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Trees Triangulations & dissections Minimal factorizations

Questions: minimal factorizations

Let (1, 2, . . . ,n) be the n-cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into n- 1 transpositions).

y Question:

#Mn =?

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?
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Trees Triangulations & dissections Minimal factorizations

General framework

Let Xn be a set of combinatorial objects of “size” n

(permutations, partitions,
graphs, functions, paths, matrices, etc.).

Goal: study Xn.

y Find the cardinality of Xn.

(bijective methods, generating functions)

y Understand the typical properties of Xn. Let Xn be an element of Xn

chosen uniformly at random. What can be said of Xn?

To answer this question, a possibility is to find a continuous object X
such that Xn ! X as n ! 1.

Igor Kortchemski Large discrete random structures 2 / 672
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Trees Triangulations & dissections Minimal factorizations

What is it about?

Let (Xn)n>1 be a sequence of “discret” objects converging to a “continuous”
object X:

Xn �!
n!1

X.

Several uses:y From the discrete to the continuous: if a certain property P is satisfied by
all the Xn and passes through the limit, X satisfies P.

y From the continuous to the discrete: if a certain property P is satisfied by
X and passes through the limit, Xn “roughly” satisfies P for n large.

y Universality: if (Yn)n>1 is another sequence of objects converging to X,
then Xn and Yn “roughly” have the same properties for n large.
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What is it about?

Let (Xn)n>1 be a sequence of “discrete” objects converging to a “continuous”
object X:

Xn �!
n!1

X.

y In what space do the objects live?

Here, a metric space (Z,d) (complete
separable).y What is the sense of this convergence when these objects are random?
Here, convergence in distribution:

E [
F(Xn)] �!

n!1
E [

F(X)]

for every continuous bounded function F : Z ! R.
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Trees Triangulations & dissections Minimal factorizations

Random trees

Motivations:

y Computer science: data structures, analysis of algorithms, networks, etc.

y Biology: genealogical and phylogenetical trees, etc.

y Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections,
etc.

y Probability: trees are elementary pieces of various models of random
graphs, having rich probabilistic properties.

Igor Kortchemski Large discrete random structures 7 / -i
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Trees Triangulations & dissections Minimal factorizations

Plane trees

Let Xn be the set of all plane trees with n vertices.

Figure: Two different plane trees

y Question:

#Xn = 1
n

�2n-2
n-1

�
.

y Question:

What does a large typical plane tree look like?
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Trees Triangulations & dissections Minimal factorizations

Coding a tree by its contour function
Code a tree ⌧ by its contour function C(⌧):
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Coding a tree by its contour function

Knowing the contour function, it is easy to reconstruct the tree:

Igor Kortchemski Large discrete random structures 11 / -i



Trees Triangulations & dissections Minimal factorizations

Scaling limits
Let tn be a uniform plane tree with n vertices.

Theorem (Aldous ’93)

We have: ✓
1p
2n

C2nt(tn)

◆

06t61

(d)�!
n!1

( (t))06t61 ,

where is the normalized Brownian excursion.

The convergence holds in
distribution in the space C([0, 1],R), k · k1).

y Consequence 2: for every " > 0,

P (
there exists a vertex of tn with 3 grafted subtrees of sizes > "n

) ! 0.
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where is the normalized Brownian excursion. The convergence holds in
distribution in the space C([0, 1],R), k · k1).

Remarks

y The function codes a “continuous” tree T , called the Brownian
continuum random tree.

y Idea: tn is a (conditioned) random walk, use (a conditioned) Donsker’s
invariance principle.
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Universality

The Brownian continuum random tree is the scaling limit of:

I different families of trees: non-plane trees (Marckert & Miermont,
Panagiotou & Stufler, Stufler), Markov-branching trees (Haas &
Miermont), cut-trees (Bertoin & Miermont).

I different families of tree-like structures: stack triangulations (Albenque &
Marckert), graphs from subcritical classes (Panagiotou, Stufler & Weller),
dissections (Curien, Haas & K), various maps (Janson & Stefánsson,
Bettinelli, Caraceni, K & Richier).
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Triangulations

Let Xn be the set of all triangulations of the polygon whose vertices are
e

2i⇡j
n (j = 0, 1, . . . ,n- 1).

