

Limits of large random trees

Condensation Phenomena in Random Trees – 2024 CRM-PIMS Summer School in Probability

Understand the geometry and the structure of large random trees by studying their limits.

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "limiting" object X:

$$
X_n \quad \underset{n\to\infty}{\longrightarrow} \quad X.
$$

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "limiting" object X:

$$
X_n \quad \underset{n\to\infty}{\longrightarrow} \quad X.
$$

Several consequences:

- *From the discrete world to the continuous world:* if a property P is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "limiting" object X:

$$
X_n \quad \underset{n\to\infty}{\longrightarrow} \quad X.
$$

Several consequences:

- *From the discrete world to the continuous world:* if a property P is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- *From the continuous world to the discrete world:* if a property P is satisfied by X and passes to the limit, X_n satisfies "approximately" P for n large.

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "limiting" object X:

$$
X_n \quad \underset{n\to\infty}{\longrightarrow} \quad X.
$$

Several consequences:

- *From the discrete world to the continuous world:* if a property P is satisfied by all the X_n and passes to the limit, then X satisfies \mathcal{P} .
- *From the continuous world to the discrete world:* if a property P is satisfied by X and passes to the limit, X_n satisfies "approximately" P for n large.
- *Universality:* if $(Y_n)_{n\geq 1}$ is another sequence of objects converging towards X, then X_n and Y_n share approximately the same properties for n large.

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "continuous" object X:

$$
X_n \quad \underset{n \to \infty}{\longrightarrow} \quad X.
$$

 \rightarrow *In what space do the objects live?*

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "continuous" object X:

 $X_n \longrightarrow n \rightarrow \infty$ $n\rightarrow\infty$ X.

 $\rightarrow \rightarrow$ *In what space do the objects live?* Here, a metric space (Z, d)

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "continuous" object X:

$$
X_n \quad \underset{n\to\infty}{\longrightarrow} \quad X.
$$

In what space do the objects live? Here, a metric space (Z, d)

What is the sense of the convergence when the objects are random?

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "continuous" object X:

$$
X_n \quad \underset{n\to\infty}{\longrightarrow} \quad X.
$$

- *In what space do the objects live?* Here, a metric space (Z, d)
- *What is the sense of the convergence when the objects are random?* Here, convergence in distribution:

$$
\mathbb{E}\left[\mathsf{F}(\mathsf{X}_n)\right] \quad \underset{n\to\infty}{\longrightarrow} \quad \mathbb{E}\left[\mathsf{F}(\mathsf{X})\right]
$$

for every continous bounded function $F: Z \to \mathbb{R}$.

Let $(X_n)_{n\geq 1}$ be "discrete" objects converging towards a "continuous" object X:

$$
X_n \quad \underset{n\to\infty}{\longrightarrow} \quad X.
$$

- $\rightarrow \rightarrow$ *In what space do the objects live?* Here, a metric space (Z, d)
- $\rightarrow \rightarrow$ *What is the sense of the convergence when the objects are random?* Here, convergence in distribution:

$$
\mathbb{E}\left[\mathsf{F}(\mathsf{X}_n)\right] \quad \underset{n\to\infty}{\longrightarrow} \quad \mathbb{E}\left[\mathsf{F}(\mathsf{X})\right]
$$

for every continous bounded function $F: Z \to \mathbb{R}$.

II. Bienaymé trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

IV. Scaling limits of Bienaymé trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

IV. Scaling limits of Bienaymé trees

Stack triangulations (Albenque, Marckert)

Figure 8: Construction of the ternary tree associated with an history of a stack-triangulation

Dissections (Curien, K.)

Fig. 4. The dual tree of a dissection of P_8 , note that the tree has 7 leaves.

FIGURE 6. Illustration of the Cori-Vauquelin-Schaeffer bijection, in the case $\epsilon = 1$. For instance, e_3 is the successor of e_0 , e_2 the successor of e_1 , and so on.

