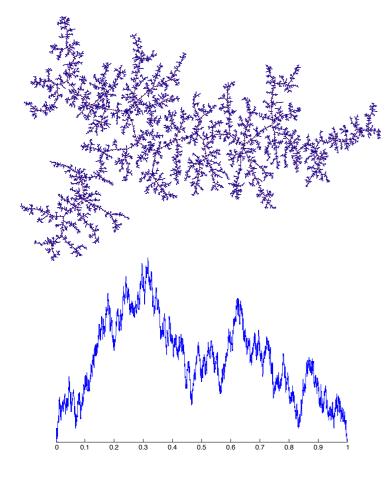
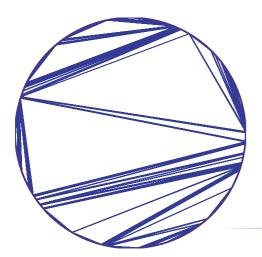


Asymptotic behavior of large random discrete structures





Igor Kortchemski (with Valentin Féray) CNRS & École polytechnique

 $\mathcal{N} \rightarrow$ Question:

 $\mathcal{N} \rightarrow$ Question:

Let $(1, 2, \ldots, n)$ be the n-cycle.

Let $(1, 2, \ldots, n)$ be the n-cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into n - 1 transpositions).

 \longrightarrow Question:

Let $(1, 2, \ldots, n)$ be the n-cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into n - 1 transpositions).

 $\mathcal{N} \rightarrow \text{Question: } \#\mathfrak{M}_n = ?$

Let $(1, 2, \ldots, n)$ be the n-cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into n - 1 transpositions).

 $\mathcal{N} \rightarrow \text{Question: } \#\mathfrak{M}_n = ?$

For example (multiply from left to right):

$$(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),$$

 $\mathcal{N} \rightarrow$ Question:

Let $(1, 2, \ldots, n)$ be the n-cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into n - 1 transpositions).

 $\mathcal{N} \rightarrow \text{Question: } \#\mathfrak{M}_n = ?$

For example (multiply from left to right):

$$(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),$$

 $#\mathfrak{M}_3 = 3.$

 $\mathcal{N} \rightarrow$ Question:

Let $(1, 2, \ldots, n)$ be the n-cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into n - 1 transpositions).

 $\mathcal{N} \rightarrow \text{Question: } \#\mathfrak{M}_n = ?$

For example (multiply from left to right):

$$(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),$$

 $\#\mathfrak{M}_3=3.$

 $\Lambda \rightarrow \text{Question}$: for n large, what does a typical minimal factorization look like?

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n}

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_n .

 \bigwedge Find the cardinality of χ_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study χ_n .

 $\Lambda \rightarrow$ Find the cardinality of χ_n . (bijective methods, generating functions)

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study χ_n .

 \bigwedge Find the cardinality of χ_n . (bijective methods, generating functions)

 $\Lambda \rightarrow$ Understand the typical properties of \mathfrak{X}_n .

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_n .

- \bigwedge Find the cardinality of χ_n . (bijective methods, generating functions)
- Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*.

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_n .

- \bigwedge Find the cardinality of χ_n . (bijective methods, generating functions)
- Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*. What can be said of X_n ?

Let \mathfrak{X}_n be a set of combinatorial objects of "size" \mathfrak{n} (permutations, partitions, graphs, functions, paths, matrices, etc.).

Goal: study X_n .

 $\Lambda \rightarrow$ Find the cardinality of χ_n . (bijective methods, generating functions)

 Λ → Understand the typical properties of X_n . Let X_n be an element of X_n chosen *uniformly at random*. What can be said of X_n ?

To answer this question, a possibility is to find a continuous object X such that $X_n \to X$ as $n \to \infty$.

Let $(X_n)_{n \ge 1}$ be a sequence of "discret" objects converging to a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

Let $(X_n)_{n \ge 1}$ be a sequence of "discret" objects converging to a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

Several uses:

 \longrightarrow From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_n and passes through the limit, X satisfies \mathcal{P} .

Let $(X_n)_{n \ge 1}$ be a sequence of "discret" objects converging to a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

Several uses:

- \longrightarrow From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_n and passes through the limit, X satisfies \mathcal{P} .
- \longrightarrow From the continuous to the discrete: if a certain property \mathcal{P} is satisfied by X and passes through the limit, X_n "roughly" satisfies \mathcal{P} for n large.

Let $(X_n)_{n \ge 1}$ be a sequence of "discret" objects converging to a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X$$

Several uses:

- \longrightarrow From the discrete to the continuous: if a certain property \mathcal{P} is satisfied by all the X_n and passes through the limit, X satisfies \mathcal{P} .
- \longrightarrow From the continuous to the discrete: if a certain property \mathcal{P} is satisfied by X and passes through the limit, X_n "roughly" satisfies \mathcal{P} for n large.
- ∧→ Universality: if $(Y_n)_{n \ge 1}$ is another sequence of objects converging to X, then X_n and Y_n "roughly" have the same properties for n large.

What is it about?

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging to a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

 $\wedge \rightarrow$ In what space do the objects live?

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging to a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X_n$$

A→ In what space do the objects live? Here, a metric space (Z, d) (complete separable).

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging to a "continuous" object X:

$$X_n \xrightarrow[n \to \infty]{} X.$$

- A→ In what space do the objects live? Here, a metric space (Z, d) (complete separable).
- $\wedge \rightarrow$ What is the sense of this convergence when these objects are random?

Let $(X_n)_{n \ge 1}$ be a sequence of "discrete" objects converging to a "continuous" object X:

- A→ In what space do the objects live? Here, a metric space (Z, d) (complete separable).
- A→ What is the sense of this convergence when these objects are random?
 Here, convergence in distribution:

$$\mathbb{E}\left[F(\mathbf{X}_{n})\right] \xrightarrow[n \to \infty]{} \mathbb{E}\left[F(\mathbf{X})\right]$$

for every continuous bounded function $F: Z \to \mathbb{R}$.

II. TRIANGULATIONS & DISSECTIONS

II. TRIANGULATIONS & DISSECTIONS

III. MINIMAL FACTORIZATIONS

II. TRIANGULATIONS & DISSECTIONS

III. MINIMAL FACTORIZATIONS

Motivations:

 \wedge Computer science: data structures, analysis of algorithms, networks, etc.

Random trees

Motivations:

 \wedge Computer science: data structures, analysis of algorithms, networks, etc.

 \rightarrow Biology: genealogical and phylogenetical trees, etc.

Random trees

Motivations:

 \wedge Computer science: data structures, analysis of algorithms, networks, etc.

 $\Lambda \rightarrow$ Biology: genealogical and phylogenetical trees, etc.

A→ Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections, etc.

Random trees

Motivations:

 \wedge Computer science: data structures, analysis of algorithms, networks, etc.

 $\Lambda \rightarrow$ Biology: genealogical and phylogenetical trees, etc.

∧→ Combinatorics: trees are (sometimes) simpler to enumerate, nice bijections, etc.

A→ Probability: trees are elementary pieces of various models of random graphs, having rich probabilistic properties.

 $\stackrel{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\end{array}}}{\overset{\end{array}}}}} Question:$

Plane trees

Figure: Two different plane trees

 $\stackrel{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\end{array}}}{\overset{\end{array}}}}} Question:$

Plane trees

Let \mathfrak{X}_n be the set of all plane trees with \mathfrak{n} vertices.

Figure: Two different plane trees

 \longrightarrow Question: \longrightarrow Question:

Plane trees

Let \mathfrak{X}_n be the set of all plane trees with n vertices.

Figure: Two different plane trees

 $\mathcal{N} \rightarrow \text{Question: } \# \mathcal{X}_n = ?$

 $\mathcal{N} \rightarrow$ Question:

Plane trees

Let \mathfrak{X}_n be the set of all plane trees with \mathfrak{n} vertices.

Figure: Two different plane trees

$$\rightarrow$$
 Question: $\#X_n = \frac{1}{n} \binom{2n-2}{n-1}$.
 \rightarrow Question:

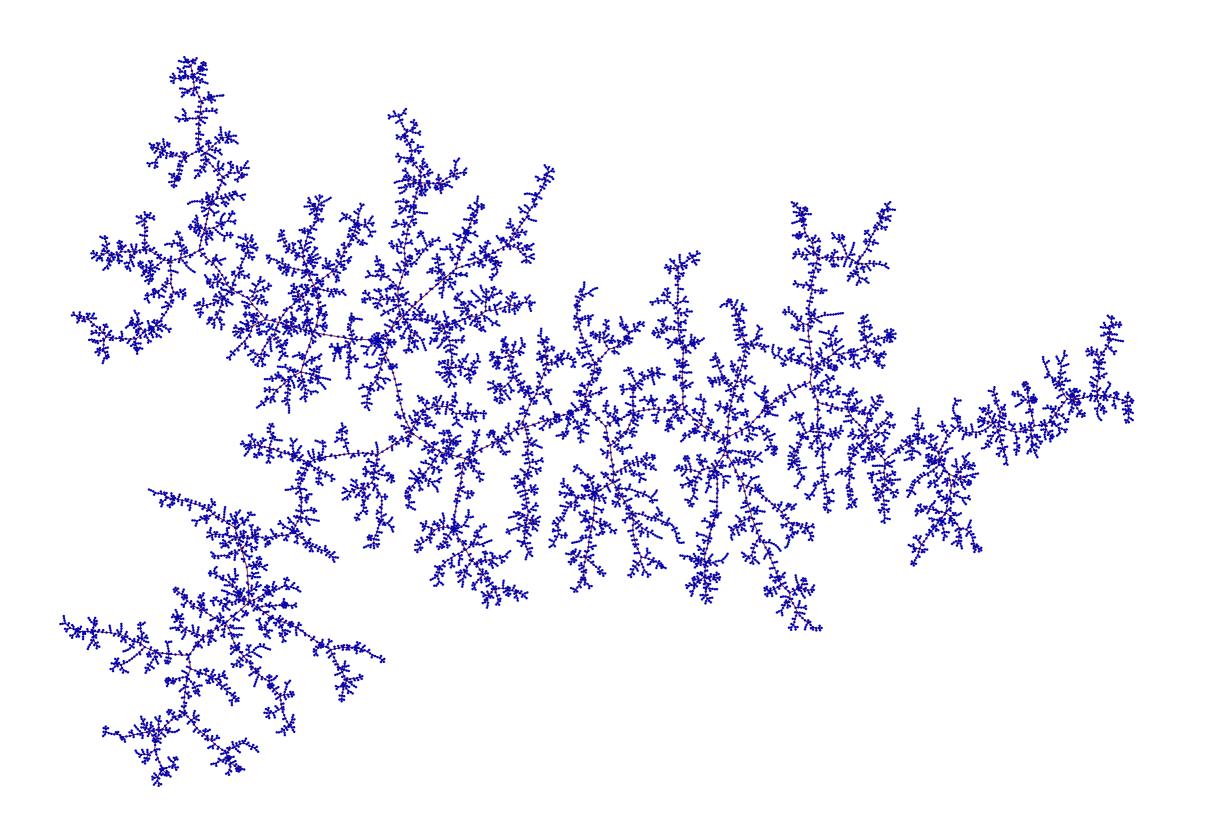
Plane trees

Let \mathfrak{X}_n be the set of all plane trees with n vertices.

Figure: Two different plane trees

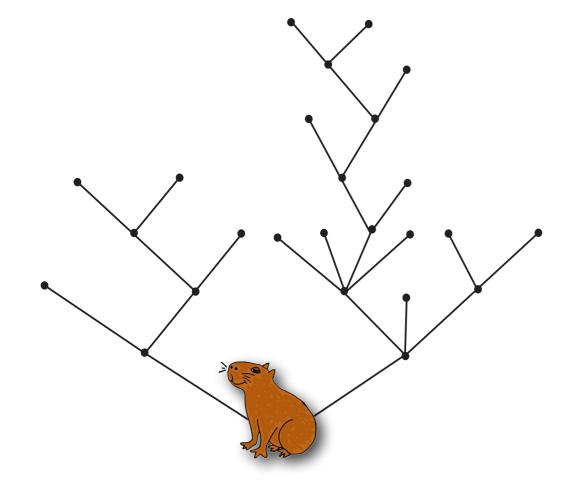
$$\mathcal{N} \rightarrow \text{Question: } \# \mathfrak{X}_n = \frac{1}{n} \binom{2n-2}{n-1}.$$

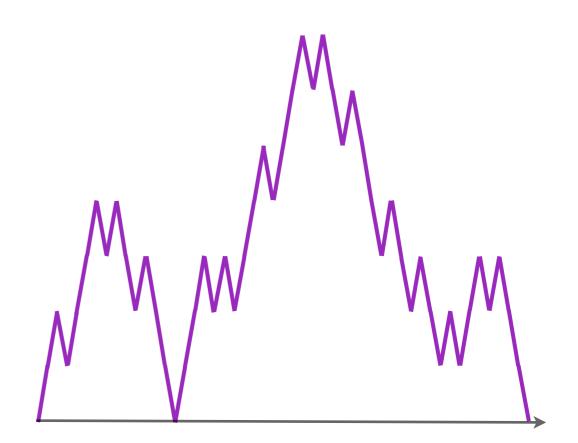
 $\wedge \rightarrow$ Question: What does a large typical plane tree look like?



Coding a tree by its contour function

 \checkmark - Code a tree τ by its contour function $C(\tau)$:





Coding a tree by its contour function

Knowing the contour function, it is easy to reconstruct the tree:

Let t_n be a uniform plane tree with n vertices.

Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

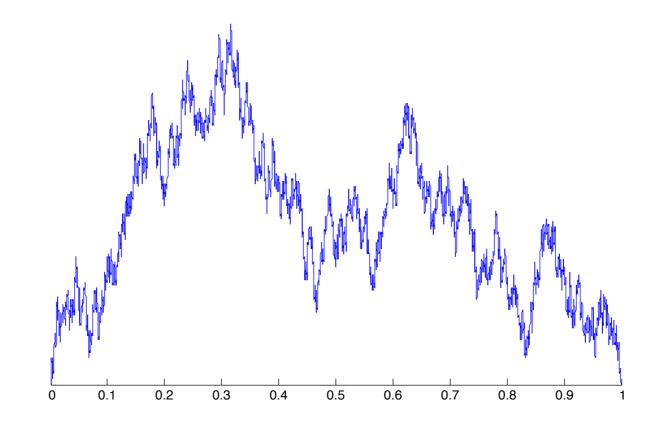
$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1}\,,$$

where e is the normalized Brownian excursion.

Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1}\,,$$

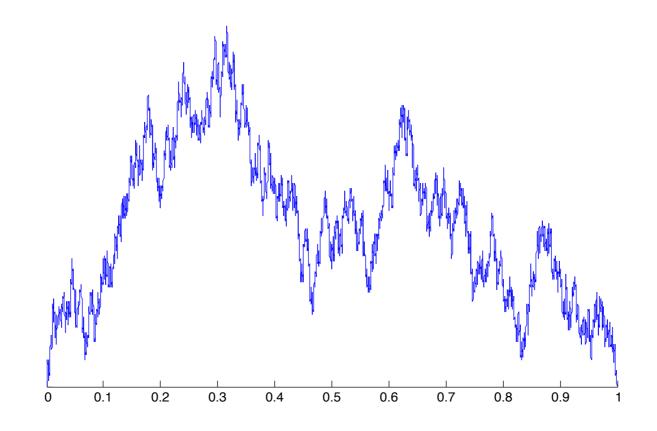
where e is the normalized Brownian excursion.



Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \xrightarrow[n\to\infty]{(\mathbf{d})}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1}$$

where \mathbf{e} is the normalized Brownian excursion. The convergence holds in distribution in the space $\mathcal{C}([0, 1], \mathbb{R}), \|\cdot\|_{\infty})$.



Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1},$$

where \mathbf{e} is the normalized Brownian excursion. The convergence holds in distribution in the space $\mathcal{C}([0, 1], \mathbb{R}), \|\cdot\|_{\infty})$.

Remarks

 Λ → The function \oplus codes a "continuous" tree T_{\oplus} , called the Brownian continuum random tree.

Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1},$$

where \mathbf{e} is the normalized Brownian excursion. The convergence holds in distribution in the space $\mathcal{C}([0, 1], \mathbb{R}), \|\cdot\|_{\infty})$.

Remarks

 Λ → The function @ codes a "continuous" tree $T_{@}$, called the Brownian continuum random tree.

 \bigwedge Idea: \mathfrak{t}_n is a (conditioned) random walk, use (a conditioned) Donsker's invariance principle.

Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1},$$

where \mathbf{e} is the normalized Brownian excursion. The convergence holds in distribution in the space $\mathcal{C}([0, 1], \mathbb{R}), \|\cdot\|_{\infty})$.

$$\begin{array}{l} \checkmark & \text{Consequence 1: for every } a > 0, \\ \mathbb{P}\left[\text{Height}(\mathfrak{t}_n) > a\sqrt{2n} \right] & \underset{n \to \infty}{\longrightarrow} \quad \mathbb{P}(\sup \mathbb{e} > a) \end{array}$$

Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1}\,,$$

where \mathbf{e} is the normalized Brownian excursion. The convergence holds in distribution in the space $\mathcal{C}([0, 1], \mathbb{R}), \|\cdot\|_{\infty})$.

$$\begin{array}{ll} & \checkmark & \text{Consequence 1: for every } a > 0, \\ & \mathbb{P}\left[\text{Height}(\mathfrak{t}_n) > a\sqrt{2n}\right] & \underset{n \to \infty}{\longrightarrow} & \mathbb{P}(\sup \mathfrak{e} > a) \\ & = & \displaystyle{\sum_{k=1}^{\infty}}(4k^2a^2 - 1)e^{-2k^2a^2}. \end{array}$$

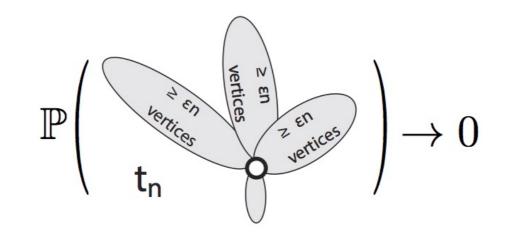
Let t_n be a uniform plane tree with n vertices. Theorem (Aldous '93) We have:

$$\left(\frac{1}{\sqrt{2n}}C_{2nt}(\mathbf{t}_n)\right)_{0\leqslant t\leqslant 1}\quad \stackrel{(d)}{\underset{n\to\infty}{\longrightarrow}}\quad (\mathbf{e}(\mathbf{t}))_{0\leqslant t\leqslant 1},$$

where \mathbf{e} is the normalized Brownian excursion. The convergence holds in distribution in the space $\mathcal{C}([0, 1], \mathbb{R}), \|\cdot\|_{\infty})$.

∧→ Consequence 2: for every ε > 0,

 \mathbb{P} (there exists a vertex of \mathfrak{t}_n with 3 grafted subtrees of sizes $\geq \varepsilon \mathfrak{n} \to 0$.



Universality

The Brownian continuum random tree is the scaling limit of:

Universality

The Brownian continuum random tree is the scaling limit of:

 different families of trees: non-plane trees (Marckert & Miermont, Panagiotou & Stufler, Stufler), Markov-branching trees (Haas & Miermont), cut-trees (Bertoin & Miermont).

Universality

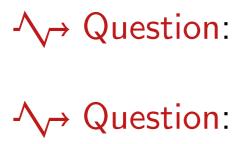
The Brownian continuum random tree is the scaling limit of:

- different families of trees: non-plane trees (Marckert & Miermont, Panagiotou & Stufler, Stufler), Markov-branching trees (Haas & Miermont), cut-trees (Bertoin & Miermont).
- different families of tree-like structures: stack triangulations (Albenque & Marckert), graphs from subcritical classes (Panagiotou, Stufler & Weller), dissections (Curien, Haas & K), various maps (Janson & Stefánsson, Bettinelli, Caraceni, K & Richier).

I. TREES

II. TRIANGULATIONS & DISSECTIONS

III. MINIMAL FACTORIZATIONS



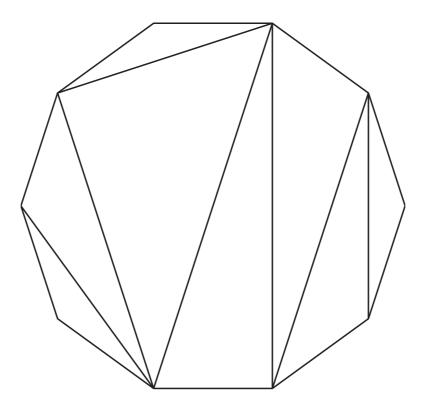


Figure: A triangulation of χ_{10} .

 $\stackrel{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\end{array}}}{\overset{\end{array}}}}} Question:$

Let \mathfrak{X}_n be the set of all triangulations of the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

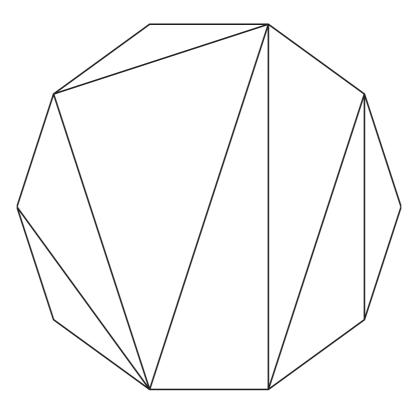
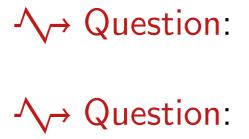


Figure: A triangulation of χ_{10} .



Let X_n be the set of all triangulations of the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

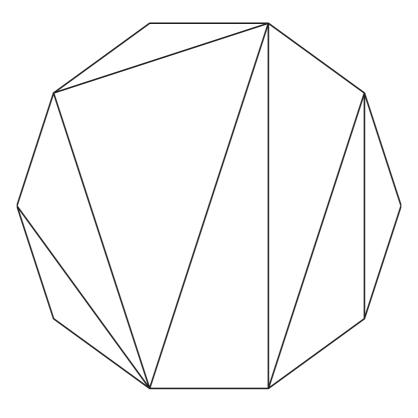


Figure: A triangulation of χ_{10} .

 $\mathcal{N} \rightarrow \text{Question: } \# \mathfrak{X}_n = ?$

 $\mathcal{N} \rightarrow$ Question:

Let X_n be the set of all triangulations of the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

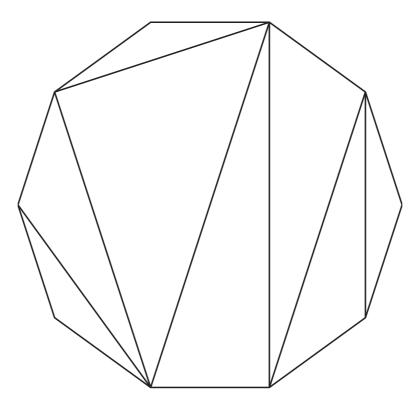


Figure: A triangulation of χ_{10} .

$$\mathcal{N} \rightarrow \text{Question:} \ \# \mathfrak{X}_n = \frac{1}{n-2} \binom{2n-4}{n-3}$$

 $\mathcal{N} \rightarrow$ Question:

Let X_n be the set of all triangulations of the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

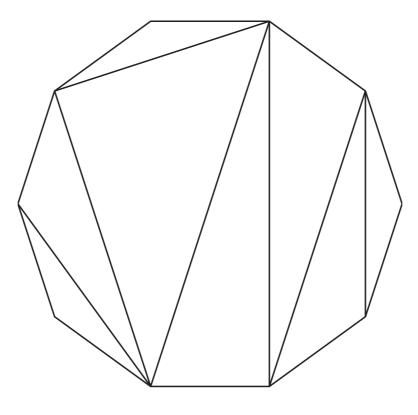
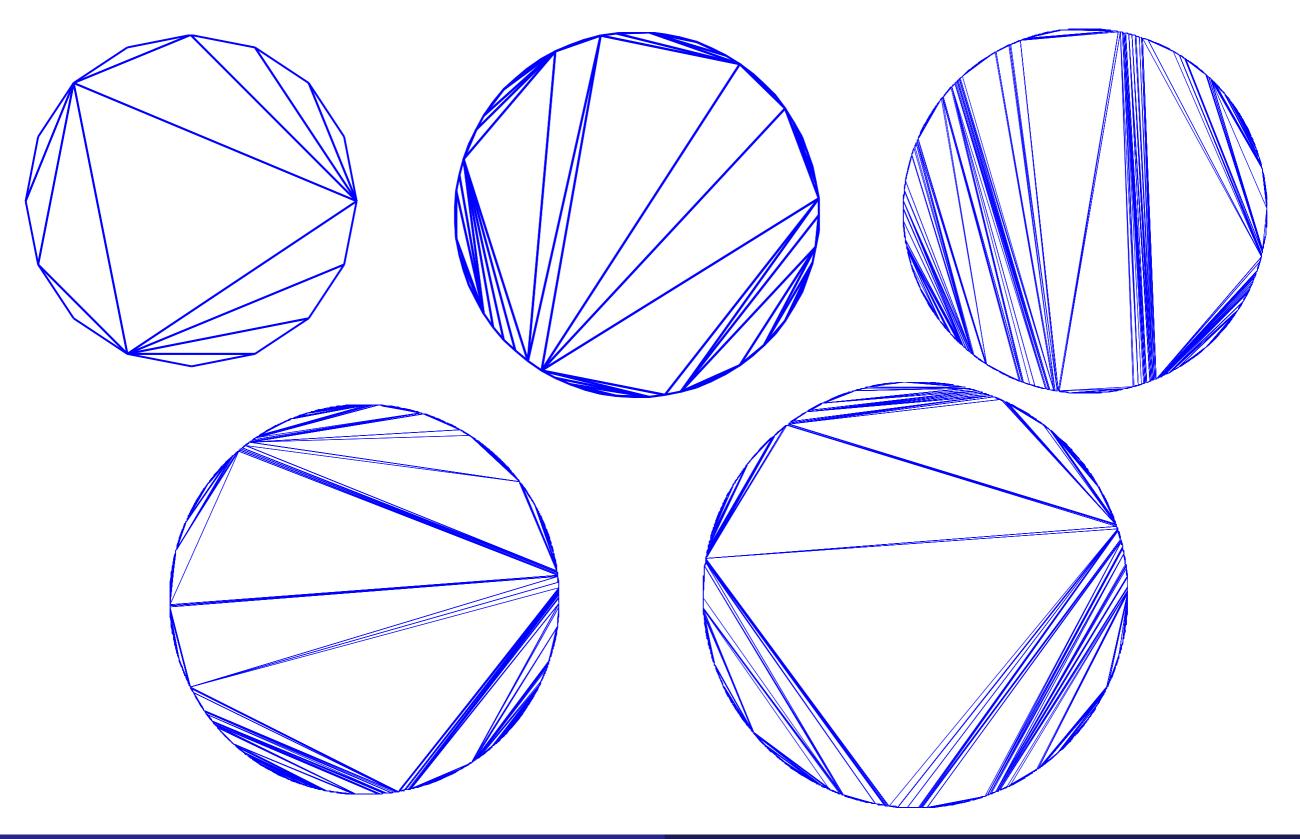


Figure: A triangulation of χ_{10} .

$$\mathcal{N} \rightarrow \text{Question: } \# \mathfrak{X}_n = \frac{1}{n-2} \binom{2n-4}{n-3}$$

 $\wedge \rightarrow$ Question: What does a large typical triangulation look like?

Typical triangulations



What space for triangulations?

Let X, Y be two subsets of a metric space (Z, d).

Let X, Y be two subsets of a metric space (Z, d). If

 $X_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{X}) \leqslant \mathsf{r} \}, \qquad Y_{\mathbf{r}} = \{ z \in \mathsf{Z}; d(z, \mathsf{Y}) \leqslant \mathsf{r} \}$

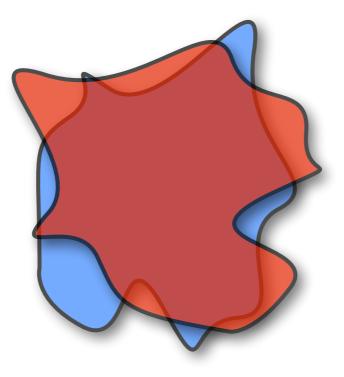
are the r-neighborhoods of X and Y

Let X, Y be two subsets of a metric space (Z, d). If

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{Y}) \leqslant \mathsf{r} \}$

are the r-neighborhoods of X and Y, we set

 $d_H(X,Y) = \inf \left\{ r > 0; X \subset Y_r \text{ and } Y \subset X_r \right\}.$

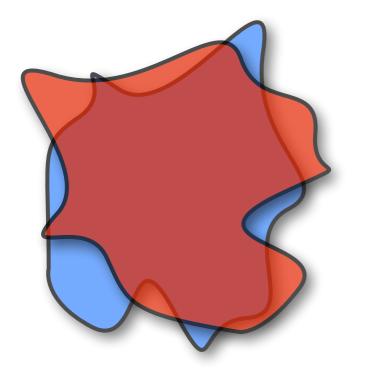


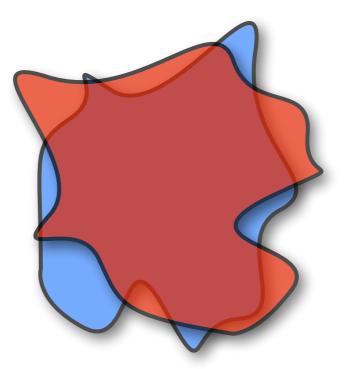
Let X, Y be two subsets of a metric space (Z, d). If

 $\mathbf{X}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{X}) \leqslant \mathsf{r} \}, \qquad \mathbf{Y}_{\mathbf{r}} = \{ z \in \mathsf{Z}; \, \mathsf{d}(z, \mathbf{Y}) \leqslant \mathsf{r} \}$

are the r-neighborhoods of X and Y, we set

 $d_{H}(X, Y) = \inf \{r > 0; X \subset Y_{r} \text{ and } Y \subset X_{r} \}.$





For $n \ge 3$, let T_n be a uniform triangulation with n vertices.