Figure: A triangulation of X10.

y Question:

#Xn = 1
n-2

�2n-4
n-3

�
.

y Question:

What does a large typical triangulation look like?
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Typical triangulations
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What space for triangulations?
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The Hausdorff distance

Let X, Y be two subsets of a metric space (Z,d).

If

Xr = {z 2 Z;d(z,X) 6 r}, Yr = {z 2 Z;d(z, Y) 6 r}

are the r-neighborhoods of X and Y, we set

dH(X, Y) = inf {r > 0;X ⇢ Yr and Y ⇢ Xr} .
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Theorem (Aldous ’94)

For n > 3, let Tn be a uniform triangulation with n vertices.

Then there exists
a random compact subset L( ) of the unit disk such that

Tn
(d)���!

n!1
L( ),

where the convergence holds in distribution for the Hausdorff distance on all
compact subsets of the unit disk.

L( ) is called the Brownian triangulation (coded by the Brownian excursion).

y Consequence: we can find the distribution of the length (i.e. the
proportion seen from the center) of the longest chord of L( ), with the change
of variable length = 2 sin(⇡✓).

It is the probability measure with density:

1

⇡

3✓- 1

✓

2(1- ✓)2
p
1- 2✓

1 1
36✓6 1

2
d✓.

(Aldous, Devroye–Flajolet–Hurtado–Noy–Steiger)
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Constructing the Brownian triangulation
Start with the Brownian excursion :

The closure of this union, L( ), is called the Brownian triangulation.
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Constructing the Brownian triangulation
Start with the Brownian excursion :

0.2 0.4 0.6 0.8 10. t

Let t be a time of local minimum. Set gt = sup{s < t; s = t} and
dt = inf{s > t; s = t}.

The closure of this union, L( ), is called the Brownian triangulation.

Igor Kortchemski Large discrete random structures 20 / -⇡



Trees Triangulations & dissections Minimal factorizations

Constructing the Brownian triangulation
Start with the Brownian excursion :

0.2 0.4 0.6 0.8 10.gt dtt
Let t be a time of local minimum. Set gt = sup{s < t; s = t} and
dt = inf{s > t; s = t}.

The closure of this union, L( ), is called the Brownian triangulation.

Igor Kortchemski Large discrete random structures 20 / -⇡



Trees Triangulations & dissections Minimal factorizations

Constructing the Brownian triangulation
Start with the Brownian excursion :

0.2 0.4 0.6 0.8 10.gt dtt
Let t be a time of local minimum. Set gt = sup{s < t; s = t} and
dt = inf{s > t; s = t}. Draw the chords

⇥
e

-2i⇡gt , e-2i⇡t⇤,
⇥
e

-2i⇡t, e-2i⇡dt
⇤

et
⇥
e

-2i⇡gt , e-2i⇡dt
⇤
.

The closure of this union, L( ), is called the Brownian triangulation.
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Dissections

Let Pn be the polygon whose vertices are e

2i⇡j
n (j = 0, 1, . . . ,n- 1).

A dissection of Pn is the union of the sides of Pn and of a collection of
non-crossing diagonals.
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Dissections

Soit Xn l’ensemble des dissections du polygone dont les sommets sont
e

2i⇡j
n (j = 0, 1, . . . ,n- 1).

Figure: A dissection of a 10-gon.

y Question:

#Xn = no explicit simple formula.

y Question:

What does a large typical dissection look like?
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Large typical dissections
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For n > 3, let Dn be a uniform dissection of Pn.

Then the convergence

Dn
(d)���!

n!1
L( ),

holds in distribution for the Hausdorff distance on compact subsets of
the unit disk.

Theorem (Curien & K. ’12).
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For n > 3, let Dn be a uniform dissection of Pn. Then the convergence

Dn
(d)���!

n!1
L( ),

holds in distribution for the Hausdorff distance on compact subsets of
the unit disk.

