Les systèmes à masse variable : une fusée

Jusqu’à présent, on n’a étudié que des systèmes dont la masse est constante. Cependant, il arrive parfois que la masse varie, comme dans le cas d’une fusée (figure 9.11). Sur la plate-forme de lancement, la plus grande partie de la masse d’une fusée est constituée de carburant, dont la totalité sera consommée et expulsée par les tuyères du moteur.

Pour considérer la variation de la masse de la fusée à mesure que celle-ci accélère, on applique la deuxième loi de Newton, non pas à la fusée seule, mais à la fusée et aux produits de combustion expulsés, considérés comme un tout. La masse de ce système ne change pas à mesure que la fusée accélère.

Le calcul de l’accélération

On peut imaginer qu’on est immobile par rapport à un référentiel inertielle et qu’on observe une fusée qui accélère dans l’espace et qui ne subit aucune force gravitationnelle ni aucune résistance atmosphérique. Dans le cas de ce mouvement rectiligne, on peut noter \(M \) la masse de la fusée et \(\ddot{v} \) sa vitesse à un temps arbitraire \(t \) (voir la figure 9.12 a)).

La figure 9.12 b) montre l’état du système à un intervalle de temps \(dt \) ultérieur. La vitesse de la fusée est maintenant \(\ddot{v} + d\ddot{v} \), sa masse est \(M + dM \), où \(dM \), qui représente la variation de masse, a une valeur négative. Les gaz expulsés par la fusée durant l’intervalle \(dt \) ont une masse \(-dM\) et une vitesse \(\ddot{U} \) par rapport au référentiel.

Le système est constitué de la fusée et des produits expulsés durant l’intervalle \(dt \). Ce système est fermé et isolé ; ainsi, sa quantité de mouvement doit être constante durant l’intervalle \(dt \); donc,

\[
\vec{P}_f = \vec{P}_i, \tag{9.37}
\]

où les indices \(i \) et \(f \) indiquent les valeurs initiale et finale de l’intervalle \(dt \). On peut récrire l’équation 9.37 ainsi :

\[
M\ddot{v} = -dM \ddot{U} + (M + dM)(\ddot{v} + d\ddot{v}), \tag{9.38}
\]

où le premier terme du membre droit représente la quantité de mouvement des produits qui ont été expulsés durant l’intervalle \(dt \) et le second terme, la quantité de mouvement de la fusée à la fin de l’intervalle \(dt \).

On peut simplifier l’équation 9.38 en utilisant la vitesse relative \(\vec{v}_{rel} \) entre la fusée et les gaz d’échappement ; ainsi :

\[
\begin{pmatrix}
\text{vitesse de la fusée} \\
\text{par rapport} \\
\text{au référentiel}
\end{pmatrix}
= \begin{pmatrix}
\text{vitesse de la fusée} \\
\text{par rapport} \\
\text{au gaz}
\end{pmatrix} + \begin{pmatrix}
\text{vitesse des gaz} \\
\text{par rapport} \\
\text{au référentiel}
\end{pmatrix}.
\]

En symboles, cette équation devient :

\[
\vec{v} + d\vec{v} = \vec{v}_{rel} + \ddot{U},
\]

ou

\[
\ddot{U} = \ddot{v} + d\ddot{v} - \vec{v}_{rel}. \tag{9.39}
\]

Si on substitue ce résultat de \(\ddot{U} \) dans l’équation 9.38, on obtient, avec un peu d’algèbre,

\[
-dM \vec{v}_{rel} = M d\ddot{v}. \tag{9.40}
\]

Si on divise chaque membre par \(dt \), on obtient :

\[
\frac{-dM}{dt} \vec{v}_{rel} = M \frac{d\ddot{v}}{dt}. \tag{9.41}
\]

On remplace \(dM/dt \) (le taux de diminution de la masse de la fusée) par \(-R\), où \(R \) est le taux (positif) de combustion du carburant. De plus, \(d\ddot{v}/dt \) est l’accélération de la fusée. Selon ces modifications, l’équation 9.41 devient :

\[
R \vec{v}_{rel} = \text{poussé} = M \ddot{a} = 1^{\text{er}} \text{eq. de fusée}.
\]
\[R = \left| \frac{d \vec{v}}{dt} \right| \]

(première équation d’une fusée).

(9.42)

L’équation 9.42 s’applique à tout instant, avec la masse \(M \), le taux de combustion du carburant \(R \) et l’accélération \(\ddot{a} \) évalués à cet instant.

Le membre gauche de l’équation 9.42 possède les dimensions d’une force (kg \(\cdot \) m/s\(^2\) = N) et ne dépend que des caractéristiques propres à la conception du moteur de la fusée, et à savoir le taux de combustion du carburant \(R \) et la vitesse \(\vec{v}_{rel} \) à laquelle la fusée se déplace par rapport aux gaz expulsés. Le terme \(R \vec{v}_{rel} \) est appelé la poussée de la fusée et est représenté par le symbole \(\vec{F}_p \). La deuxième loi de Newton émerge de façon claire si on écrit l’équation 9.42 sous la forme \(\vec{F}_p = M \ddot{a} \), où \(\ddot{a} \) est l’accélération de la fusée quand sa masse est \(M \).