For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that

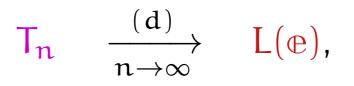
$$T_n \xrightarrow[n \to \infty]{(d)} L(e),$$

For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that

$$\mathbf{T}_{\mathbf{n}} \quad \xrightarrow[\mathbf{n}\to\infty]{(\mathbf{d})} \quad \mathbf{L}(\mathbf{e}),$$

where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

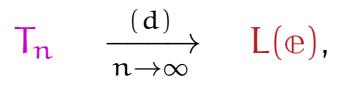
For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that



where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

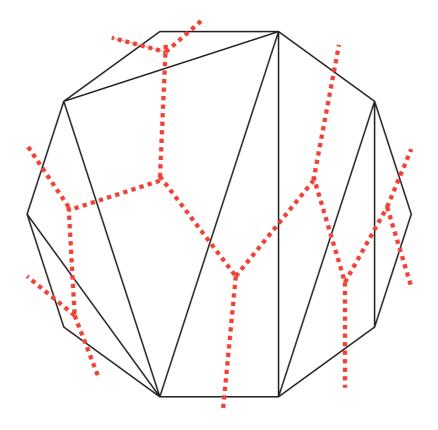
L(e) is called the **Brownian triangulation** (coded by the Brownian excursion).

For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that

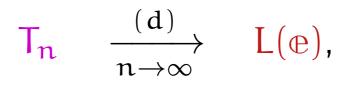


where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

L(e) is called the **Brownian triangulation** (coded by the Brownian excursion).



For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that

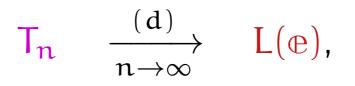


where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

L(e) is called the **Brownian triangulation** (coded by the Brownian excursion).

 \wedge Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of L(e), with the change of variable length = $2\sin(\pi\theta)$.

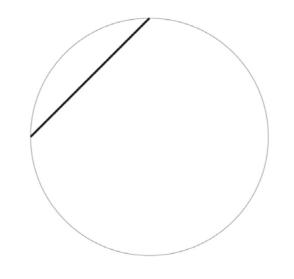
For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that



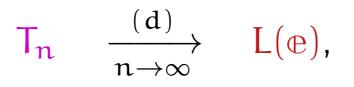
where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

L(e) is called the **Brownian triangulation** (coded by the Brownian excursion).

 \wedge Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of L(e), with the change of variable length = $2\sin(\pi\theta)$.



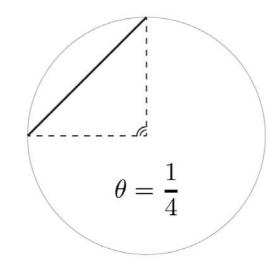
For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that



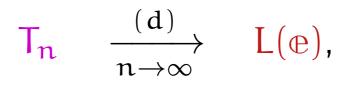
where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

L(e) is called the **Brownian triangulation** (coded by the Brownian excursion).

 \wedge Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of L(e), with the change of variable length = $2\sin(\pi\theta)$.



For $n \ge 3$, let T_n be a uniform triangulation with n vertices. Then there exists a random compact subset L(e) of the unit disk such that



where the convergence holds in distribution for the Hausdorff distance on all compact subsets of the unit disk.

L(e) is called the **Brownian triangulation** (coded by the Brownian excursion).

 $\wedge \rightarrow$ Consequence: we can find the distribution of the length (i.e. the proportion seen from the center) of the longest chord of L(e), with the change of variable length = $2\sin(\pi\theta)$.

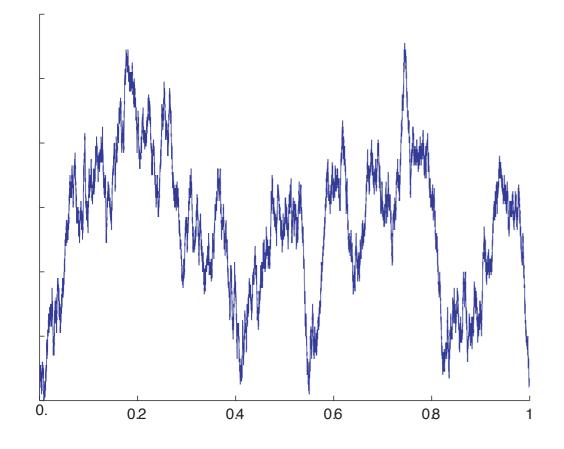
It is the probability measure with density:

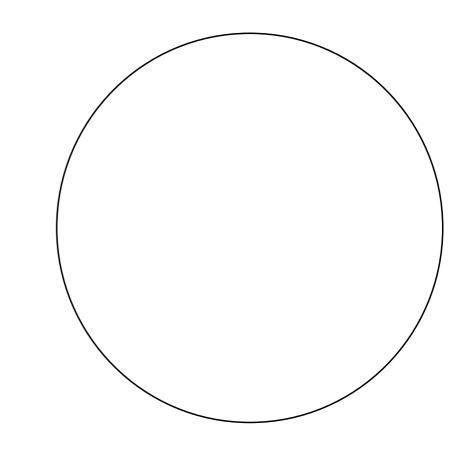
$$\frac{1}{\pi} \frac{3\theta - 1}{\theta^2 (1 - \theta)^2 \sqrt{1 - 2\theta}} \mathbf{1}_{\frac{1}{3} \leqslant \theta \leqslant \frac{1}{2}} \mathsf{d}\theta.$$

(Aldous, Devroye–Flajolet–Hurtado–Noy–Steiger)

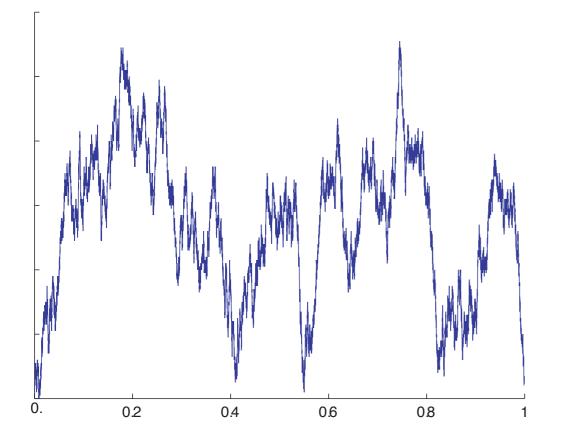
Start with the Brownian excursion e:

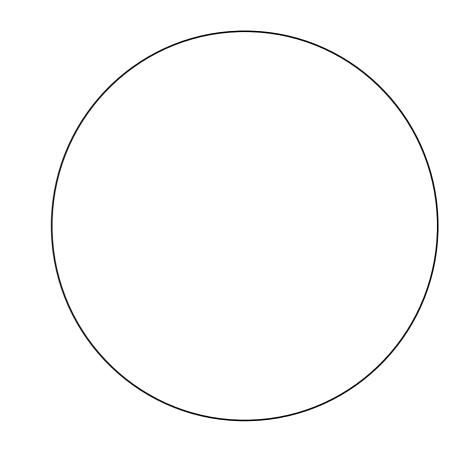
Start with the Brownian excursion e:





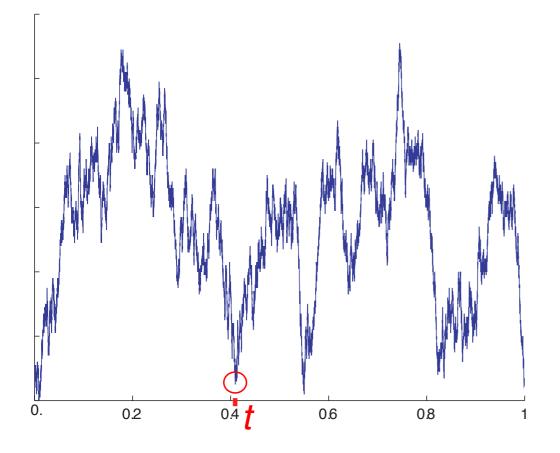
Start with the Brownian excursion e:

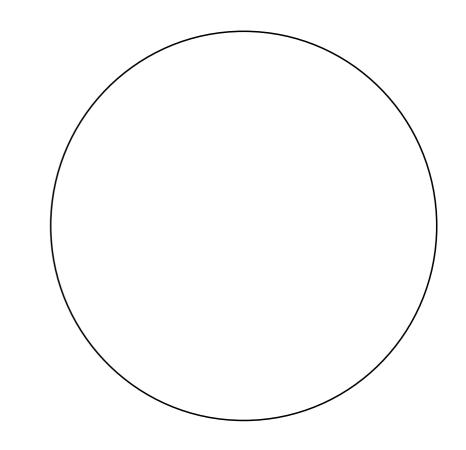




Let t be a time of local minimum.

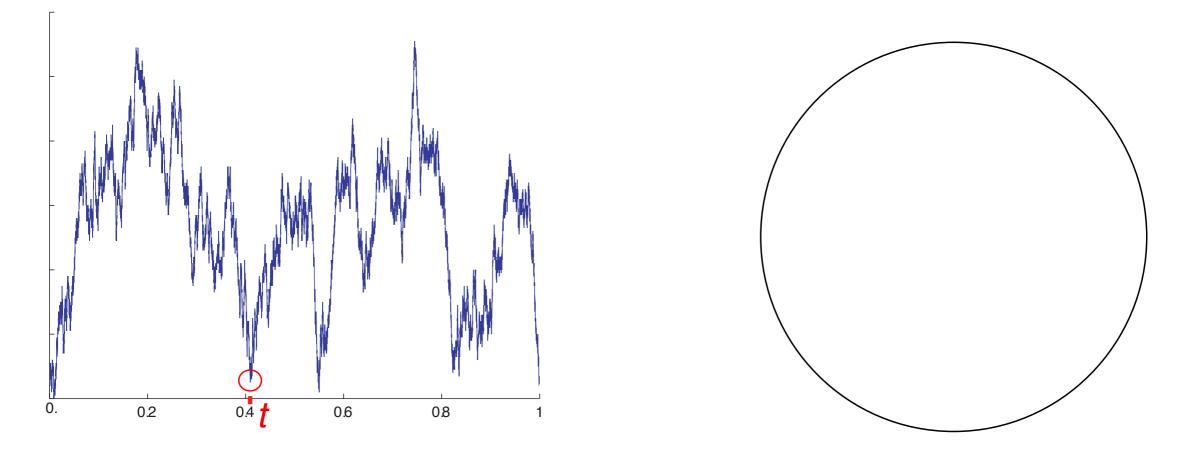
Start with the Brownian excursion e:





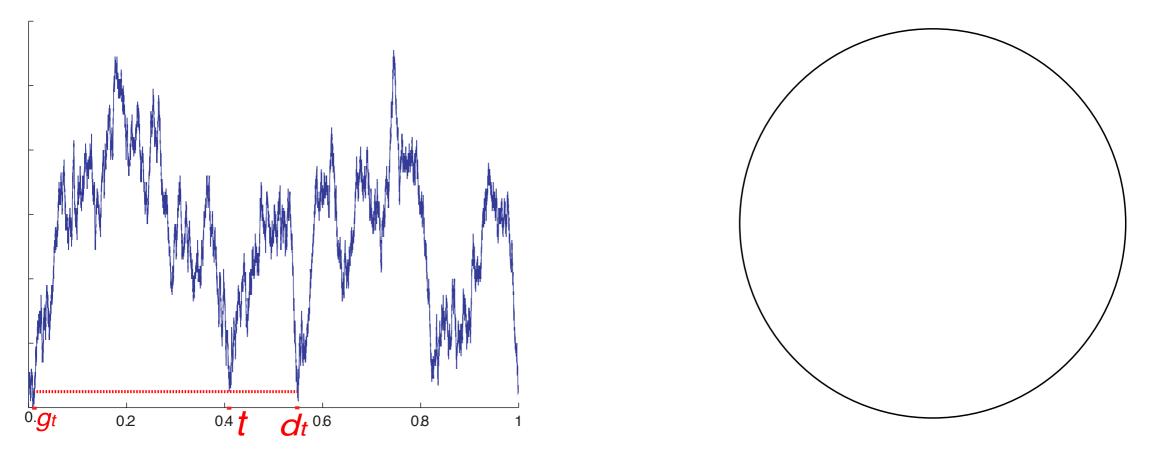
Let t be a time of local minimum.

Start with the Brownian excursion e:



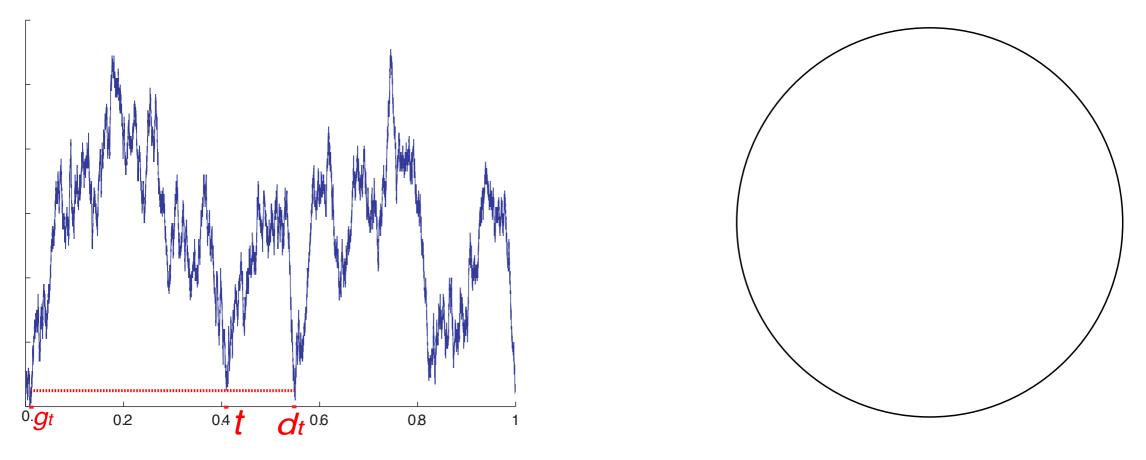
Let t be a time of local minimum. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$.

