

Jour Cert Korkhemski
Condensation phenomena in random breez

Cutline: 1) A maximal inequality 2) The local estimate

1) A maximal inequality

Mearen [Fiele-Napaer 4, Denisov-Dieter - Schneer 108] Assume that X is a R-valued nv with EEX3200, EEX3=0. Let (X;);, Seiid having same law as $X.$ Set $S_n = X_1 + ... + X_n$. There $f(x)$ is $f(x) = x$ and $c \ge 0$ $\mathbb{P}(\mathcal{S}_n > \alpha \sqrt{n}, X_1 \leq c \sqrt{n}, ..., X_n \leq c \sqrt{n}) \leq K \exp(-\frac{x}{c})$

Freef: The idea is to introduce the transcated random walk ζ_n = $\sum_{i=1}^{\infty}$ \times ; $\Delta_{\chi_i \leq c \sqrt{n}}$. Indeed, $\mathbb{P}(\dot{\mathsf{s}}_n>_\mathbf{X}\dot{\mathsf{w}}_1\times_1\dot{\mathsf{s}}_1\dot{\mathsf{w}}_1\cdots, \mathsf{X}_n\in\text{CH}^n)\leq \mathbb{P}(\dot{\mathsf{s}}_n^{\mathcal{U}}\geqslant\dot{\mathsf{w}}).$ To bound this probability we use the "exponential Markov" inequality.
B(S, > x m) = B($e^{\frac{S_n}{cm}}$ > e=> < e= F[$e^{\frac{X}{cm}}$]" with $X = X$ 1, sorts (1) X depends on n] We show that $E\left[e^{\frac{x}{c\sqrt{x}}} \right]=1+O(\frac{1}{n})$ and the result will follow. The idea is to write $e^{x} = 1+x+x^2$ and with $n(x) = e^{2} - 1 - x$, so that $\mathbb{E}[e^{\frac{\tilde{\chi}}{2}lcm}]=1+\mathbb{E}[\frac{\tilde{\chi}}{cm}]+\mathbb{E}[\frac{(\tilde{\chi})}{cm^{2}}]^{2}\sqrt{\frac{\tilde{\chi}}{cm}}]$ We show that $m_n \geq O(\frac{1}{\infty})$ and $s_n \geq O(\frac{1}{n})$. For sn: since $n \geq 5$ banded on $(-\infty, 13)$, we have $S_{n} = O(EE \times 1)$ (leve we rese (S_1)) But $E[X^2] \leq E[X^2]$, thus $s_{n-}C(\frac{1}{n})$. $\cdot \frac{F_{\alpha} - m_{\alpha}}{F_{\alpha} + m_{\alpha}}$: Write $m_{\alpha} = \frac{1}{C_{\alpha}F_{\alpha}} \mathbb{E}[\times \mathbb{1}_{X \leq C_{\alpha}F_{\alpha}}] = -\frac{1}{C_{\alpha}F_{\alpha}} \mathbb{E}[\times \mathbb{1}_{X > C_{\alpha}F_{\alpha}}]$ because GEX3=0 But $E[X|1_{[X]\circ\sqrt{n}}]$ $\leq E[X]$ $[X]$ $\frac{|X|}{\sqrt{n}}$ $1_{[X]\circ\sqrt{n}}$ $\leq \frac{1}{\sqrt{n}}$ $E[X^2]$ Thus $m_n = D(\frac{1}{n})$ (here we use $c \ge 1$)

Remerk The result is false with "cso" instead of "csi". Indeed, take $\mathbb{R}(X_i = \pm 1) \geq \frac{1}{2}$, $x = 1$, $c = n$ ". $\text{ 1.3.1 }\oplus\text{ 1.5.2.2.} \oplus\text{ 1.5.3.} \times \text{ 1.5.3.$ $\int_{0}^{\infty}hdt \quad K \exp(-\frac{x}{c}) \quad \longrightarrow_{N\rightarrow\infty}$ 2) The local estimate

Let $(X_i)_{i_{2i}}$ be id real-valued sandan variables. Set $S_o = o$ and $S_n = X_1 + \cdots + X_n$ for $n \ge 1$. $/M_{SSumption (H)}$ $E[X_i^2] < \infty$ and there exist ∞ and $p > 2$ such that $\mathbb{R}(X_i \in L_{M, U+1})_{u \to \infty}$ It is not difficult to check that under (H) , $\mathbb{R}\times$ \gg $\frac{d}{dx}$ and that $\mathbb{E}[\times^2_1]<\infty$.