Maps (Addario-Berry)

(c) The decomposition of M into blocks. Blocks are joined by grey lines according to the tree structure. Root edges of blocks are shown with arrows.

(D) The correspondence between blocks and nodes of T_M. Non-trivial blocks receive the alphabetical label (from A through L) of the corresponding node.

Parking functions (Chassaing, Louchard)

II. Bienaymé trees

 \bullet \circ \circ

III. Local limits of Bienaymé trees

IV. SCALING LIMITS OF BIENAYMÉ TREES

Plane trees

Figure: Two different plane trees

We consider plane (i.e. rooted ordered) trees.

In a Bienaymé tree, every individual has a random number of children (independently of one other) distributed according to μ , a probability measure on $\{0, 1, 2, \ldots\}$ called the offspring distribution.

In a Bienaymé tree, every individual has a random number of children (independently of one other) distributed according to μ , a probability measure on $\{0, 1, 2, \ldots\}$ called the offspring distribution.

 \rightarrow When $\mu(1) \neq 1$ (always implicitly the case in the sequel), the tree is almost surely finite if and only if $\sum_{k=1}^{\infty} k\mu(k) \leq 1$.

In a Bienaymé tree, every individual has a random number of children (independently of one other) distributed according to μ , a probability measure on $\{0, 1, 2, \ldots\}$ called the offspring distribution.

 \rightarrow When $\mu(1) \neq 1$ (always implicitly the case in the sequel), the tree is almost surely finite if and only if $\sum_{k=1}^{\infty} k\mu(k) \leq 1$. [Bienaymé 1845, Galton & Watson 1875, Steffensen 1930]

In a Bienaymé tree, every individual has a random number of children (independently of one other) distributed according to μ , a probability measure on $\{0, 1, 2, \ldots\}$ called the offspring distribution.

 \rightarrow When $\mu(1) \neq 1$ (always implicitly the case in the sequel), the tree is almost surely finite if and only if $\sum_{k=1}^{\infty} k\mu(k) \leq 1$. [Bienaymé 1845, Galton & Watson 1875, Steffensen 1930]

When $\sum_{k=1}^{\infty} k\mu(k) = 1$, μ is said to be critical.

In a Bienaymé tree, every individual has a random number of children (independently of one other) distributed according to μ , a probability measure on $\{0, 1, 2, \ldots\}$ called the offspring distribution.

 \rightarrow When $\mu(1) \neq 1$ (always implicitly the case in the sequel), the tree is almost surely finite if and only if $\sum_{k=1}^{\infty} k\mu(k) \leq 1$. [Bienaymé 1845, Galton & Watson 1875, Steffensen 1930]

When $\sum_{k=1}^{\infty} k\mu(k) = 1$, μ is said to be critical.

 $\bigwedge \rightarrow \mathsf{When}~\sum_{k=1}^\infty k\mu(k)\leqslant 1,$ for a finite plane tree T,

$$
\mathbb{P}_{\mu}(T)=\prod_{u\in T}\mu(k_u(T)),
$$

where $k_\mu(T)$ is the number of children of u, defines a probability measure on the set of all finite plane trees.

In a Bienaymé tree, every individual has a random number of children (independently of one other) distributed according to μ , a probability measure on $\{0, 1, 2, \ldots\}$ called the offspring distribution.

 \rightarrow When $\mu(1) \neq 1$ (always implicitly the case in the sequel), the tree is almost surely finite if and only if $\sum_{k=1}^{\infty} k\mu(k) \leq 1$. [Bienaymé 1845, Galton & Watson 1875, Steffensen 1930]

When $\sum_{k=1}^{\infty} k\mu(k) = 1$, μ is said to be critical.