Le calcul de la vitesse

Comment la vitesse d’une fusée varie-t-elle à mesure que le carburant est brûlé et que les gaz d’échappement sont expulsés ? Selon l’équation 9.40, on a :

\[
d\vec{v} = -\vec{v}_{rel} \frac{dM}{M}.
\]

En intégrant de chaque côté et en supposant que \(\vec{v}_{rel} \) est constant, on obtient :

\[
\int_{\vec{v}_i}^{\vec{v}_f} d\vec{v} = -\vec{v}_{rel} \int_{M_i}^{M_f} \frac{dM}{M},
\]

où \(M_i \) est la masse initiale de la fusée et \(M_f \) est sa masse finale. L’évaluation de ces intégrales donne alors :

\[
\vec{v}_f - \vec{v}_i = \vec{v}_{rel} \ln \frac{M_i}{M_f} \quad \text{(deuxième équation d’une fusée).}
\]

(9.43)

Cette équation donne la variation de la vitesse de la fusée en fonction de la masse initiale \(M_i \) et de la masse finale \(M_f \) de la fusée. (Le symbole \(\ln \) de l’équation 9.43 signifie logarithme naturel.) On voit ici l’avantage de construire des fusées à plusieurs étages ; la masse \(M_f \) de ces fusées diminue à mesure qu’on éjecte successivement les étages dont le carburant est épuisé. Une fusée idéale n’arriverait à destination qu’avec sa charge utile.

Exemple 9.8

Une fusée dont la masse initiale, \(M_i \), est de 850 kg a un taux de combustion des gaz \(R \) de 2.3 kg/s. Le module de la vitesse \(v_{rel} \) des gaz d’expulsion par rapport au moteur de la fusée est 2 800 m/s.

a) Quel est le module de la poussée que la fusée génère ?

SOLUTION : Ici, le concept dé indique que le module de la poussée \(F_p \), est égal au produit du taux de combustion de carburant, \(R \), et du module de la vitesse relative, \(v_{rel} \), à laquelle les gaz sont expulsés :

\[
F_p = R v_{rel} = (2.3 \text{ kg/s})(2 800 \text{ m/s})
\]

\[
F_p = 6 440 \text{ N} = 6.4 \times 10^3 \text{ N}. \quad \text{(réponse)}
\]

b) Quel est le module de l’accélération initiale de la fusée ?

SOLUTION : La première équation relie aux fusées (l’équation 9.42) établit un lien entre la poussée \(F_p \), la masse \(M \) et le module de l’accélération \(a \) de la fusée : \(F_p = Ma \). Le concept dé indique toutefois ici que \(M \) diminue et a augmenté à mesure que le carburant est brûlé. Étant donné qu’on cherche ici la valeur initiale de \(a \), on doit utiliser la valeur initiale de la masse \(M \). On obtient alors :

\[
a = \frac{F_p}{M_i} = \frac{6 440 \text{ N}}{850 \text{ kg}} = 7.6 \text{ m/s}^2. \quad \text{(réponse)}
\]

Pour que la fusée quitte la surface de la Terre, le module de son accélération initiale doit être supérieur à \(g = 9.8 \text{ m/s}^2 \). Autrement dit, le module de la poussée \(F_p \) du moteur doit excéder le module de la force gravitationnelle initiale qui s’exerce sur la fusée ; la valeur du module de cette force est ici \(M_i g \), ce qui donne (850 kg)(9.8 m/s\(^2\)), ou 8 330 N. Puisque la poussée n’est pas suffisante (ici, \(F_p = 6 400 \text{ N} \)), la fusée ne peut quitter la surface de la Terre sans aide ; il faudrait une fusée plus puissante.

c) On peut aussi supposer que la fusée est lancée d’un vaisseau se trouvant déjà dans l’espace, où toute force gravitationnelle est négligeable. La masse \(M_f \) de la fusée à l’instant où son carburant est épuisé est 180 kg. Quel est le module de la vitesse de la fusée par rapport au vaisseau spatial à cet instant ? Supposons que le vaisseau spatial est si massif que le lancement de la fusée ne modifie pas sa vitesse.

SOLUTION : Le concept dé indique ici que le module de la vitesse finale de la fusée, \(v_f \) (quand le carburant est épuisé) dépend du rapport entre sa masse initiale et sa masse finale, \(M_i / M_f \), comme l’indique l’équation 9.43. Avec la vitesse initiale \(v_i = 0 \), on a :

\[
v_f = v_{rel} \ln \frac{M_i}{M_f}
\]

\[
(2 800 \text{ m/s}) \ln \frac{850 \text{ kg}}{180 \text{ kg}}
\]

\[
(2 800 \text{ m/s}) \ln 4.72 \approx 4.35 \text{ km/s}. \quad \text{(réponse)}
\]

Remarquez que le module de la vitesse finale de la fusée peut excéder le module de la vitesse d’expulsion, \(v_{rel} \).