Theorem (Curien & K. ’12).

y Consequence: The distribution of the length of the longest chord of Dn,
with the change of variable length = 2 sin(⇡✓) converges in distribution to the
probability measure with density

1

⇡

3✓- 1

✓

2(1- ✓)2
p
1- 2✓

1 1
36✓6 1

2
d✓.
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Trees Triangulations & dissections Minimal factorizations

For n > 3, let Dn be a uniform dissection of Pn. Then the convergence

Dn
(d)���!

n!1
L( ),

holds in distribution for the Hausdorff distance on compact subsets of
the unit disk.

Theorem (Curien & K. ’12).

Figure: The dual tree of a dissection.
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Trees Triangulations & dissections Minimal factorizations

I. Trees

II. Triangulations

III. Minimal factorizations
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Trees Triangulations & dissections Minimal factorizations

Minimal factorizations

Let (1, 2, . . . ,n) be the n cycle.

Consider the set

Mn = {(⌧1, . . . , ⌧n-1) transpositions : ⌧1⌧2 · · · ⌧n-1 = (1, 2, . . . ,n)}

of minimal factorizations (of the n-cycle into transpositions).

y Question:

#Mn =

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

#M3 = 3.

y Question:

for n large, what does a typical minimal factorization look
like?
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Trees Triangulations & dissections Minimal factorizations

What space for minimal factorizations?

compact subsets of the unit disk.
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What space for minimal factorizations?

compact subsets of the unit disk.
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). Take
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)

�
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 1:
�

(1, 3)| {z }
product=(1,3)

, (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 2:
�

(1, 3), (6, 12)| {z }
product=(1,3)(6,12)

, (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 30 / @0



Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 3:
�
(1, 3), (6, 12), (1, 5)| {z }
product=(1,3,5)(6,12)

, (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 4:
�
(1, 3), (6, 12), (1, 5), (7, 12)| {z }

product=(1,3,5)(6,7,12)

, (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 32 / @0



Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 5:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10)| {z }

product=(1,3,5)(6,7,12)(9,10)

, (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 6:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12)| {z }

product=(1,3,5)(6,7,11,12)(9,10)

, (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)
�
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 7:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3)| {z }

product=(1,2,3,5)(6,7,11,12)(9,10)

, (4, 5), (1, 6), (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 35 / @0



Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 8:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5)| {z }

product=(1,2,3,4,5)(6,7,11,12)(9,10)

, (1, 6), (8, 11), (9, 11)
�
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 9:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6)| {z }

product=(1,2,3,4,5,6,7,11,12)(9,10)

, (8, 11), (9, 11)
�

Igor Kortchemski Large discrete random structures 37 / @0



Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 10:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11)| {z }

product=(1,2,3,4,5,6,7,8,11,12)(9,10)

, (9, 11)
�
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Trees Triangulations & dissections Minimal factorizations

If (⌧1, . . . , ⌧n-1) is a minimal factorization of length n and 1 6 k 6 n:
I Fk is the compact subset obtained by drawing the chords ⌧i, 1 6 i 6 k.
I Pk is the compact subset associated to the cycles of ⌧1⌧2 · · · ⌧k.

y Example (n = 12)). For k = 11:
�
(1, 3), (6, 12), (1, 5), (7, 12), (9, 10), (11, 12), (2, 3), (4, 5), (1, 6), (8, 11), (9, 11)| {z }

product=(1,2,3,4,5,6,7,8,9,10,11,12)

�
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Trees Triangulations & dissections Minimal factorizations

Let (⌧n1 , . . . , ⌧
n
n-1) be a uniform minimal factorization of the n-cycle.

The following film represents
�
Fn
Kn

,Pn
Kn

�

with Kn = bcf(n)c for fixed n = 20000, as c varies (for a certain mystery
function f).
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Let (⌧n1 , . . . , ⌧
n
n-1) be a uniform minimal factorization of the n-cycle.

