2,..., 1)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question: #M, =7

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :T1To -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :T1To -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into transpositions).

A~ Question: #M, =7
For example (multiply from left to right):

(1,2,3) =(1,3)(2,3) = (2,3)(1,2) = (1,2)(1, 3),

#9015 = 3.
A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :T1To -+ Tn—1 = (1,2,..., n)}

of minimal factorizations (of the n-cycle into transpositions).
AN~ Question: #M1, =n""2 (Dénes, 1959)

For example (multiply from left to right):
(1,2,3) =(1,3)(2,3) =(2,3)(1,2) = (1,2)(1, 3),

#9015 = 3.
A~ Question:
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Minimal factorizations

Minimal factorizations

Let (1,2,..., n) be the n cycle.

Consider the set
N =1{(T1, ..., Tn_1) transpositions :T1To -+ Tn—1 = (1,2,..., n)}
of minimal factorizations (of the n-cycle into transpositions).

AN Question: #91,, =n™2 (Dénes, 1959)

For example (multiply from left to right):
(1,2,3) =(1,3)(2,3) =(2,3)(1,2) = (1,2)(1, 3),

#)13 = 3.

A, Question: for n large, what does a typical minimal factorization look
like?

Igor Kortchemski Large discrete random structures



Minimal factorizations

What space for minimal factorizations?
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Minimal factorizations

What space for minimal factorizations?

compact subsets of the unit disk.
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). Take
((1,3),(6,12), (1,5),(7,12), (9,10), (11,12),(2,3), (4,5), (1,6), (8,11), (9,11))

10

) o 1 9 10

O O
80 012 8() 012
7 O o1 7 O o1
O O O O
6 o o - 6 o o -

VI 5 4 3
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 1.

( (1,3 ,(6,12),(1,5),(7,12),(9,10), (11,12),(2,3), (4,5),(1,6), (8,11), (9, 11
prod;:/(1,3)
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 2:
( (1.3).(6,12) ,(1,5),(7,12),(9,10),(11,12),(2,3), (4,5), (1,6), (8 11), (9, 11))

N

product=(1,3)(6,12)
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 3:
((1,3),(6,12),(1,5), (7,12), (9,10), (11,12}, (2, 3), (4,5), (1,6), (8, 11), (9, 11))

~N

product=(1,3,5)(6,12)
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 4:
((1,3),(6,12),(1,5),(7,12), (9, 10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N

product=(1,3,5)(6,7,12)
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 5:
((1,3),(6,12),(1,5),(7,12), (9, 10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N

product=(1,3,5)(6,7,12)(9,10)

9 10 11 9

10
O/O O O/O O
8 o 12 S . 12
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 6:
(£1, 3),(6,12), (1,5), (7,12), (9, 10), (11,12), (2, 3), (4,5), (1,6), (8, 11), (9, 11))

~N

product=(1,3,5)(6,7,11,12)(9,10)

9 10 11 9

O/O
8 o 12 S . 12
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n =12)). For k =T7:
(£1,3), (6,12), (1,5), (7,12), (9, 10), (11,12), (2,3), (4,5), (1,6), (8,11), (9, 11))

N

product=(1,2,3,5)(6,7,11,12)(9,10)

9 10 11 9

O/O
8 o 12 S . 12
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 8:
(&1, 3),(6,12), (1,5), (7,12), (9, 10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N

product=(1,2,3,4,5)(6,7,11,12)(9,10)

9 10 11 9

O/O
8 o 12 S . 12
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n =12)). For k = 9:
(£1, 3),(6,12), (1,5), (7,12), (9, 10), (11,12), (2,3), (4,5), (1,6), (8, 11), (9, 11))

N

product=(1,2,3,4,5,6,7,11,12)(9,10)

10 10

9 11
i 9 o 1

8 o 12 S . 12
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 10:
((1,3),(6,12),(1,5),(7,12),(9,10), (11,12), (2, 3), (4,5), (1,6), (8, 11), (9, 11))

A\ 7
V

product=(1,2,3,4,5,6,7,8,11,12)(9,10)

10 10

9 11
i 9 o 1

8 12 S 12
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Minimal factorizations

If (t41,..., Tn_1) is @ minimal factorization of length n and 1 <k < n:
» 1 is the compact subset obtained by drawing the chords t;, 1 <1 < k.
» P is the compact subset associated to the cycles of 1115 - - - Ty.

AN~ Example (n = 12)). For k = 11:
(£1,3), (6,12), (1,5),(7,12), (9, 10), (11,12), (2, 3), (4,5), (1,6), (8, 11), (9, 111)

N

product=(1,2,3,4,5,6,7,8,9,10,11,12)

10 10

9 11
s 9 11

8 12 S 12
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Minimal factorizations

Let (1", ..., Ty ;) be a uniform minimal factorization of the n-cycle.
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Minimal factorizations

Let (1", ..., Ty ;) be a uniform minimal factorization of the n-cycle.