 $\bigwedge \rightarrow \mathsf{When}~\sum_{k=1}^\infty k\mu(k)\leqslant 1,$ for a finite plane tree T,

$$
\mathbb{P}_{\mu}(T)=\prod_{u\in T}\mu(k_u(T)),
$$

where $k_\mu(T)$ is the number of children of u, defines a probability measure on the set of all finite plane trees.

A random tree with law \mathbb{P}_{μ} is called a μ -Bienaymé tree (or B_{μ} tree).

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

– when $\mu(k) = 1/2^{1+k}$ for $k \geq 0$, \mathcal{T}_n is a uniform plane tree with n vertices;

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

$$
\mathbb{P}\left(\mathcal{T}_n = \mathcal{T}\right) = \frac{\mathbb{P}_{\mu}(\mathcal{T})}{\mathbb{P}_{\mu}(\mathbb{T}_n)}
$$

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

$$
\mathbb{P}\left(\mathbb{T}_n = T\right) = \frac{\mathbb{P}_{\mu}(T)}{\mathbb{P}_{\mu}(\mathbb{T}_n)} = \frac{\prod_{u \in T} 2^{-(1+k_u(T)})}{\mathbb{P}_{\mu}(\mathbb{T}_n)}
$$

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

$$
\mathbb{P}\left(\mathcal{T}_n = T\right) = \frac{\mathbb{P}_{\mu}(T)}{\mathbb{P}_{\mu}(\mathbb{T}_n)} = \frac{\prod_{\mathfrak{u} \in T} 2^{-(1+k_{\mathfrak{u}}(T))}}{\mathbb{P}_{\mu}(\mathbb{T}_n)} = \frac{2^{-n-(n+1)}}{\mathbb{P}_{\mu}(\mathbb{T}_n)}
$$

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

$$
\mathbb{P}(\mathbb{T}_n = T) = \frac{\mathbb{P}_{\mu}(T)}{\mathbb{P}_{\mu}(\mathbb{T}_n)} = \frac{\prod_{u \in T} 2^{-(1+k_u(T))}}{\mathbb{P}_{\mu}(\mathbb{T}_n)} = \frac{2^{-n-(n+1)}}{\mathbb{P}_{\mu}(\mathbb{T}_n)} = \frac{2^{-2n-1}}{\mathbb{P}_{\mu}(\mathbb{T}_n)}.
$$
Size-conditioned Bienaymé trees

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

- when $\mu(k) = 1/2^{1+k}$ for $k \geq 0$, \mathcal{T}_n is a uniform plane tree with n vertices;
- when $\mu(0) = \mu(2) = 1/2$, \mathcal{T}_{2n+1} is a uniform binary tree with n vertices;

Size-conditioned Bienaymé trees

It is natural to consider \mathcal{T}_n , a B_μ tree conditioned to have n vertices (we implicitly restrict to values of n for which this makes sense).

Several classical models of random trees can be obtained as size-conditioned Bienaymé trees:

– when $\mu(k) = 1/2^{1+k}$ for $k \geq 0$, \mathcal{T}_n is a uniform plane tree with n vertices;

– when $\mu(0) = \mu(2) = 1/2$, \mathcal{T}_{2n+1} is a uniform binary tree with n vertices;

– when $\mu(k) = e^{-1}/k!$ for $k \geq 0$, \mathcal{T}_n is a uniform labelled tree (a.k.a. Cayley tree) with n vertices (after forgetting the labels).

It is possible to change the mean of μ without changing the law of the size-conditioned Bienaymé tree!

It is possible to change the mean of μ without changing the law of the size-conditioned Bienaymé tree!

Let ρ_{μ} be the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

It is possible to change the mean of μ without changing the law of the size-conditioned Bienaymé tree!

Let ρ_{μ} be the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

 \rightarrow If $c < \rho_{\mu}$, two Bienaymé trees with offspring distributions μ and μ_c , defined by

$$
\mu_c(k)=\frac{1}{G_\mu(c)}c^k\mu(k),\qquad k\geqslant 0,
$$

when conditioned on having n vertices, have the same distribution (Kennedy '75).

