Imaginez-vous en train d'encourager un sauteur à l'élastique, hésitant à s'élancer depuis un pont très haut. Finalement, rassemblant tout son courage, le sauteur se laisse tomber tout en criant de manière continue, à intensité constante et avec une fréquence de 300 Hz.

a) Représentez la fréquence du son que vous percevez, en fonction du temps, jusqu'à l'arrêt final du sauteur (on ne négligera donc pas les frottements !)

b) Représentez également l'intensité du son que vous percevez, en fonction du temps, jusqu'à ce que le sauteur ne bouge plus.

Le dessin ci-dessous montre la situation suivante : la voiture A roulant à une vitesse $v_A = 126$ km/h dépasse la voiture B dont la vitesse est $v_B = 90$ km/h. Ce faisant elle klaxonne continûment avec un son d'une fréquence de 300 Hz, car un poids lourd roule devant elle sur la même piste de dépassement avec une vitesse $v_c = 108$ km/h.

a) Quel saut de fréquence (rapport des fréquences) perçoit un cantonnier\(^1\) placé en D lorsque la voiture A passe devant lui en klaxonnant ?

b) Quel saut (rapport de fréquence) perçoit l'automobiliste B lorsque A le dépasse ?

c) Quelle est la fréquence du battement perçu par A à cause de la superposition du son du klaxon et du son du klaxon renvoyé par l'arrière du poids lourd ?

Un haut-parleur H se déplace à la vitesse $v = 10$ m/s en direction d'un mur réfléchissant les ondes sonores. Ce faisant, le haut-parleur émet vers l'avant et vers l'arrière une onde sonore d'une fréquence $f_L = 1000$ Hz. La vitesse du son dans l'air vaut $v_s = 340$ m/s.

a) Entre le mur et le haut-parleur il se forme une onde stationnaire due à la superposition de l'onde émise par le haut-parleur et celles réfléchies par le mur. On supposera que les amplitudes des deux ondes sont identiques.

Calculerez la fréquence et la longueur d'onde de cette onde stationnaire, ainsi que la distance entre deux vents voisins.

(N.B.: lorsqu'une source émettant une onde sonore de fréquence f se déplace à une vitesse v, un observateur immobile perçoit la fréquence f_0 donnée par la relation:

$$f_0 = f \frac{v_s}{v_s - v}$$

v prend une valeur positive si la source se déplace vers l'observateur et négative sinon.)

b) L'onde émise par le haut-parleur vers l'arrière (droite : la feuille) et l'onde réfléchie par le mur se superposent par exemple au point P. Les deux ondes y ont des fréquences légèrement différentes et des amplitudes différentes. On peut donc y entendre des battements.

Calculez la fréquence de ces battements. L'amplitude maximale des battements est de 13 nm, alors que l'amplitude minimale est de 3 nm. Déterminez les amplitudes respectives de chaque onde. Quel est le temps séparant deux intensités maximales au point P ?
EX 4 : Réflexion d'une impulsion

1) La figure ci-contre représente le déplacement vertical $z(x,t = 0)$ sur une corde vibrante où la vitesse des ondes vaut $v = 1 \text{cm.s}^{-1}$. Au point O situé à 1 cm devant la tête de l'impulsion, la corde est fixée et impose donc un déplacement nul à tout instant. A quel instant τ une onde réfléchie commence-t-elle à apparaître ?

2) A l'instant 2τ on constate que tous les points de la corde ont un déplacement nul. Interpréter concrètement en traçant sur une même figure l'onde incidente et l'onde réfléchie.

3) Tracer sur une même figure l'onde incidente, l'onde réfléchie et l'onde globale à l'instant 1.5τ.

4) A partir de quel instant l'impulsion globale observée se déplace-t-elle sans se déformer ?

RÉPONSES AUX EXERCICES SUR LA PROPAGATION D'ONDES

EX 1 : Le sauteur va subir des oscillations amorties de telle sorte que l'intensité sonore va varier comme sa distance à l'observateur avec des oscillations amorties. La vitesse du sauteur oscille elle-aussi en s'amortissant donc l'effet DOPPLER fait varier aussi la fréquence avec des oscillations amorties. Les oscillations de l'intensité sonore et de la fréquence perçue sont déphasées car l'une est sensible à la position du sauteur et l'autre à sa vitesse.

EX 2 : a) $f''/f' = (v-v_A)/(v+v_A) = 0.81$; b) $f''/f' = (v+v_B)/(v+v_A)/(v-v_B)/(v-v_A) = 0.94$

EX 3 : a) dans le référentiel lié au mur, la fréquence du son est $f_O = 1300/(1 - 10/330) = 1031 \text{Hz}$ donc $\lambda = v_A/f = 32 \text{cm}$ donc deux noeuds voisins sont distants de $\lambda/2 = 16 \text{cm}$;

EX 4 : 1) $\tau = 1 \text{ s}$; 2) 3) 4) L'onde réfléchie est telle que le déplacement u'elle engendre en O est l'opposé de celui créé par l'onde incidente au même moment pour assurer la nullité du déplacement de O ; puis ce déplacement se propage vers la gauche à la vitesse v. L'onde réfléchie se construit donc en prenant la partie de l'onde incidente située fictivement au-delà du point fixe O, en l'inversant, puis en la déplaçant vers la gauche jusqu'à ce qu'elle soit entièrement située dans le domaine réel à gauche de C. En 2) on obtient une onde globale nulle par compensation entre la partie de l'onde incidente qui n'a pas encore atteint le point O et l'onde réfléchie. En 4) on obtient $t \geq 3\tau$.

\[t = \tau \]

\[t = 2\tau \]

\[t = 1.5\tau \]