The following film represents
(F%.. Pk.,)

with K;; = [cf(n)]| for fixed n = 20000, as c varies (for a certain mystery
function f).

K.n=0050 f [
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Minimal factorizations

Let (1", ..., Ty ;) be a uniform minimal factorization of the n-cycle.

The following film represents
(F%... Pk.,)

with K;; = [cf(n)]| for fixed n = 20000, as c varies (for a certain mystery
function f).

Who is f?
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Minimal factorizations

The following film represents

(TR, PR.)

with | K;; = [cn | | for fixed n, as c varies.

K_n= 00080 n
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Minimal factorizations

The following film represents

with | K,, = [cy/n] | for fixed 1, as ¢ varies.

K_n = 0,050 n*(1/2)
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Minimal factorizations

‘Theorem (Féray, K.).\

- J

Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1with K, — .

(ii)

(i)
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Minimal factorizations

‘Theorem (Féray, K.).\
(& J
Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1with K, — .

(i) If K, = o(y/n):
(ii)

(i)

(iv)
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Minimal factorizations

‘Theorem (Féray, K.).\
(& J
Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1with K, — .

(i) If K, = o(y/n):
(ii) |f5% » ¢ € (0, 00):

(i)

(iv)
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Minimal factorizations

‘Theorem (Féray, K.).\
(& J
Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1with K, — .

(i) If K, = o(y/n):
(ii) |f5% » ¢ € (0, 00):

(iii) If & — oo and "= — oo

(iv)
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Minimal factorizations

‘Theorem (Féray, K.).\
(& J
Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1with K, — .

(i) If K, = o(y/n):
(ii) |f5% » ¢ € (0, 00):

(iii) If & — oo and "= — oo

(iv) If 2=5n ¢ € [0, 00):
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Minimal factorizations

‘Theorem (Féray, K.).\

- J

Let (tl(n) ..... tT(:l)l) be a uniform minimal factorization of length n and

1 <K,<n-—1with K, — .
(i) If Kn =o(yn): (F% . P8 ) — (S,8).
(ii) |f5% » ¢ € (0, 00):

(iii) If & — oo and "= — oo

(iv) If 2=5n ¢ € [0, 00):
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Minimal factorizations

‘Theorem (Féray, K.).\

Let (tl(n), - ,tT(:l)l) be a uniform minimal factorization of length n and
1 <K,<n-—1with K, — .
() F K =o(vm): (2,7 ) % (s5s)
" " n— 00

(i) If \K/% > c € (0,00): there exists a random compact subset L. such
that @

- d

(0%, 7)) S (L)

(iii) If & — oo and "= — oo

(iv) If 2=5n ¢ € [0, 00):
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Minimal factorizations

‘Theorem (Féray, K.).\

Let (tl(n) ..... tT(:l)l) be a uniform minimal factorization of length n and
1 <K,<n-—1with K, — .
() F K =o(vm): (2,7 ) % (s5s)
e " n—00
(i) If \K/% >Cc € (0,00): there exists a random compact subset L. such
that @
. d
0%, 78) 5 (LeLe)
K., \ n—K, \ .
(iii) If 00 and T 00
(I%.. PK.) _ (L(e), L(e))
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Minimal factorizations

‘Theorem (Féray, K.).\

Let (tl(n) ..... tT(:l)l) be a uniform minimal factorization of length n and
1 <K,<n-—1with K, — .
(i) If Ky = o(vm): (T2, 90 ) %) (S, S).
(i) If \K/% >Cc € (0,00): there exists a random compact subset L. such
that @
. d
0%, 78) 5 (LeLe)
K., \ n—K, \ .
(iii) If 00 and T 00
n (d)
(I%.. PK.) _ (L(e), L(e))
(iv) If “\_/%“ » ¢ € |0, 00):
52 % Le), P %) L. (withLy=5).

Igor Kortchemski Large discrete random structures 44 / X
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Minimal factorizations

What is the limit?

AN Lo is the unit circle.
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Minimal factorizations

What is the limit?

A, Lo is Aldous’ Brownian triangulation.
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Minimal factorizations

What is the limit?

A, Lo is Aldous’ Brownian triangulation.

1.0

06

02

I 0.2 0.4 0.6 0.8 1.0

Figure: A Brownian excursion (left) coding L., (right).
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Minimal factorizations

A For 0 < ¢ < oo, L, is a lamination, coded by an excursion of an
explicit spectrally positive Lévy process.

Igor Kortchemski Large discrete random structures



Minimal factorizations

A For 0 < ¢ < oo, L, is a lamination, coded by an excursion of an
explicit spectrally positive Lévy process.

1:0 ; \

| N /

\ |
NN \\u ?
N\ \

0.2 J\

| I I I | I I I | I I I |
0.2 0.4 0.6 0.8

Figure: An excursion of a spectrally positive Lévy process (left) coding Ls (right).
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Minimal factorizations

A For 0 < ¢ < oo, L, is a lamination, coded by an excursion of an
explicit spectrally positive Lévy process.