Start with the Brownian excursion e:



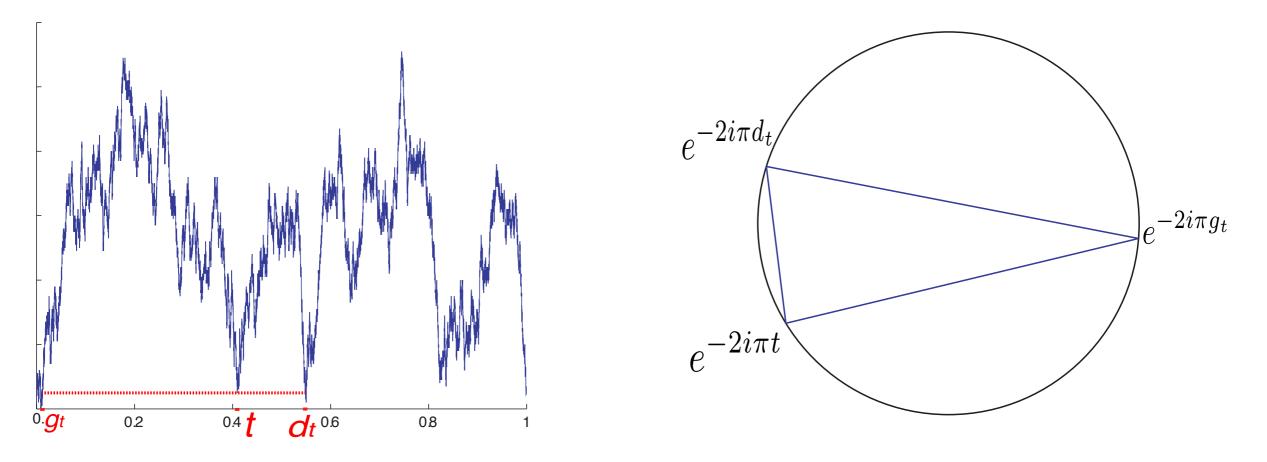
Let t be a time of local minimum. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$.

Start with the Brownian excursion e:



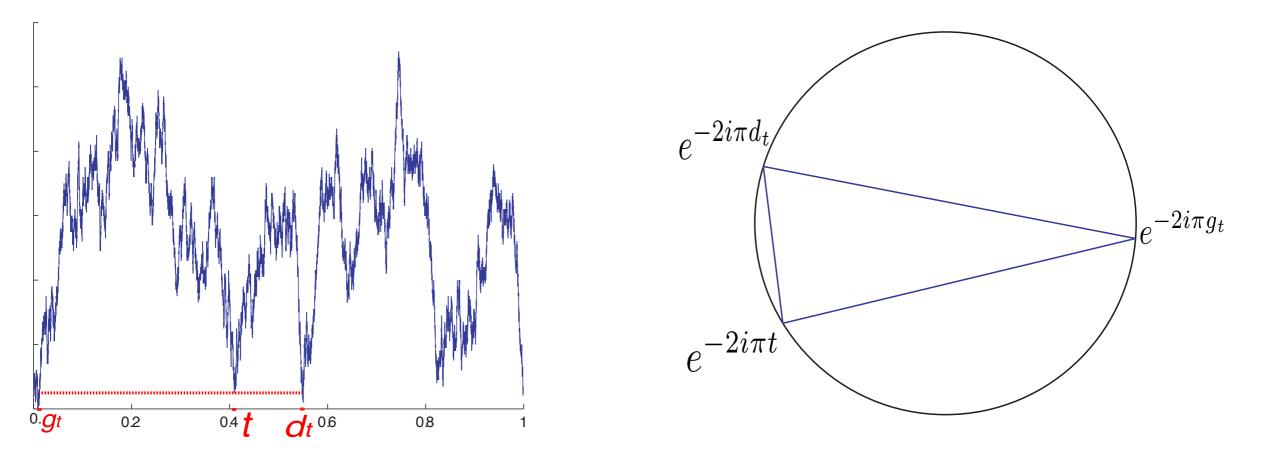
Let t be a time of local minimum. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ et $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$.

Start with the Brownian excursion e:



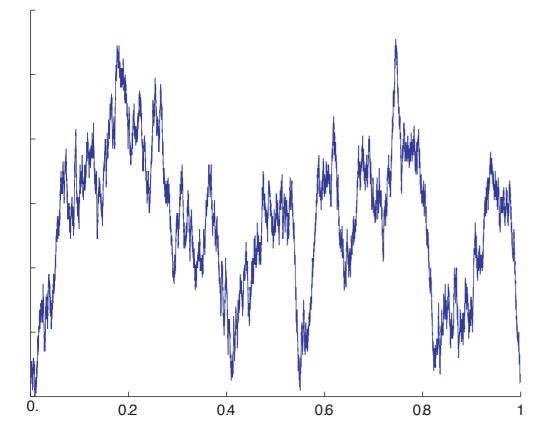
Let t be a time of local minimum. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi d_t}]$ et $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$.

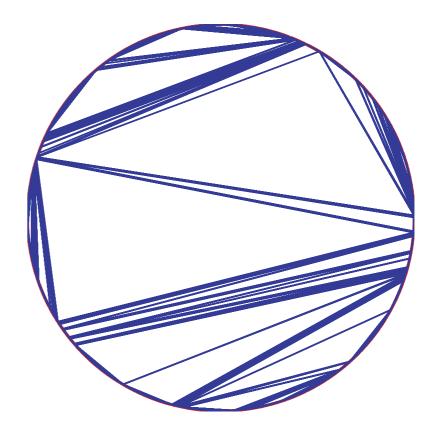
Start with the Brownian excursion e:



Let t be a time of local minimum. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi t}]$ et $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Do this for all the times of local minimum.

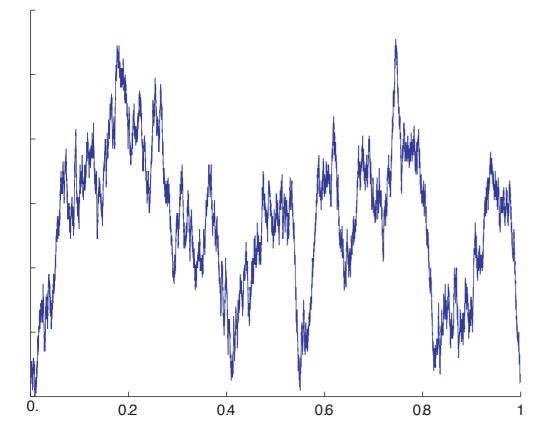
Start with the Brownian excursion e:

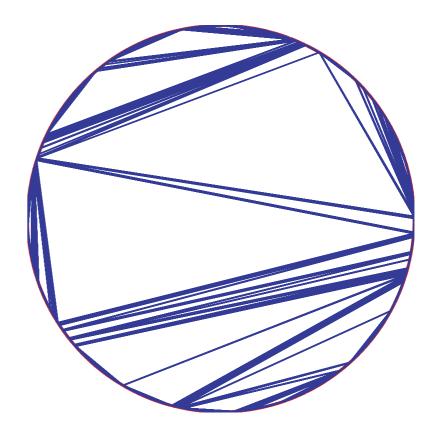




Let t be a time of local minimum. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}], [e^{-2i\pi t}, e^{-2i\pi d_t}]$ et $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Do this for all the times of local minimum.

Start with the Brownian excursion e:

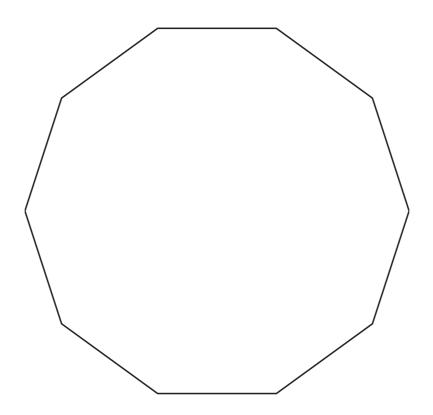




Let t be a time of local minimum. Set $g_t = \sup\{s < t; e_s = e_t\}$ and $d_t = \inf\{s > t; e_s = e_t\}$. Draw the chords $[e^{-2i\pi g_t}, e^{-2i\pi t}]$, $[e^{-2i\pi t}, e^{-2i\pi t}]$ et $[e^{-2i\pi g_t}, e^{-2i\pi d_t}]$. Do this for all the times of local minimum.

The closure of this union, L(e), is called the Brownian triangulation.

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

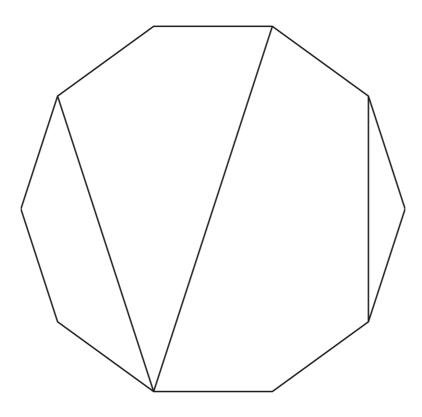


Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

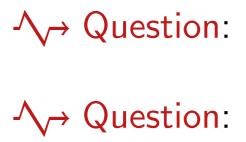


A *dissection* of P_n is the union of the sides of P_n and of a collection of non-crossing diagonals.

Let P_n be the polygon whose vertices are $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).



A *dissection* of P_n is the union of the sides of P_n and of a collection of non-crossing diagonals.



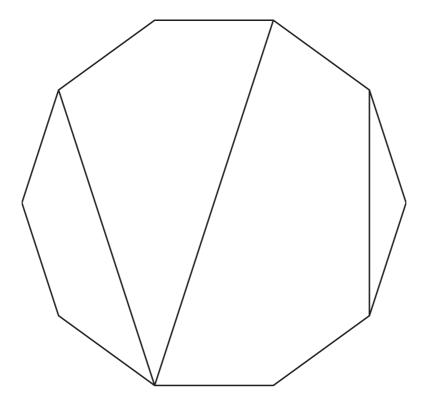


Figure: A dissection of a 10-gon.

 $\stackrel{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\hspace{0.1em}}{\overset{\end{array}}}{\overset{\end{array}}}}} Question:$

Soit \mathfrak{X}_n l'ensemble des dissections du polygone dont les sommets sont $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

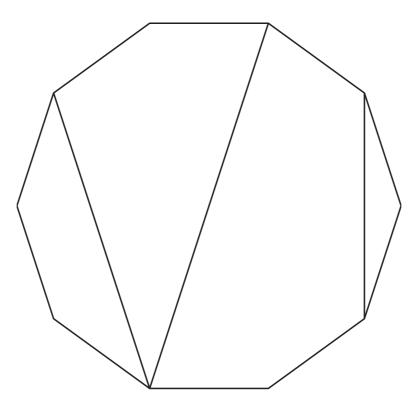


Figure: A dissection of a 10-gon.

 \longrightarrow Question: \longrightarrow Question:

Soit \mathfrak{X}_n l'ensemble des dissections du polygone dont les sommets sont $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

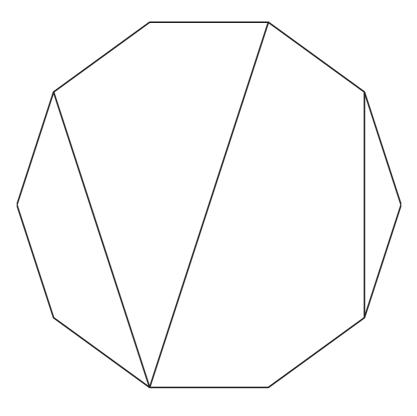


Figure: A dissection of a 10-gon.

 $\wedge \rightarrow$ Question: $\# \mathcal{X}_n = ?$

 $\mathcal{N} \rightarrow$ Question:

Soit \mathfrak{X}_n l'ensemble des dissections du polygone dont les sommets sont $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

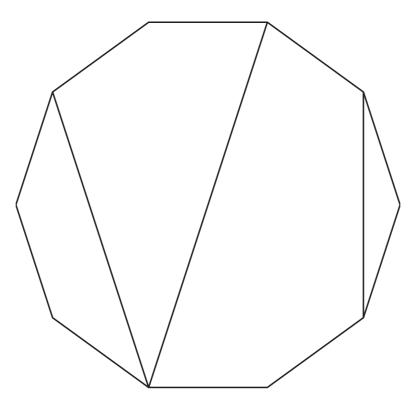


Figure: A dissection of a 10-gon.

 $\Lambda \rightarrow$ Question: $\# \chi_n =$ no explicit simple formula.

 $\mathcal{N} \rightarrow$ Question:

Soit \mathfrak{X}_n l'ensemble des dissections du polygone dont les sommets sont $e^{\frac{2i\pi j}{n}}$ (j = 0, 1, ..., n - 1).

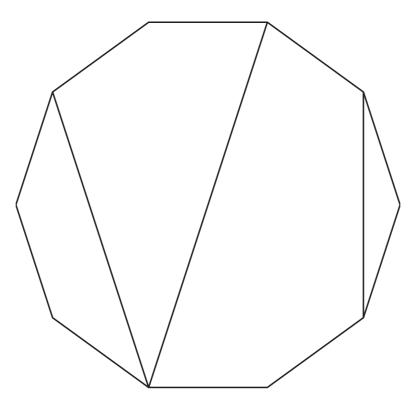


Figure: A dissection of a 10-gon.

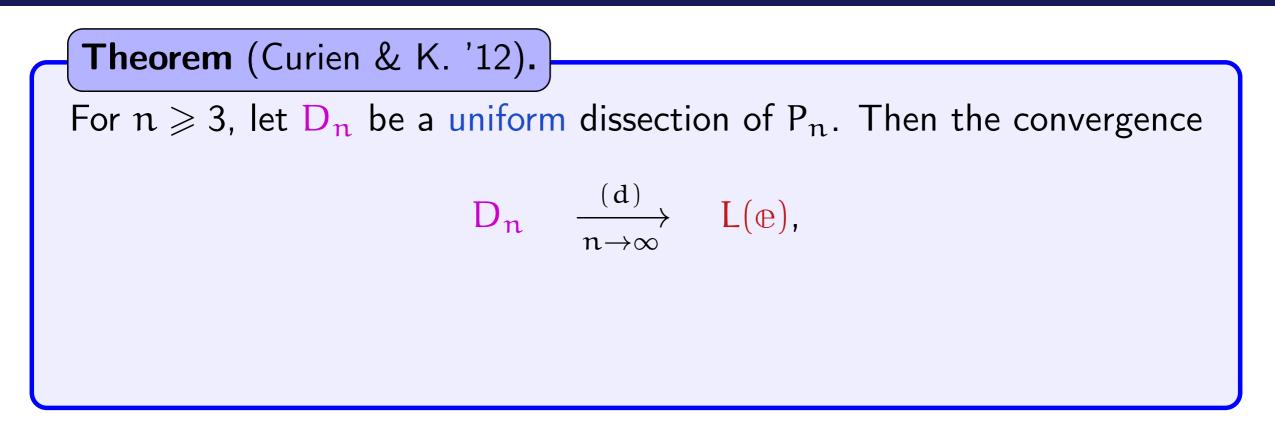
 $\Lambda \rightarrow$ Question: $\# \chi_n =$ no explicit simple formula.