Theorem (Doney'83, Nagaev'57)
\nAssune that X₁ sefisfies (H) end that E[X₁] = 0. Fix 620. Then, a uniformly in m
$$
\geq n
$$
,
\n
$$
\mathbb{P}(S_n \in \mathbb{F}_m, m_H) \sim n \mathbb{P}(X_1 \in \mathbb{F}_m, m_H)
$$
\n
$$
\left| \begin{array}{cc} \text{That } S_n & \text{Sup } \mathbb{P}(S_n \in \mathbb{F}_m, m_H) \\ n \geq n \mathbb{P}(S_n \in \mathbb{F}_m, m_H) \end{array} \right| = \frac{1}{n \to \infty}
$$

We will use several times the Sollowing fact
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} \int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx}{\int_{\text{rad}} f(x) \cdot d\mu dx} = \frac{1}{2} \int_{\text{rad}} f(x) \cdot d\mu dx
$$
\n
$$
\frac{\int_{\text{rad}} f(x) \cdot d\mu dx
$$

$$
\frac{\frac{F_{\alpha} P_{2}^{\mathfrak{v},\mu}}{P_{2}^{\mathfrak{v},\mu}}: P_{2}^{\mathfrak{v},\mu} \leq {n \choose 2} P(X_{1} \geq \overline{m}, X_{2} \geq \overline{m})
$$
\n
$$
\overset{\text{def}}{\leq} \angle' n^{2} \frac{1}{\overline{m}^{\beta}} \frac{1}{\overline{m}^{\beta}} = \frac{n^{2}}{m^{2}^{\beta}} \cdot \frac{\ln(m)}{m^{2}^{\beta}} \quad \text{so} \quad \frac{P_{2}^{\mathfrak{v},\mu}}{n R(X_{1} \in \mathbb{D}_{m})} \leq C' \frac{n}{m^{2}^{\beta}} \cdot \frac{\ln(n)}{m^{\beta}} \quad \text{for} \quad \frac{4R}{m^{\beta-1}} = C' \frac{n \cdot \ln(m)}{m^{\beta-1}} \quad \text{so} \quad \frac{4R}{m^{\beta-1}} \quad \text{so} \quad \frac{4R}{m^{2}^{\beta}} \quad \text{so} \quad \frac{4R}{m^{2}^{\
$$

For
$$
\frac{P_{\text{out}}}{P_{\text{out}}}
$$
 is the use the measured topology:
\n $P_{\text{out}}^{N_{\text{in}}}$ is $P_{\text{out}}(X_{\text{out}}) = P_{\text{out}}^{N_{\text{in}}}$
\n $P_{\text{out}}^{N_{\text{out}}}$ is $P_{\text{out}}(X_{\text{out}}) = P_{\text{out}}^{N_{\text{out}}}$
\n $P_{\text{out}}^{N_{\text{out}}}$ is $P_{\text{out}}(X_{\text{out}}) = P_{\text{out}}^{N_{\text{out}}}$
\n $P_{\text{out}}^{N_{\text{out}}}$ is $P_{\text{out}}(X_{\text{out}}) = P_{\text{out}}^{N_{\text{out}}}$
\n $P_{\text{out}}^{N_{\text{out}}}$ is $P_{\text{out}}^{N_{\text{out}}}$ is $P_{\text{out}}^{N_{\text{out}}}$
\n $P_{\text{out}}^{N_{\text{out}}}$ is $P_{\$

Romalt. There has been quite serve work by find the "het" sequence m_n such that the theorem
holds uniformly for m₃m_n (we have shown that m_n =
$$
\varepsilon
$$
n works).