1.4 } ,

1.2 7 \\\ﬂ\‘\

| \\
g NN

N

. i N,
\\\ \

0.2 J\

| I I I | I I I | I I I |
0.2 0.4 0.6 0.8

Figure: An excursion of a spectrally positive Lévy process (left) coding Ls (right).

A, The Laplace exponent of the Lévy process is

2\
D(N) = c? 1—\/1+? + Ac.
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Minimal factorizations

A For 0 < ¢ < oo, L, is a lamination, coded by an excursion of an
explicit spectrally positive Lévy process.

1.4 } ,

1.2 7 \\\ﬂ\‘\

| \\
g NN

N

. i N,
\\\ \

0.2 J\

| I I I | I I I | I I I |
0.2 0.4 0.6 0.8

Figure: An excursion of a spectrally positive Lévy process (left) coding Ls (right).

A, The Laplace exponent of the Lévy process is

2\
D(N) = c? 1—\/1+? + Ac.

s . n
A~ Thévenin shows the convergence of ( LC\/HJ>C>O to (L¢)eso as a
process.
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Minimal factorizations

Main idea of the proof
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

kK —k-1) B|IBI—2 | IB|!BI—2
- (ea) (I )

BeP

where K(P) is the Kreweras complement of P.
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

kK —k-1) B|IBI—2 | IB|!BI—2
- (ea) (I )

BeP

where K(P) is the Kreweras complement of P.

o ¥ 1
8@ 12
7 /1

6 72

5 4 3
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

kK —k-1) B|IBI—2 | IB|!BI—2
- (ea) (I )

BeP

where K(P) is the Kreweras complement of P.
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

K-k -1)! <

BeP

B2 %2
H(Bl)!)' H)(|B|—1)! |

where K(P) is the Kreweras complement of P.
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

K-k -1)! <

BeP

B2 %2
H(Bl)!)' H)(|B|—1)! |

where K(P) is the Kreweras complement of P.
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

K-k -1)! <

BeP

B2 %2
H(Bl)!)' H)(|B|—1)! |

where K(P) is the Kreweras complement of P.

% 10
8.0 "',':'-""‘ oll
7 .t‘x' “, 19
G ® “',»" ol
‘o' ./
5. ®-==-9 )
K(P) 4 3
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

kl(n—k—1)! B|IBI—2 IB|!BI—2
'<H (Bl)!)' H)(|B|—1)! |

BeP

where K(P) is the Kreweras complement of P.

10 9 10

90/0 11 8’.--.‘",:"‘. .11
8 O ]-2 '0' “¢"
7 @* A 12
1 R0
7 / 6° ""“ ..1
O o" Ny
2 : o
6 ; 5 5 5‘ ® @ )
P 4 ey +3
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

kK —k-1) B|IBI—2 | IB|!BI—2
(ea) (I )

BeP

where K(P) is the Kreweras complement of P.

A~ Consequence 1: (take k = 1)

m—2) it2  (n—i)n-t=2)
n2  1i—1) (m—1i-—1)!

P (tl(n) — (a, a +1) for some a) —

for n and 1 large
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Minimal factorizations

Proposition (Key fact).]

Fix 1 <k <n—1 and let P be a non-crossing partition with n vertices
and n — k blocks. Then

kK —k-1) B|IBI—2 | IB|!BI—2
(ea) (I )

BeP

where K(P) is the Kreweras complement of P.

A~ Consequence 1: (take k = 1)

m—2) it2  (mn—i)n—i=2)

L Y —

2 (i—1) (n—i—-1) {3/

for n and i large, which explains the \/n transition.

P (tl(n) — (a, a +1) for some a) —
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Minimal factorizations

A~ Consequence 2:
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A~ Consequence 2:

It follows that T(tl(n)tz(n) = -tlin)) is coded by a bitype biconditioned
Bienaymé—Galton—Watson (or simply generated) tree (n — k blue vertices and
k 4+ 1 red vertices)!
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Minimal factorizations

A~ Consequence 2:

It follows that T(tl(n)tz(n) x -tlin)) is coded by a bitype biconditioned

Bienaymé—Galton—Watson (or simply generated) tree (n — k blue vertices and
k 4+ 1 red vertices)!

A~ different conditioning than those considered for multitype BGW trees by
Marckert, Miermont, Berzunza (total size fixed, or size of one type fixed).
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Minimal factorizations

A~ Consequence 2:

It follows that T(tl(n)tz(n) x -tlin)) is coded by a bitype biconditioned

Bienaymé—Galton—Watson (or simply generated) tree (n — k blue vertices and

k 4+ 1 red vertices)!

A~ different conditioning than those considered for multitype BGW trees by
Marckert, Miermont, Berzunza (total size fixed, or size of one type fixed).

We develop a new machinery to study limits of such random trees.
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