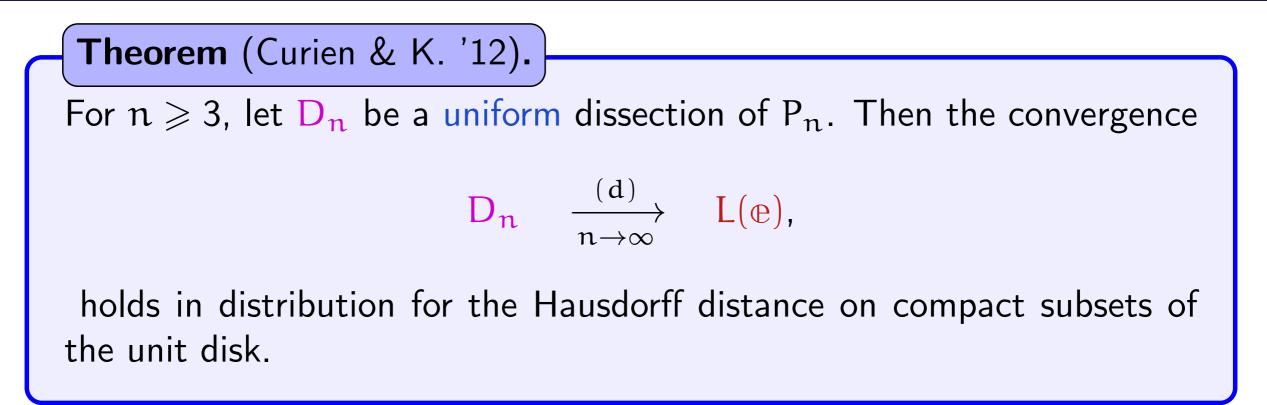
 $\wedge \rightarrow$ Question: What does a large typical dissection look like?

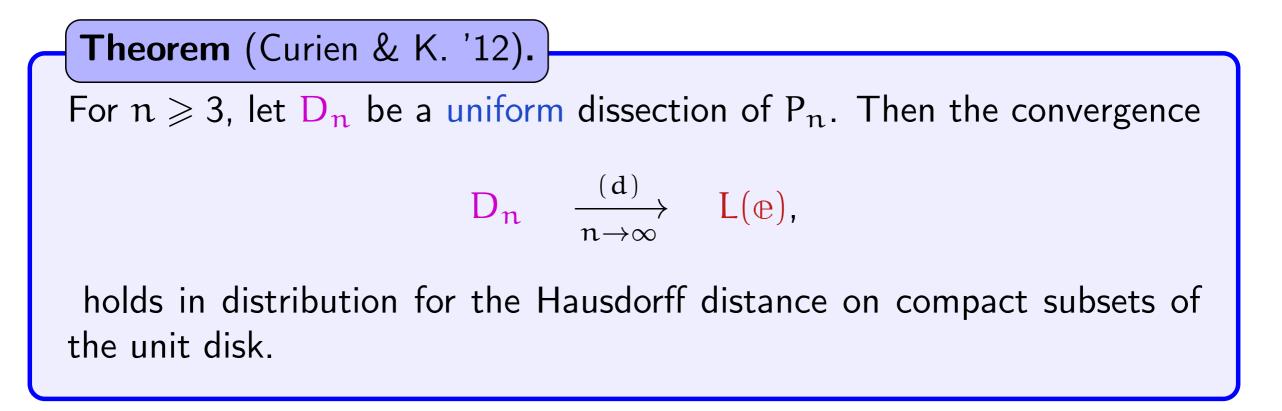
Large typical dissections

(**Theorem** (Curien & K. '12).

For $n \ge 3$, let D_n be a uniform dissection of P_n .







 $\wedge \rightarrow$ Consequence: The distribution of the length of the longest chord of D_n , with the change of variable length = $2\sin(\pi\theta)$ converges in distribution to the probability measure with density

$$\frac{1}{\pi} \frac{3\theta - 1}{\theta^2 (1 - \theta)^2 \sqrt{1 - 2\theta}} \mathbf{1}_{\frac{1}{3} \leqslant \theta \leqslant \frac{1}{2}} \mathsf{d}\theta.$$

Theorem (Curien & K. '12).

For $n \ge 3$, let D_n be a uniform dissection of P_n . Then the convergence

$$D_n \xrightarrow[n \to \infty]{(d)} L(\mathbb{e}),$$

holds in distribution for the Hausdorff distance on compact subsets of the unit disk.

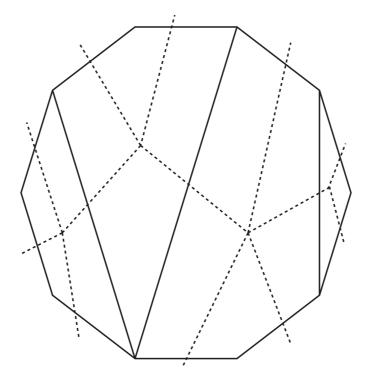


Figure: The dual tree of a dissection.

I. TREES

II. TRIANGULATIONS

III. MINIMAL FACTORIZATIONS

$\mathcal{N} \rightarrow$ Question:

 \longrightarrow Question:

Let $(1, 2, \ldots, n)$ be the n cycle.

Let $(1, 2, \ldots, n)$ be the n cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into transpositions).

 $\mathcal{N} \rightarrow$ Question:

Let $(1, 2, \ldots, n)$ be the n cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into transpositions).

 $\mathcal{N} \rightarrow \text{Question: } \#\mathfrak{M}_n = ?$

Let $(1, 2, \ldots, n)$ be the n cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into transpositions).

 $\mathcal{N} \rightarrow \text{Question: } \#\mathfrak{M}_n = ?$

For example (multiply from left to right):

(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),

 $\mathcal{N} \rightarrow$ Question:

Minimal factorizations

Let $(1, 2, \ldots, n)$ be the n cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into transpositions).

 $\mathcal{N} \rightarrow \text{Question: } \#\mathfrak{M}_n = ?$

For example (multiply from left to right):

$$(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),$$

 $#\mathfrak{M}_3 = 3.$

 $\mathcal{N} \rightarrow$ Question:

Minimal factorizations

Let $(1, 2, \ldots, n)$ be the n cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into transpositions).

 \wedge Question: $\#\mathfrak{M}_n = n^{n-2}$ (Dénes, 1959)

For example (multiply from left to right):

$$(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),$$

 $#\mathfrak{M}_3 = 3.$

 $\mathcal{N} \rightarrow$ Question:

Minimal factorizations

Let $(1, 2, \ldots, n)$ be the n cycle.

Consider the set

 $\mathfrak{M}_n = \{(\tau_1, \dots, \tau_{n-1}) \text{ transpositions } : \tau_1 \tau_2 \cdots \tau_{n-1} = (1, 2, \dots, n)\}$

of minimal factorizations (of the n-cycle into transpositions).

 \wedge Question: $\#\mathfrak{M}_n = n^{n-2}$ (Dénes, 1959)

For example (multiply from left to right):

$$(1, 2, 3) = (1, 3)(2, 3) = (2, 3)(1, 2) = (1, 2)(1, 3),$$

 $#\mathfrak{M}_3=3.$

 $\Lambda \rightarrow$ Question: for n large, what does a typical minimal factorization look like?

What space for minimal factorizations?

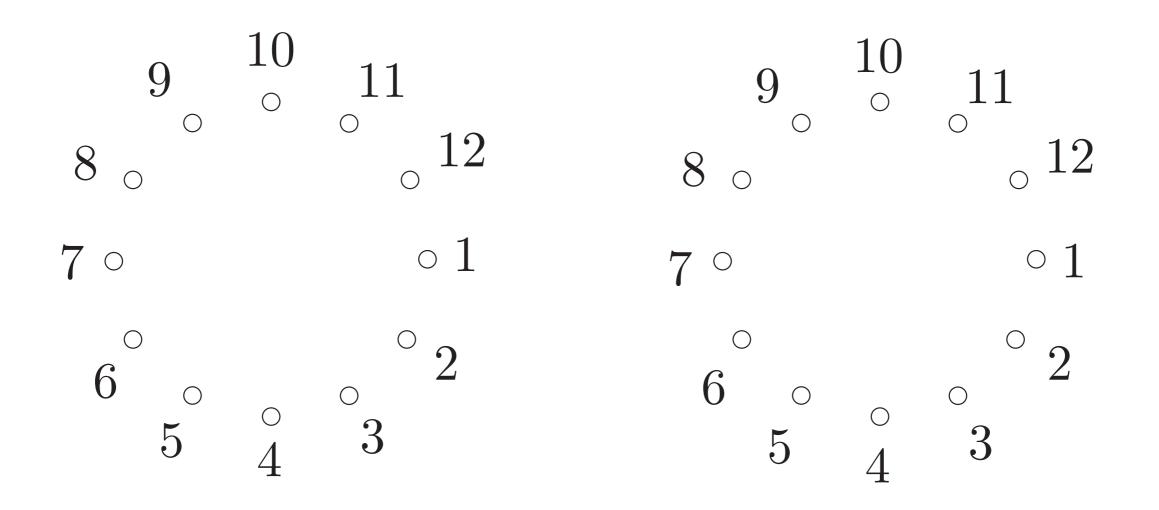
What space for minimal factorizations?

compact subsets of the unit disk.

- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

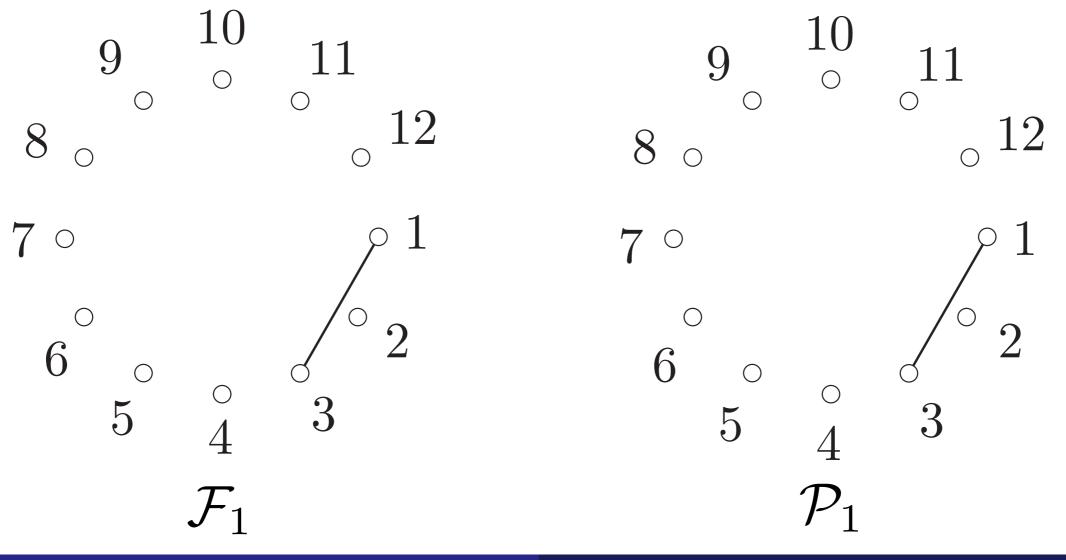
 \rightarrow Example (n = 12)). Take

((1,3), (6,12), (1,5), (7,12), (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11))



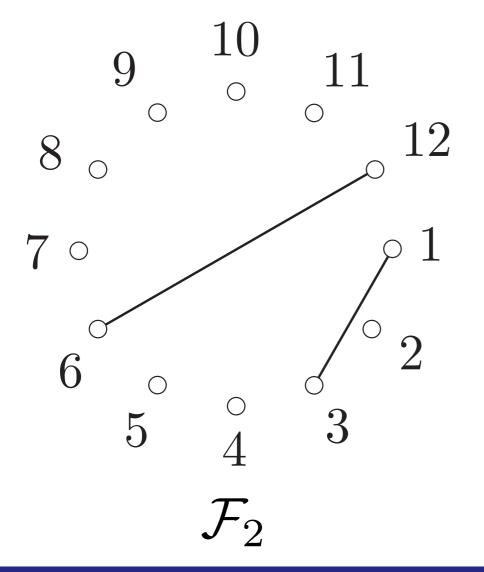
- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

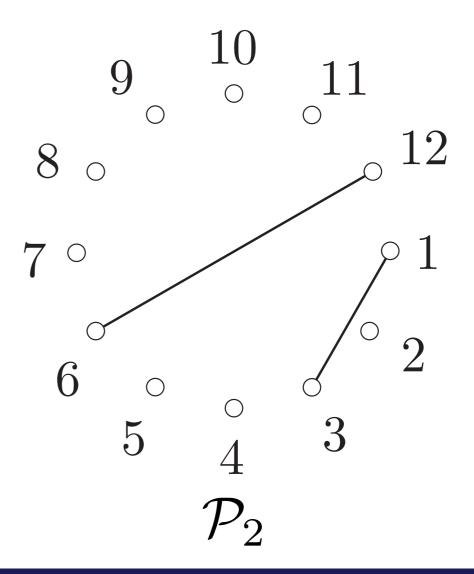
 $\begin{array}{l} & \longrightarrow \text{Example } (n = 12) \text{). For } k = 1: \\ (\underbrace{(1,3)}_{\text{product}=(1,3)}, (6,12), (1,5), (7,12), (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11)$



- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

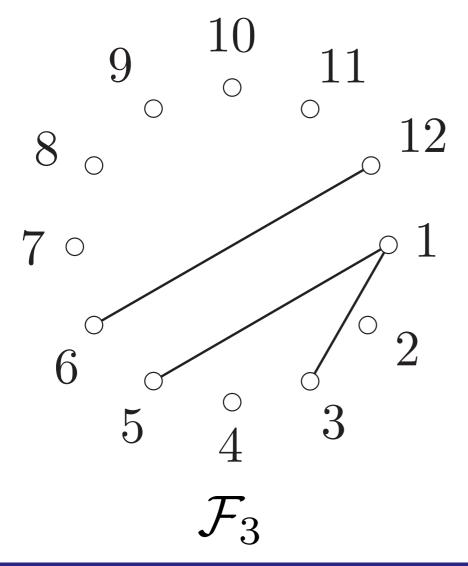
 $\begin{array}{l} & \longrightarrow \text{Example } (n = 12) \text{). For } k = 2: \\ & \left(\underbrace{(1,3), (6,12)}_{\text{product}=(1,3)(6,12)} , (1,5), (7,12), (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11) \right) \end{array} \right)$