The following film represents
�
Fn
Kn

,Pn
Kn

�

with Kn = bcf(n)c for fixed n = 20000, as c varies (for a certain mystery
function f).
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Trees Triangulations & dissections Minimal factorizations

Let (⌧n1 , . . . , ⌧
n
n-1) be a uniform minimal factorization of the n-cycle.

The following film represents
�
Fn
Kn

,Pn
Kn

�

with Kn = bcf(n)c for fixed n = 20000, as c varies (for a certain mystery
function f).

Who is f?
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Trees Triangulations & dissections Minimal factorizations

The following film represents �
Fn
Kn

,Pn
Kn

�

with Kn = bcnc for fixed n, as c varies.
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Trees Triangulations & dissections Minimal factorizations

The following film represents �
Fn
Kn

,Pn
Kn

�

with Kn = bc
p
nc for fixed n, as c varies.
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Trees Triangulations & dissections Minimal factorizations

Let (t(n)
1 , . . . , t(n)

n-1) be a uniform minimal factorization of length n and
1 6 Kn 6 n- 1 with Kn ! 1.

(i)

If Kn = o(
p
n):

�
Fn
Kn

,Pn
Kn

� (d)�!
n!1

(S, S).

(ii)

If Knp
n
! c 2 (0,1): there exists a random compact subset Lc such

that �
Fn
Kn

,Pn
Kn

� (d)�!
n!1

(Lc,Lc).

(iii)

If Knp
n
! 1 and n-Knp

n
! 1:

�
Fn
Kn

,Pn
Kn

� (d)�!
n!1

(L( ),L( )).

(iv)

If n-Knp
n

! c 2 [0,1):

Fn
Kn

(d)�!
n!1

L( ), Pn
Kn

(d)�!
n!1

Lc (with L0 = S).

Theorem (Féray, K.).
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Trees Triangulations & dissections Minimal factorizations

What is the limit?

y L0 is the unit circle.
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Trees Triangulations & dissections Minimal factorizations

What is the limit?

y L1 is Aldous’ Brownian triangulation.

Figure: A Brownian excursion (left) coding L1 (right).
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Trees Triangulations & dissections Minimal factorizationsy For 0 < c < 1, Lc is a lamination, coded by an excursion of an
explicit spectrally positive Lévy process.

Figure: An excursion of a spectrally positive Lévy process (left) coding L5 (right).

y The Laplace exponent of the Lévy process is

�(�) = c

2

 

1-

r
1+

2�

c

!

+ �c.

y Thévenin shows the convergence of
⇣
Fn
bc

p
n
c
⌘

c>0
to (Lc)c>0 as a

process.
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Trees Triangulations & dissections Minimal factorizations

Main idea of the proof
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Trees Triangulations & dissections Minimal factorizations

Fix 1 6 k 6 n - 1 and let P be a non-crossing partition with n vertices
and n- k blocks. Then

P
⇣
P(t(n)

1 t
(n)
2 · · · t(n)

k ) = P

⌘

=

k!(n- k- 1)!

n

n-2
·
 
Y

B2P

|B||B|-2

(|B|- 1)!

!

·

0

@
Y

B2K(P)

|B||B|-2

(|B|- 1)!

1

A ,

where K(P) is the Kreweras complement of P.

Proposition (Key fact).

y Consequence 1: (take k = 1)

P
⇣
t
(n)
1 = (a,a+ i) for some a

⌘
=

(n- 2)!

n

n-2
· i

i-2

(i- 1)!
· (n- i)(n-i-2)

(n- i- 1)!

⇠
C

i

3/2

for n and i large

, which explains the
p
n transition.
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Trees Triangulations & dissections Minimal factorizationsy Consequence 2:

It follows that P(t(n)
1 t

(n)
2 · · · t(n)

k ) is coded by a bitype biconditioned
Bienaymé–Galton–Watson (or simply generated) tree (n- k blue vertices and
k+ 1 red vertices)!y different conditioning than those considered for multitype BGW trees by
Marckert, Miermont, Berzunza (total size fixed, or size of one type fixed).

We develop a new machinery to study limits of such random trees.
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