What are the limits of large size-conditioned Bienaymé trees?

I. Models coded by trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

 \bullet \bullet \bullet

IV. Scaling limits of Bienaymé trees

What does a large size-conditioned Bienaymé tree look like, near the root?

We will consider two regimes:

We will consider two regimes:

```
\rightarrow \mu critical (\sum_{i} i\mu(i) = 1).
```


We will consider two regimes:

- \rightarrow μ critical $(\sum_{i} i\mu(i) = 1)$.
- $\sqrt{2}$ μ subcritical $(\sum_{i} i \mu(i) < 1)$

We will consider two regimes:

 \rightarrow μ critical $(\sum_{i} i\mu(i) = 1)$.

 $\gamma \rightarrow \mu$ subcritical $(\sum_i \mathfrak{i} \mu(\mathfrak{i}) < 1)$ and $\rho_\mu = 1$, with ρ_μ equal to the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

We will consider two regimes:

```
\rightarrow \mu critical (\sum_{i} i\mu(i) = 1).
```
 $\gamma \rightarrow \mu$ subcritical $(\sum_i \mathfrak{i} \mu(\mathfrak{i}) < 1)$ and $\rho_\mu = 1$, with ρ_μ equal to the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

These regimes actually cover all the cases.

We will consider two regimes:

 \rightarrow μ critical $(\sum_{i} i\mu(i) = 1)$.

 $\gamma \rightarrow \mu$ subcritical $(\sum_i \mathfrak{i} \mu(\mathfrak{i}) < 1)$ and $\rho_\mu = 1$, with ρ_μ equal to the radius of convergence of $G_{\mu}(z) = \sum \mu(i)z^{i}$.

These regimes actually cover all the cases. Indeed recall that if $c < \rho_{\mu}$, two Bienaymé trees with offspring distributions μ and μ_c , defined by

$$
\mu_c(k)=\frac{1}{G_\mu(c)}c^k\mu(k),\qquad k\geqslant 0,
$$

when conditioned on having n vertices, have the same distribution.

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n\to\infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_\infty
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n\to\infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_\infty
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

 Δ This means that $[\mathcal{T}_n]_k \to [\mathcal{T}_\infty]_k$ in distribution, where $[T]_k$ denotes the subtree of T obtained by keeping the first k generations:

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n\to\infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_\infty
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n \to \infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_{\infty}
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

 \sim Are the following functionals continuous with respect to the local topology:

– degree of the root?

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n \to \infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_{\infty}
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

 \sim Are the following functionals continuous with respect to the local topology:

– degree of the root? Yes!

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n \to \infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_{\infty}
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

- degree of the root? Yes!
- the maximal degree of the tree?

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n \to \infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_{\infty}
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

- degree of the root? Yes!
- the maximal degree of the tree? $\hat{\mathbb{Z}}$ No!

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n\to\infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_\infty
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

- degree of the root? Yes!
- the maximal degree of the tree? $\hat{\mathbb{Z}}$ No!
- length of the left-most path starting from the root?

Let μ be a critical offspring distribution. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Kesten '87, Janson '12, Abraham & Delmas '14) *The convergence*

$$
\mathfrak{T}_n \quad \underset{n \to \infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_{\infty}
$$

holds in distribution for the local topology, where \mathcal{T}_{∞} *is the infinite Bienaymé tree conditioned to survive.*

- degree of the root? Yes!
- the maximal degree of the tree? $\hat{\mathbb{Z}}$ No!
- length of the left-most path starting from the root? Yes!

Let μ be a subcritical offspring distribution and assume that the radius of convergence of $\sum_{i\geqslant 0} \mu(i) z^i$ is 1.

Let μ be a subcritical offspring distribution and assume that the radius of convergence of $\sum_{i\geqslant 0} \mu(i) z^i$ is 1.