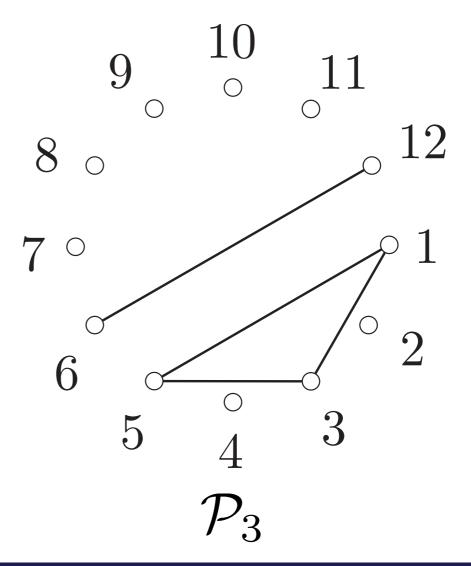




- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

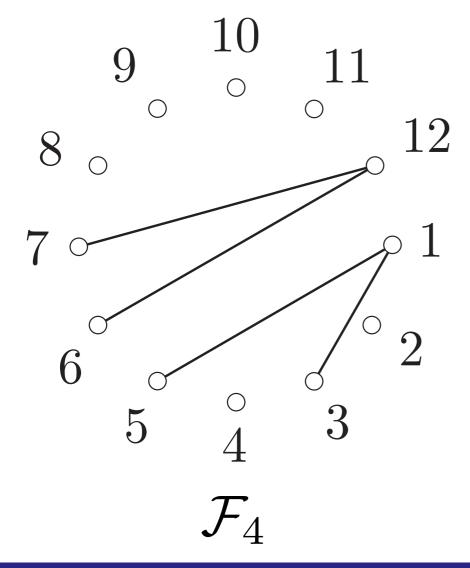
 $\begin{array}{l} & \longrightarrow \text{Example } (n = 12) \text{). For } k = 3: \\ & \left(\underbrace{(1,3), (6,12), (1,5)}_{\text{product}=(1,3,5)(6,12)}, (7,12), (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11) \right) \end{array}$

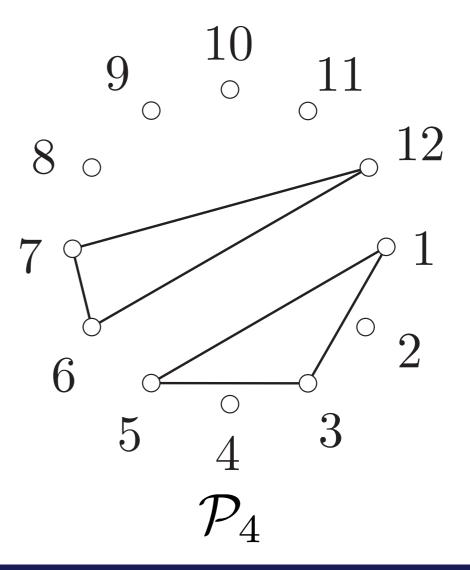




- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

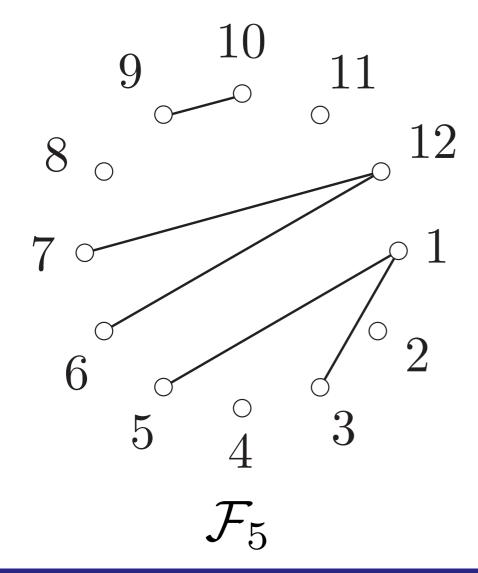
 $\begin{array}{l} & \longrightarrow \text{Example (n = 12)). For k = 4:} \\ & \left(\underbrace{(1,3), (6,12), (1,5), (7,12)}_{\text{product}=(1,3,5)(6,7,12)}, (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11) \right) \end{array}$

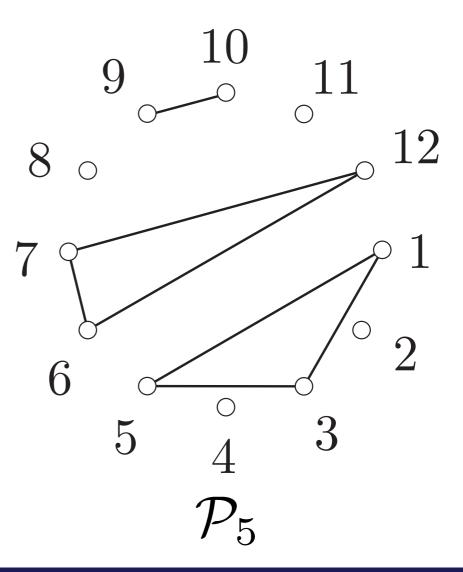




- ► \mathfrak{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

 $\begin{array}{l} & \longrightarrow \text{Example (n = 12)). For k = 5:} \\ & \left(\underbrace{(1,3), (6,12), (1,5), (7,12), (9,10)}_{\text{product}=(1,3,5)(6,7,12)(9,10)}, (11,12), (2,3), (4,5), (1,6), (8,11), (9,11) \right) \end{array}$



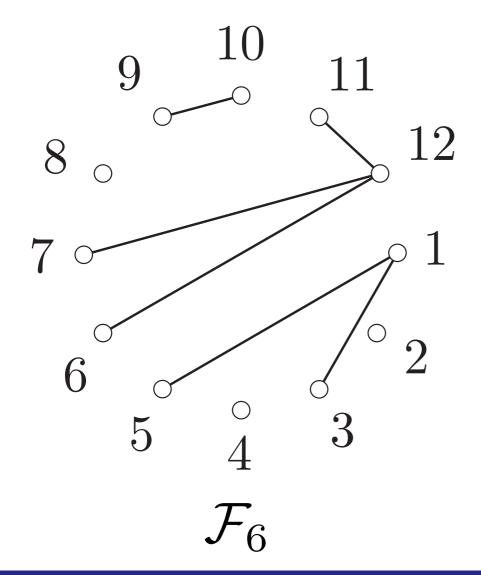


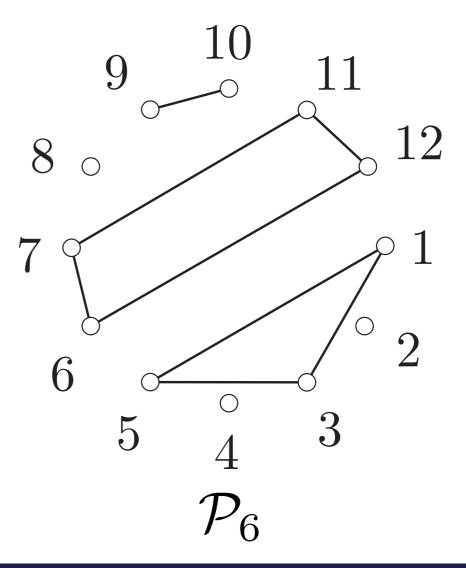
- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

 \rightarrow Example (n = 12)). For k = 6:

 $\left(\underbrace{(1,3),(6,12),(1,5),(7,12),(9,10),(11,12)}_{(2,3),(2,3),(4,5),(1,6),(8,11),(9,11)}\right)$

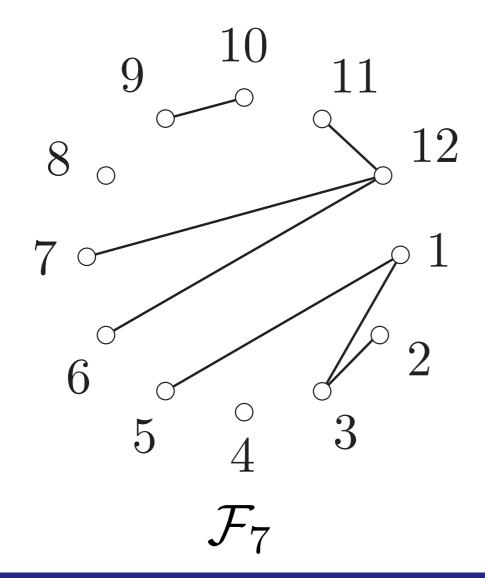
product = (1,3,5)(6,7,11,12)(9,10)

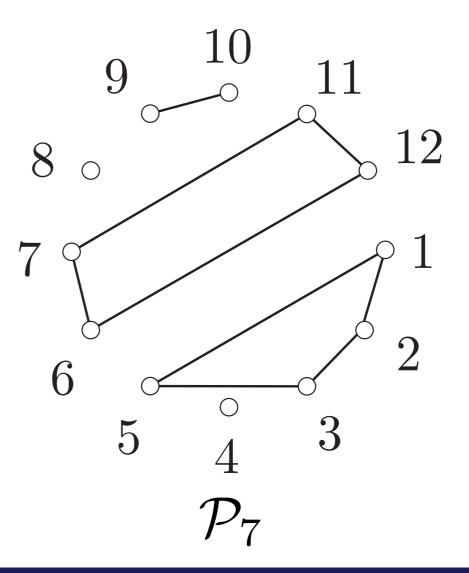




- ► \mathfrak{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

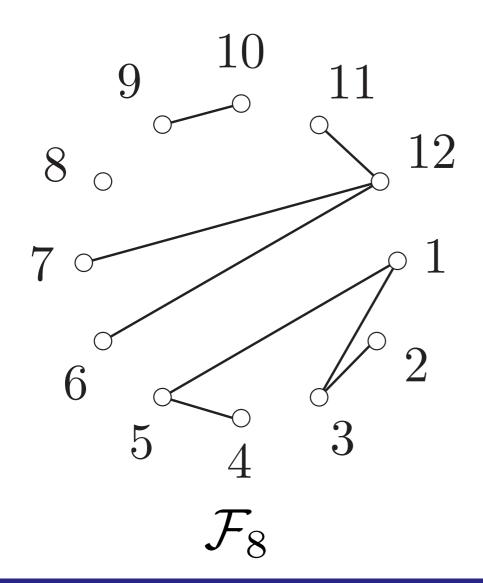
 $\begin{array}{l} & \checkmark \in \text{Example } (n = 12) \text{). For } k = 7: \\ & \left(\underbrace{(1,3), (6,12), (1,5), (7,12), (9,10), (11,12), (2,3)}_{\text{product} = (1,2,3,5)(6,7,11,12)(9,10)}, (4,5), (1,6), (8,11), (9,11) \right) \end{array}$

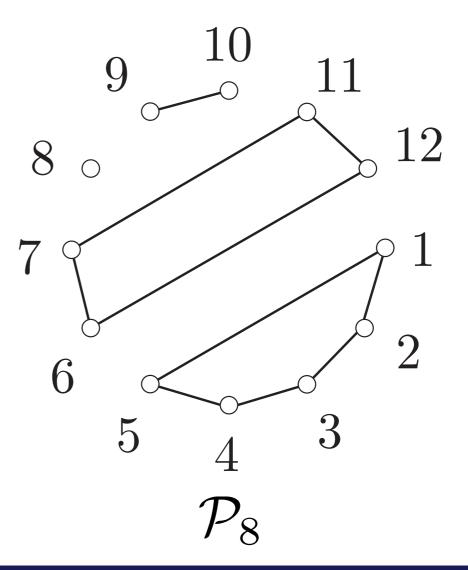




- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

 $\stackrel{\checkmark}{\longrightarrow} \text{Example } (n = 12) \text{). For } k = 8: \\ (\underbrace{(1,3), (6,12), (1,5), (7,12), (9,10), (11,12), (2,3), (4,5)}_{\text{product}=(1,2,3,4,5)(6,7,11,12)(9,10)}, (1,6), (8,11), (9,11))$



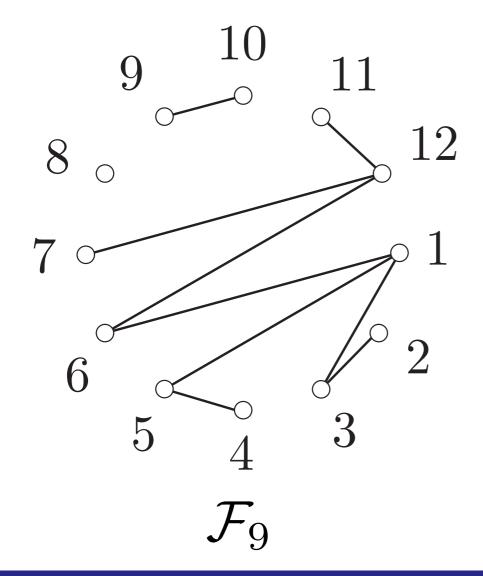


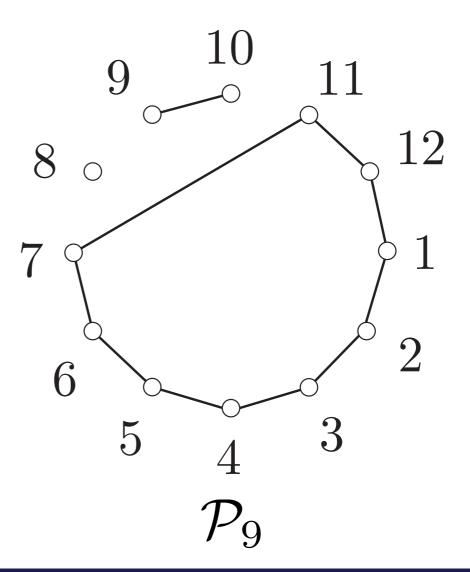
- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

 \rightarrow Example (n = 12)). For k = 9:

((1,3), (6,12), (1,5), (7,12), (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11))

product = (1, 2, 3, 4, 5, 6, 7, 11, 12)(9, 10)



