Theorem (cycle hume) For every
$$x \in S_{n-1}$$
 set $T(x) = 5$ is $ZhZ : x^{(n)} \in S_{n-1} F$. Then Cond (I (x))=2
and the durat of $T(x)$ is the fact tree when the wells with jumps graving x sectors its infinitely
for the first true.
In the proper complete I(x) = \$3\$.
The proof is not completeded but a left believe bounte: it is left to the reader.
We now see some a productible consequence
[Defendent For $x \in S_{n-1}$ we define the Versent trongform of $x \log \nabla(x) = x^{(2n+1)} \in S_{n-1}$.
[Example: $x = (4, -1, +1, -1)$] $f \in F^{(2n+1)}$
[Theorem The law of $\nabla(X_{11}, ..., X_{n})$ winder $B(\cdot (N_{n} = -1)$ is equal to the law of $(X_{11}, ..., X_{n})$ under
 $B(\cdot (Z_{n}) = x, T(Z_{n}) = k, W_{n} = -1)$
 $= B(Z_{n} = x, W_{n} = -1)$ (Cycle laws)
 $= B(Z_{n} = x, W_{n} = -1)$ (Cycle laws)
 $= B(Z_{n} = x, W_{n} = -1)$ because $Z^{(n-1)} = x B(Z_{n} = x, S_{n-1})$ (consequence)
 $Summing one $x \in S_{n}$ gives $B(W_{n} = -1) = x B(S_{n})$. During (or by the gives the reader)
 $Summing one $x \in S_{n}$ gives $B(W_{n} = -1) = x B(S_{n})$. During (or by the gives the reader)$$

To sum up, to understand W(Mn), one can study (Wo, ..., Wn) under P(·IWn=-1) and then emply the Verwaat transform.

Example The largest and second largest number of children of Tn is equal in law to the largest and second hargest jump -1 of (Wo,.., Wn) render B(· Wn =-1).

When μ has finite variance, W_n is of order $EEW_1] \times with gluctualized of order <math>\sqrt{n}$: • When μ is not critical, the event $\lesssim W_n = -1 \end{cases}$ is a large deviation event.

Door Kortchemski 2024 cent-pins Robebility Sumer Shed onderection phenomene in random trees A ove - big - jump

Autline: 1) A local estimate ²⁾ One <u>big</u> jump principle. 3) An epplication

We present a grainework tailored to our application to random trees, but what follows can be extended to a more general context.

1) A local estimate

Set $(X_i)_{i_{X_i}}$ be iid real-valued sandar variables. Set $S_0 = 0$ and $S_n = X_i + \cdots + X_n$ for $n \ge 1$. Assumption (H) $E[X_i^2] < \infty$ and there exist (>0) and B>2 such that $B(X_i \in Lu, u \neq i)) \sim \frac{C}{u \Rightarrow \infty u^{1+\beta}}$. If is not difficult to check that under (H), $B(X_i \ge u) \sim \frac{C/\beta}{u \Rightarrow \infty u^{\beta}}$ and that $E[X_i^2] < \infty$.

Theorem (one big jump principle Armendarize of Loolabis '11) Assume (H) and E[X:]=0.
Fix 270 and a sequence (In) such that In>En for all n sufficiently large.
We have
$$d_{TV}((\hat{X}_{1},...,\hat{X}_{n-1}))$$
 under $\mathcal{O}(\cdot|S_{n}\in[I_{n},I_{n}+1)),(\times,...,\times_{n-1})) \xrightarrow{n\to\infty} 0$, that is
step $|B((\hat{X}_{1},...,\hat{X}_{n-1})\in A|S_{n}\in[I_{n},I_{n}+1)) - B((\times,...,\times_{n-1})\in A)| \xrightarrow{n\to\infty} 0$
 $A \in B(\mathbb{R}^{n-1})$

This means that under $\mathbb{P}(\cdot|S_n \in [\alpha_n, \alpha_n+i))$, once the biggest jumps removed, the remaining rive are esymptotically indexists with some law as X_i !

In practice, to show that a property holds with probability bending to 0 or 1 for $(\hat{X}_{1,-1}, \hat{X}_{m})$ render $\mathbb{P}(\cdot | S_n \in [X_n, X_n, r))$ one can show that it holds for $(X_{1,-1}, X_{n-1})$ (which are iid!)

Field
Let
$$\hat{\mu}_{n}$$
 be the law of $(\hat{X}_{1},...,\hat{X}_{n-1})$ under $\mathbb{D}(\cdot |S_{n} \in \mathbb{C}[\hat{x}_{n},\hat{x}_{n+1}])$
Let μ_{n} be the law of $(X_{1},...,X_{n-1})$
To show that $\Re_{\mathrm{EP}} | \mu_{n}(A) - \hat{\mu}_{n}(A)| \longrightarrow 0$ the idea is to find a "good" event \mathbb{E}_{n} with
 $A \in \mathbb{B}(\mathbb{R}^{n+1})$
(1) $\mu_{n}(\mathbb{E}_{n}) \longrightarrow 1$
(2) $\Re_{\mathrm{EP}} | \mu_{n}(A) - \hat{\mu}_{n}(A)| \longrightarrow 0$
 $A \in \mathbb{E}_{n}$
 $A \in \mathbb{B}(\mathbb{R}^{n})$
 $\mathbb{I}_{n} \operatorname{ded}_{n}$ by (2) we then have $\hat{\mu}_{n}(\mathbb{E}_{n}) \longrightarrow 1$, so
 $\Re_{\mathrm{EP}} | \mu_{n}(A) - \hat{\mu}_{n}(A)| \le \Re_{\mathrm{EP}} | \mu_{n}(A \cap \mathbb{E}_{n}) - \hat{\mu}_{n}(A \cap \mathbb{E}_{n})| + \mu_{n}(\mathbb{E}_{n}^{C}) + \hat{\mu}_{n}(\mathbb{E}_{n}^{C}) \longrightarrow 0$

The dot has bet
$$E_n \leq e = (e_{n-1}e_n) e e^{i \pi n}$$
. Let - remain the dot write $e_i \leq e^{i \pi n} \leq e_{i} \leq e^{i \pi n}$
Recall but $\Re(x_i \in G(u, v_i)) \sum_{n=1}^{\infty} e^{i \pi n} e^$