Theorem (Jonsson & Stefánsson '11, Janson '12, Abraham & Delmas '14)

The convergence

$$
\mathfrak{T}_n \quad \underset{n\to\infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_\infty^*
$$

holds in distribution for the local topology, where \mathcal{T}_{∞}^{*} *is a "condensation" tree*

Let μ be a subcritical offspring distribution and assume that the radius of convergence of $\sum_{i\geqslant 0} \mu(i) z^i$ is 1.

Theorem (Jonsson & Stefánsson '11, Janson '12, Abraham & Delmas '14)

The convergence

$$
\mathfrak{T}_n \quad \underset{n\to\infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_\infty^*
$$

holds in distribution for the local topology, where \mathcal{T}_{∞}^{*} *is a "condensation" tree*

Let μ be a subcritical offspring distribution and assume that the radius of convergence of $\sum_{i\geqslant 0} \mu(i) z^i$ is 1.

Theorem (Jonsson & Stefánsson '11, Janson '12, Abraham & Delmas '14)

The convergence

$$
\mathfrak{T}_n \quad \underset{n\to\infty}{\overset{(d)}{\longrightarrow}} \quad \mathfrak{T}_{\infty}^*
$$

holds in distribution for the local topology, where \mathcal{T}_{∞}^{*} *is a "condensation" tree*

 \sim This means that $[\mathcal{T}_n]_k \to [\mathcal{T}_\infty]_k$ in distribution, where $[T]_k$ denotes the subtree of T obtained by keeping *the first* k *children* on the first k generations:

I. Models coded by trees

II. Bienaymé trees

III. Local limits of Bienaymé trees

IV. Scaling limits of Bienaymé trees

What does a large Bienaymé tree look like, globally?

Figure: Result 1.

Figure: Result 1. Figure: Result 2.

Igor Kortchemski Limits of large random trees 27/672

Figure: Result 1. Figure: Result 2.

Figure: Result 3.

Figure: Result 1. Figure: Result 2.

Figure: Result 3. Figure: Result 4.

Figure: Result 1. Figure: Result 2.

Figure: Result 3. Figure: Result 4.

 $wooclap.com$; code randomtree.

 \sim μ critical.

 \sim μ critical.

 \sim μ subcritical and $\rho_{\mu} = 1$.

 $\sim \mu$ critical.

 $\forall \rightarrow \mu$ subcritical and $\rho_{\mu} = 1$.

 \mathfrak{D} To have scaling limits, we will need additional regularity assumptions.

 $\rightsquigarrow \mu$ critical.

 $\forall \rightarrow \mu$ subcritical and $\rho_{\mu} = 1$.

 \mathbf{P} To have scaling limits, we will need additional regularity assumptions.

We shall code plane trees by functions.

CODING TREES BY FUNCTIONS

Contour function of a tree

Define the contour function of a tree:

Coding trees by contour functions

Knowing the contour function, it is easy to recover the tree.

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\mathop{\longrightarrow}\limits^{\,(d)}_{n\rightarrow\infty}
$$

where the convergence holds in distribution in C([0, 1], R)

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\mathop{\longrightarrow}^{(d)}_{n\to\infty}\quad \left(\frac{2}{\sigma}\cdot \mathbb{e}(t)\right)_{0\leqslant t\leqslant 1},
$$

where the convergence holds in distribution in C([0, 1], R)

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\overset{(d)}{\underset{n\to\infty}\longrightarrow} \quad \left(\frac{2}{\sigma}\cdot \textbf{e}(t)\right)_{0\leqslant t\leqslant 1},
$$

where the convergence holds in distribution in C([0, 1], R)*, where is the normalized Brownian excursion.*

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\overset{(d)}{\underset{n\to\infty}\longrightarrow} \quad \left(\frac{2}{\sigma}\cdot \textbf{e}(t)\right)_{0\leqslant t\leqslant 1},
$$

where the convergence holds in distribution in C([0, 1], R)*, where is the normalized Brownian excursion.*