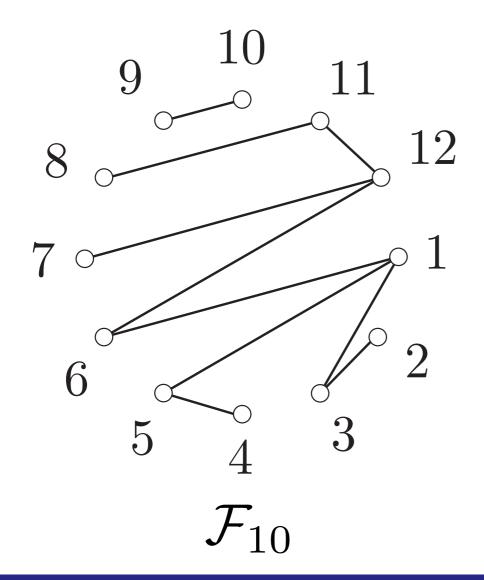


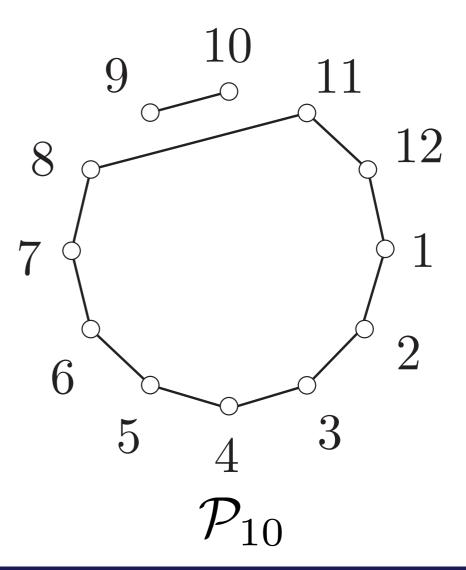
- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

 \rightarrow Example (n = 12)). For k = 10:

((1,3), (6,12), (1,5), (7,12), (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11))

product = (1, 2, 3, 4, 5, 6, 7, 8, 11, 12)(9, 10)



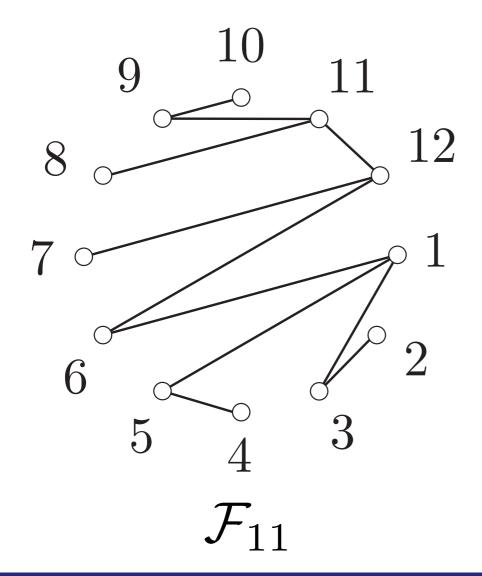


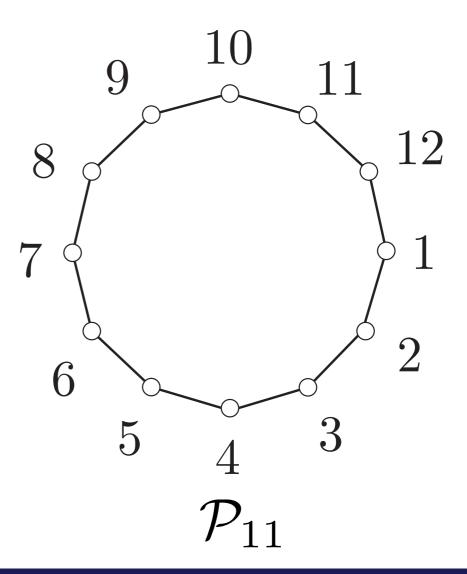
- ► \mathcal{F}_k is the compact subset obtained by drawing the chords τ_i , $1 \leq i \leq k$.
- \mathcal{P}_k is the compact subset associated to the cycles of $\tau_1 \tau_2 \cdots \tau_k$.

 \rightarrow Example (n = 12)). For k = 11:

((1,3), (6,12), (1,5), (7,12), (9,10), (11,12), (2,3), (4,5), (1,6), (8,11), (9,11)))

product = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)





Let $(\tau_1^n, \ldots, \tau_{n-1}^n)$ be a uniform minimal factorization of the n-cycle.

Let $(\tau_1^n, \ldots, \tau_{n-1}^n)$ be a uniform minimal factorization of the n-cycle. The following film represents

$$(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n)$$

55

with $K_n = \lfloor cf(n) \rfloor$ for fixed n = 20000, as c varies (for a certain mystery function f).

Let $(\tau_1^n, \ldots, \tau_{n-1}^n)$ be a uniform minimal factorization of the n-cycle. The following film represents

$$(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n)$$

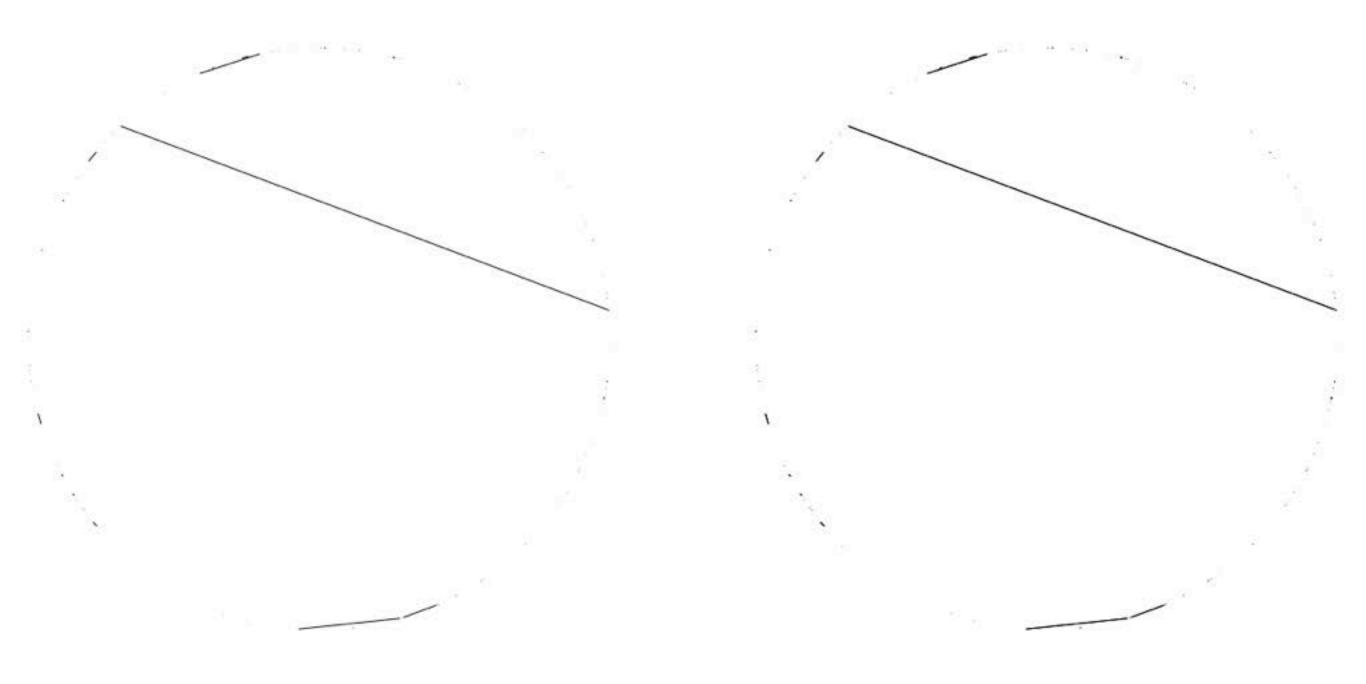
with $K_n = \lfloor cf(n) \rfloor$ for fixed n = 20000, as c varies (for a certain mystery function f).

Who is f?

The following film represents

$$(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n)$$

with $K_n = \lfloor cn \rfloor$ for fixed n, as c varies.



1

The following film represents

$$(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n)$$

with $K_n = \lfloor c\sqrt{n} \rfloor$ for fixed n, as c varies.

K_n = 0.050 n^(1/2)

.

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) (ii) (iii) (iv)

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $K_n = o(\sqrt{n})$: (ii) (iii) (iv)

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $K_n = o(\sqrt{n})$: (ii) If $\frac{K_n}{\sqrt{n}} \rightarrow c \in (0, \infty)$: (iii) (iv)

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $\mathbf{K}_{\mathbf{n}} = \mathbf{o}(\sqrt{\mathbf{n}})$: (ii) If $\frac{K_n}{\sqrt{n}} \to c \in (0, \infty)$: (iii) If $\frac{K_n}{\sqrt{n}} \to \infty$ and $\frac{n-K_n}{\sqrt{n}} \to \infty$: (iv)Igor Kortchemski Large discrete random structures 44 / ×₀

 \aleph_0

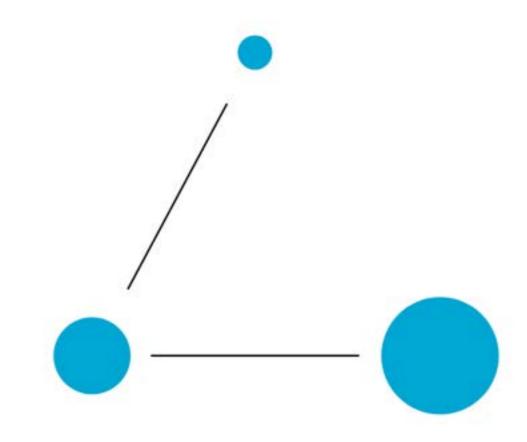
Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $\mathbf{K}_{\mathbf{n}} = \mathbf{o}(\sqrt{\mathbf{n}})$: (ii) If $\frac{K_n}{\sqrt{n}} \to c \in (0, \infty)$: (iii) If $\frac{K_n}{\sqrt{n}} \to \infty$ and $\frac{n-K_n}{\sqrt{n}} \to \infty$: (iv) If $\frac{n-K_n}{\sqrt{n}} \rightarrow c \in [0,\infty)$: Igor Kortchemski Large discrete random structures 44 /

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $K_n = o(\sqrt{n})$: $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (\mathbb{S}, \mathbb{S})$. (ii) If $\frac{K_n}{\sqrt{n}} \to c \in (0, \infty)$: (iii) If $\frac{K_n}{\sqrt{n}} \to \infty$ and $\frac{n-K_n}{\sqrt{n}} \to \infty$: (iv) If $\frac{n-K_n}{\sqrt{n}} \rightarrow c \in [0,\infty)$:

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $K_n = o(\sqrt{n})$: $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (\mathbb{S}, \mathbb{S})$. (ii) If $\frac{K_n}{\sqrt{n}} \to c \in (0,\infty)$: there exists a random compact subset L_c such that $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (\mathbf{L}_c, \mathbf{L}_c).$ (iii) If $\frac{K_n}{\sqrt{n}} \to \infty$ and $\frac{n-K_n}{\sqrt{n}} \to \infty$: (iv) If $\frac{n-K_n}{\sqrt{n}} \to c \in [0,\infty)$:

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $K_n = o(\sqrt{n})$: $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (\mathbb{S}, \mathbb{S})$. (ii) If $\frac{K_n}{\sqrt{n}} \to c \in (0,\infty)$: there exists a random compact subset L_c such that $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (\mathbf{L}_c, \mathbf{L}_c).$ (iii) If $\frac{K_n}{\sqrt{n}} \to \infty$ and $\frac{n-K_n}{\sqrt{n}} \to \infty$: $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(\mathfrak{d})} (L(\mathfrak{e}), L(\mathfrak{e})).$ (iv) If $\frac{n-K_n}{\sqrt{n}} \rightarrow c \in [0,\infty)$:

Theorem (Féray, K.). Let $(t_1^{(n)}, \ldots, t_{n-1}^{(n)})$ be a uniform minimal factorization of length n and $1 \leq K_n \leq n-1$ with $K_n \rightarrow \infty$. (i) If $K_n = o(\sqrt{n})$: $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (\mathbb{S}, \mathbb{S})$. (ii) If $\frac{K_n}{\sqrt{n}} \to c \in (0, \infty)$: there exists a random compact subset L_c such that $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (\mathbf{L}_c, \mathbf{L}_c).$ (iii) If $\frac{K_n}{\sqrt{n}} \to \infty$ and $\frac{n-K_n}{\sqrt{n}} \to \infty$: $(\mathcal{F}_{K_n}^n, \mathcal{P}_{K_n}^n) \xrightarrow{(d)} (L(\mathbb{e}), L(\mathbb{e})).$ (iv) If $\frac{n-K_n}{\sqrt{n}} \to c \in [0,\infty)$: $\mathcal{F}_{K_n}^n \xrightarrow{(a)} L(\mathbb{e}), \quad \mathcal{P}_{K_n}^n \xrightarrow{(a)} L_c \quad (\text{with } L_0 = \mathbb{S}).$



ANNALES HENRI LEBESGUE

What is the limit?

 \longrightarrow L₀ is the unit circle.

What is the limit?

 $\wedge \rightarrow L_{\infty}$ is Aldous' Brownian triangulation.

What is the limit?

 $\longrightarrow \mathbf{L}_{\infty}$ is Aldous' Brownian triangulation.

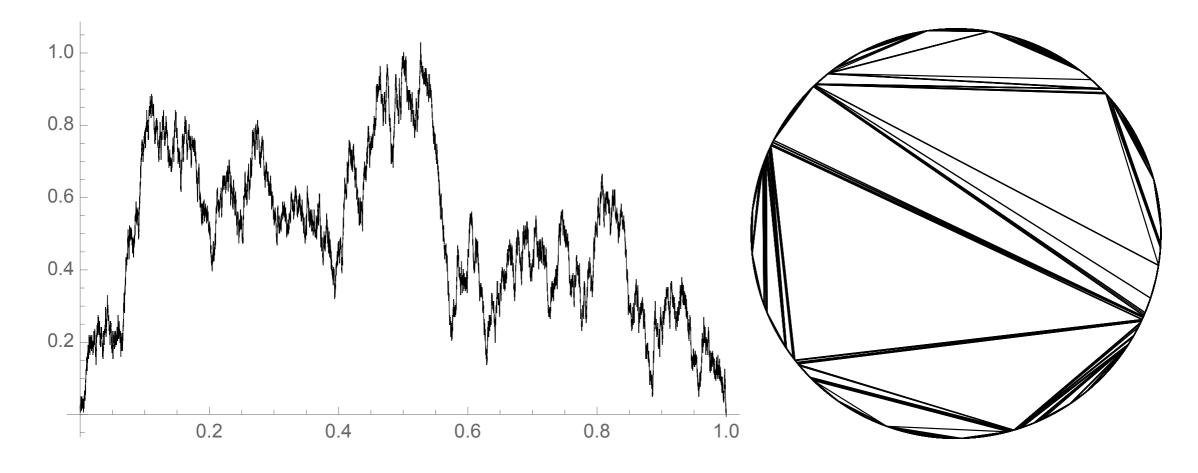


Figure: A Brownian excursion (left) coding L_{∞} (right).

 Λ → For 0 < c < ∞, L_c is a *lamination*, coded by an excursion of an explicit spectrally positive Lévy process.

 Λ → For 0 < c < ∞, L_c is a *lamination*, coded by an excursion of an explicit spectrally positive Lévy process.

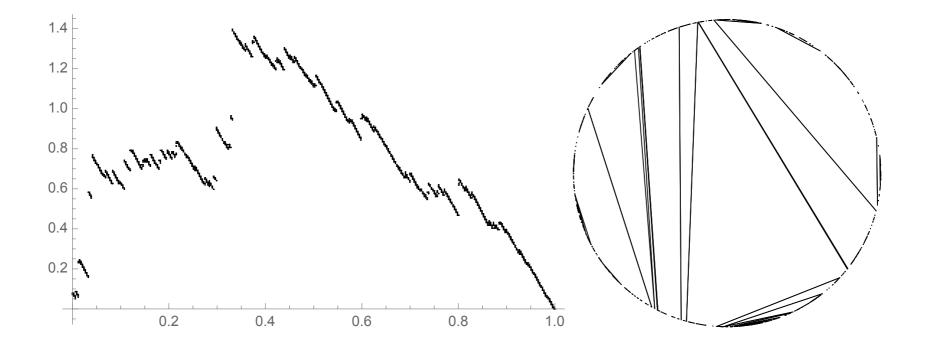


Figure: An excursion of a spectrally positive Lévy process (left) coding L_5 (right).

 Λ → For 0 < c < ∞, L_c is a *lamination*, coded by an excursion of an explicit spectrally positive Lévy process.

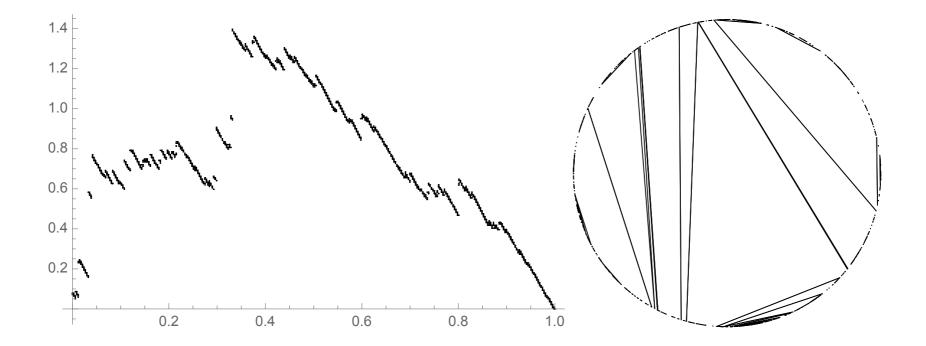


Figure: An excursion of a spectrally positive Lévy process (left) coding L_5 (right).

 \wedge The Laplace exponent of the Lévy process is

$$\Phi(\lambda) = c^2 \left(1 - \sqrt{1 + \frac{2\lambda}{c}} \right) + \lambda c.$$

 Λ → For 0 < c < ∞, L_c is a *lamination*, coded by an excursion of an explicit spectrally positive Lévy process.

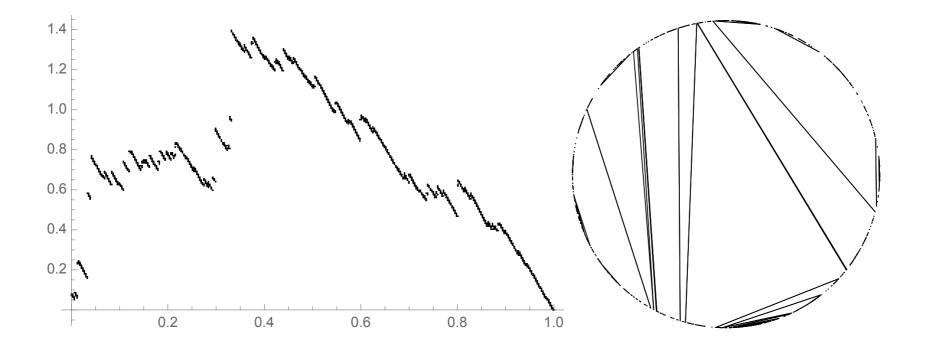


Figure: An excursion of a spectrally positive Lévy process (left) coding L_5 (right).

 \wedge The Laplace exponent of the Lévy process is

$$\Phi(\lambda) = c^2 \left(1 - \sqrt{1 + \frac{2\lambda}{c}} \right) + \lambda c.$$

∧→ Thévenin shows the convergence of $\left(\mathcal{F}_{\lfloor c\sqrt{n} \rfloor}^n\right)_{c \ge 0}$ to $(\mathbf{L}_c)_{c \ge 0}$ as a process.

Main idea of the proof

Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

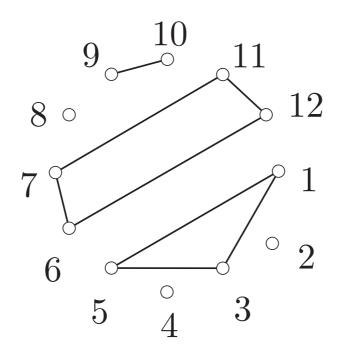
$$\mathbb{P}\left(\mathcal{P}(\boldsymbol{t}_1^{(n)}\boldsymbol{t}_2^{(n)}\cdots\boldsymbol{t}_k^{(n)})=\mathsf{P}\right)$$

Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$

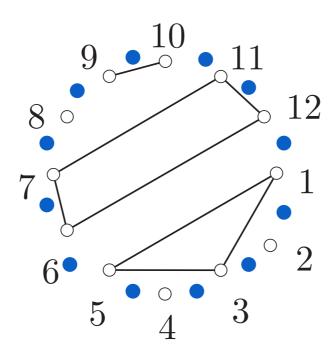
Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$



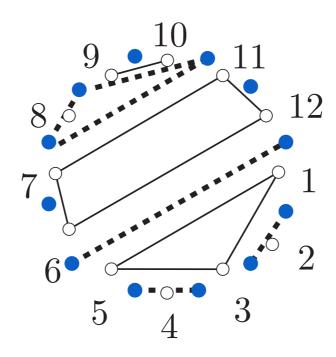
Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$



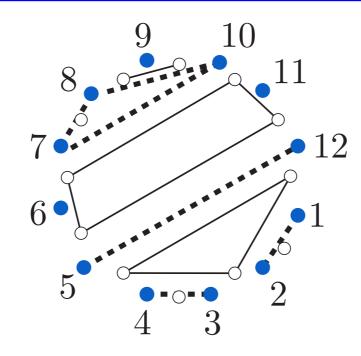
Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$



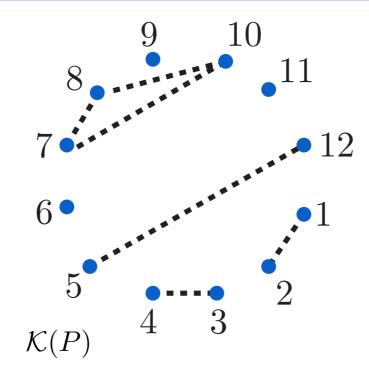
Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$



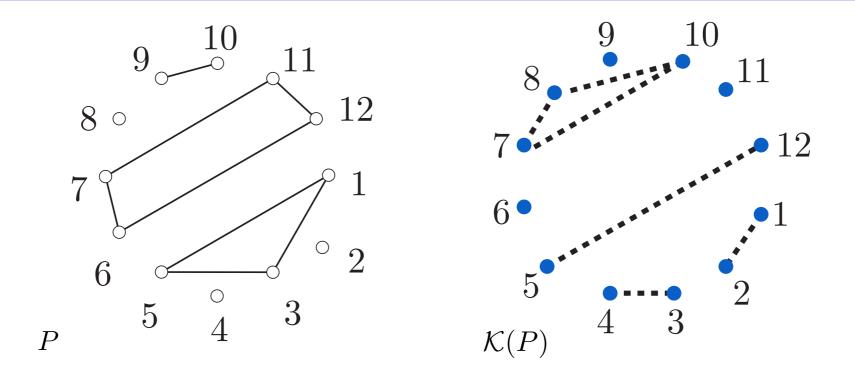
Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = P\right) \\ = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in P} \frac{|B|^{|B|-2}}{(|B|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(P)} \frac{|B|^{|B|-2}}{(|B|-1)!}\right),$$



Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$



Fix $1\leqslant k\leqslant n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$

where $\mathcal{K}(P)$ is the Kreweras complement of P.

 $\wedge \rightarrow$ Consequence 1: (take k = 1)

$$\mathbb{P}\left(\frac{t_{1}^{(n)}}{n} = (a, a+i) \text{ for some } a\right) = \frac{(n-2)!}{n^{n-2}} \cdot \frac{i^{i-2}}{(i-1)!} \cdot \frac{(n-i)^{(n-i-2)}}{(n-i-1)!}$$

for n and i large

Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathsf{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathsf{P}} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathsf{P})} \frac{|\mathsf{B}|^{|\mathsf{B}|-2}}{(|\mathsf{B}|-1)!}\right),$$

where $\mathcal{K}(P)$ is the Kreweras complement of P.

 $\wedge \rightarrow$ Consequence 1: (take k = 1)

$$\mathbb{P}\left(\frac{t_1^{(n)}}{n} = (a, a+i) \text{ for some } a\right) = \frac{(n-2)!}{n^{n-2}} \cdot \frac{i^{i-2}}{(i-1)!} \cdot \frac{(n-i)^{(n-i-2)}}{(n-i-1)!} \sim \frac{C}{i^{3/2}}$$

for n and i large

Fix $1 \le k \le n-1$ and let P be a non-crossing partition with n vertices and n-k blocks. Then

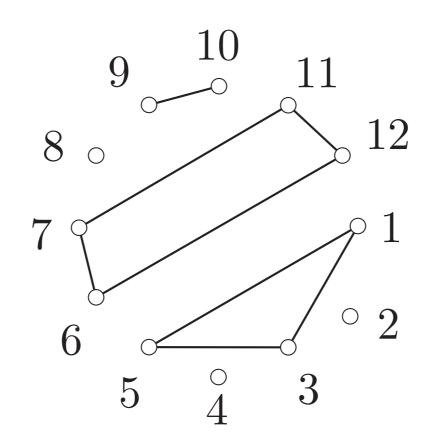
$$\mathbb{P}\left(\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)}) = \mathbb{P}\right) = \frac{k!(n-k-1)!}{n^{n-2}} \cdot \left(\prod_{B \in \mathbb{P}} \frac{|B|^{|B|-2}}{(|B|-1)!}\right) \cdot \left(\prod_{B \in \mathcal{K}(\mathbb{P})} \frac{|B|^{|B|-2}}{(|B|-1)!}\right),$$

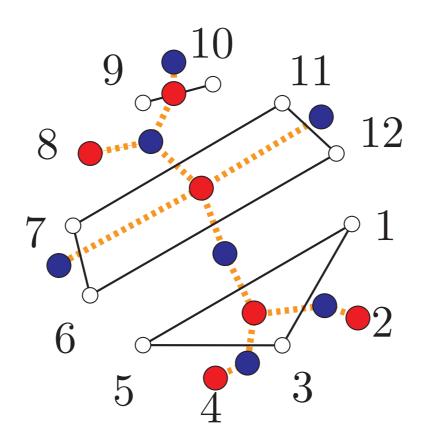
where $\mathcal{K}(P)$ is the Kreweras complement of P.

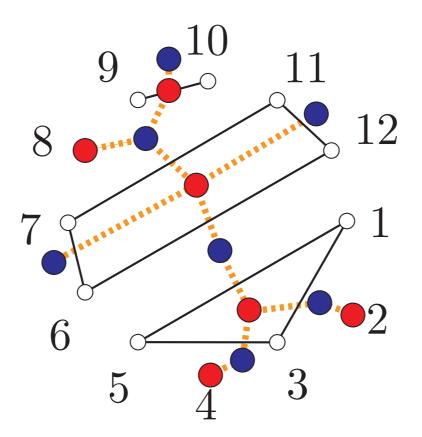
 $\wedge \rightarrow$ Consequence 1: (take k = 1)

$$\mathbb{P}\left(\frac{t_{1}^{(n)}}{n} = (a, a+i) \text{ for some } a\right) = \frac{(n-2)!}{n^{n-2}} \cdot \frac{i^{i-2}}{(i-1)!} \cdot \frac{(n-i)^{(n-i-2)}}{(n-i-1)!} \sim \frac{C}{i^{3/2}}$$

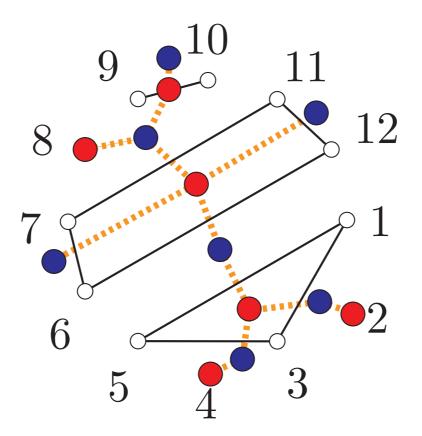
for n and i large, which explains the \sqrt{n} transition.





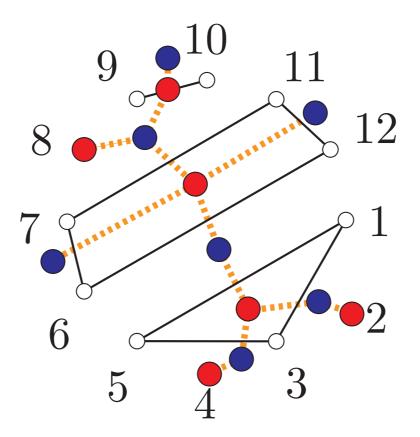


It follows that $\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)})$ is coded by a bitype biconditioned Bienaymé–Galton–Watson (or simply generated) tree (n - k blue vertices and k + 1 red vertices)!



It follows that $\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)})$ is coded by a bitype biconditioned Bienaymé–Galton–Watson (or simply generated) tree (n - k blue vertices and k+1 red vertices)!

A→ different conditioning than those considered for multitype BGW trees by Marckert, Miermont, Berzunza (total size fixed, or size of one type fixed).



It follows that $\mathcal{P}(t_1^{(n)}t_2^{(n)}\cdots t_k^{(n)})$ is coded by a bitype biconditioned Bienaymé–Galton–Watson (or simply generated) tree (n - k blue vertices and k+1 red vertices)!

A→ different conditioning than those considered for multitype BGW trees by Marckert, Miermont, Berzunza (total size fixed, or size of one type fixed).

We develop a new machinery to study limits of such random trees.