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\overset{(d)}{\underset{n\to\infty}\longrightarrow}\quad \left(\frac{2}{\sigma}\cdot \mathbb{e}(t)\right)_{0\leqslant t\leqslant 1},
$$

where the convergence holds in distribution in C([0, 1], R)*, where is the normalized Brownian excursion.*

 λ Consequence: for every $a > 0$, \mathbb{P} $\sqrt{0}$ $\frac{3}{2} \cdot \text{Height}(\mathcal{T}_n) > a \cdot$ \sqrt{n} $\longrightarrow \\ \scriptstyle\Lambda \longrightarrow \infty$ $n\rightarrow\infty$ $\mathbb{P}\left(\sup\mathbb{e} > \mathbb{a}\right)$

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\overset{(d)}{\underset{n\to\infty}\longrightarrow} \quad \left(\frac{2}{\sigma}\cdot \textbf{e}(t)\right)_{0\leqslant t\leqslant 1},
$$

where the convergence holds in distribution in C([0, 1], R)*, where is the normalized Brownian excursion.*

$$
\begin{array}{ll}\n\mathbf{\wedge}\n\rightarrow & \text{Consequence: for every } a > 0, \\
\mathbb{P}\left(\frac{\sigma}{2}\cdot\text{Height}(\mathbb{T}_n) > a\cdot\sqrt{n}\right) & \underset{n\rightarrow\infty}{\longrightarrow} & \mathbb{P}\left(\text{sup}\,\mathbb{e} > a\right) \\
&= & \sum_{k=1}^{\infty} (4k^2a^2 - 1)e^{-2k^2a^2}\n\end{array}
$$

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\mathop{\longrightarrow}^{(d)}_{n\to\infty}\quad \left(\frac{2}{\sigma}\cdot e(t)\right)_{0\leqslant t\leqslant 1},
$$

where the convergence holds in distribution in C([0, 1], R)*, where is the normalized Brownian excursion.*

Idea of the proof:

Let μ be an offspring distribution with finite positive variance such that $\sum_{i\geqslant 0} i\mu(i) = 1$. Let \mathcal{T}_n be a Bienaymé tree conditioned on having n vertices.

Theorem (Aldous '93)

Let σ^2 be the variance of μ . Let $t \mapsto C_t(\mathcal{T}_n)$ be the contour function of \mathcal{T}_n . *Then:*

$$
\left(\frac{1}{\sqrt{n}}\mathsf{C}_{2nt}(\mathbb{T}_n)\right)_{0\leqslant t\leqslant 1}\quad\overset{(d)}{\underset{n\to\infty}\longrightarrow} \quad \left(\frac{2}{\sigma}\cdot \textbf{e}(t)\right)_{0\leqslant t\leqslant 1},
$$

where the convergence holds in distribution in C([0, 1], R)*, where is the normalized Brownian excursion.*

Idea of the proof:

conditioned Donsker's invariance principle.

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

DO THE DISCRETE TREES CONVERGE TO A CONTINUOUS TREE?

Yes, if we view trees as compact metric spaces by equiping the vertices with the *graph distance!*

Let X, Y be two subsets of the same metric space Z.

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $X_r = \{z \in Z; d(z, X) \leq r\}, \qquad Y_r = \{z \in Z; d(z, Y) \leq r\}$

be the r-neighborhoods of X and Y .

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $X_r = \{z \in Z; d(z, X) \leq r\},$ $Y_r = \{z \in Z; d(z, Y) \leq r\}$

be the r-neighborhoods of X and Y . Set

$$
d_H(X, Y) = \inf \{r > 0; X \subset Y_r \text{ and } Y \subset X_r \}.
$$

The Hausdorff distance

Let X, Y be two subsets of the same metric space Z. Let

 $X_r = \{z \in Z; d(z, X) \leq r\}, \qquad Y_r = \{z \in Z; d(z, Y) \leq r\}$

be the r-neighborhoods of X and Y . Set

 $d_H(X, Y) = \inf \{r > 0; X \subset Y_r \text{ and } Y \subset X_r\}.$

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance

Let X, Y be two compact metric spaces.

The Gromov–Hausdorff distance between X and Y is the smallest Hausdorff distance between all possible isometric embeddings of X and Y in a *same* metric space Z.

The Brownian tree

 $\rightarrow \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2\sqrt{n}}\cdot \mathfrak{T}_n \quad \overset{(d)}{\underset{n\to\infty}{\longrightarrow}} \quad \mathfrak{T}_e,
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

The Brownian tree

 $\wedge \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2\sqrt{n}}\cdot \mathfrak{T}_n \quad\mathop{\longrightarrow}^{(d)}_{n\to\infty}\quad \mathfrak{T}_e,
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

Notation: for a metric space (Z, d) and $a > 0$, $a \cdot Z$ is the metric space $(Z, \alpha \cdot d).$

The Brownian tree

 $\rightarrow \rightarrow$ Consequence of Aldous' theorem (Duquesne, Le Gall): there exists a compact metric space such that the convergence

$$
\frac{\sigma}{2\sqrt{n}}\cdot \mathfrak{T}_n \quad\mathop{\longrightarrow}^{(d)}_{n\to\infty}\quad \mathfrak{T}_e,
$$

holds in distribution in the space of compact metric spaces equiped with the Gromov–Hausdorff distance.

Notation: for a metric space (Z, d) and $a > 0$, $a \cdot Z$ is the metric space $(Z, \alpha \cdot d).$

The metric space \mathcal{T}_e is called the *Brownian continuum random tree (CRT)*, and is coded by a Brownian excursion.

An approximation of a realization of a Brownian CRT

When μ is critical and has infinite variance, scaling limits (for the Gromov–Hausdorff topology) exist under the assumption that μ is in the domain of attraction of a stable law.

When μ is critical and has infinite variance, scaling limits (for the Gromov–Hausdorff topology) exist under the assumption that μ is in the domain of attraction of a stable law.

 \sim This essentially means that $\mu(n) \simeq c/n^{\beta}$ (heavy tail behavior).

When μ is critical and has infinite variance, scaling limits (for the Gromov–Hausdorff topology) exist under the assumption that μ is in the domain of attraction of a stable law.

 \sim This essentially means that $\mu(n) \simeq c/n^{\beta}$ (heavy tail behavior).

 \sim Scaling limits are described use stable Lévy processes.

WHAT ABOUT NON-CRITICAL OFFSPRING DISTRIBUTIONS?

WHAT ABOUT NON-CRITICAL OFFSPRING DISTRIBUTIONS?

\forall Why did Aldous consider only critical offspring distributions?

WHAT ABOUT NON-CRITICAL OFFSPRING DISTRIBUTIONS?

\sim Why did Aldous consider only critical offspring distributions?

4. Because we condition on total population size, the distribution of \mathcal{T}_n is unchanged by replacing ξ with another distribution χ in the same exponential family

$$
P(\xi = i) = c\theta^{i}P(\chi = i), \quad i \geq 0 \text{ for some } c, \theta.
$$

Thus there is no essential loss of generality in considering only critical branching processes.
Let μ be a subcritical offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathcal{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Let μ be a subcritical offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathcal{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Let μ be a subcritical offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathcal{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Situation considered only quite recently by Jonsson & Stefánsson '11!

Let μ be a subcritical offspring distribution such that $\mu(n) \sim c/n^{1+\beta}$ with $\beta > 2$. Let \mathcal{T}_n be a μ -Bienaymé tree conditioned on having n vertices.

Situation considered only quite recently by Jonsson & Stefánsson '11! This will be the focus of the mini-course.