Theorem Ceyde lemma) For every
$$
x \in S_{n-1}
$$
 and $I(x) = \frac{1}{2}$ is $Z(x) = \frac{1}{2}$ if $z \in S_{n-1} \times \mathbb{R}$. Then $Cay \in L(x) = a$
\nand the element of $IL(x) = \frac{1}{2} \cdot 3$.
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n $\int_{0}^{1} \cos x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx = \int_{0}^{1} \cot x \, dx$
\n \int_{0}^{1}

To sum up, to undertand USCM), one car study (Wo, ..., Wn) under $M \cdot l$ Wn=1) and then apply the Vervaat transform

.
Example The largest and second largest number of children of Mm is equal in law to the largest and second largest jump -1 of (Wo, .., Wr) under $B(\cdot |_{W_n=1})$

When μ has finite variance, We is of order E INDM with fluctuations of order σ : · When μ is not critical, the event Σ w_n =-1 Σ is a large deviation event.

In probability theory, many theorems concern "typical events" , which have probability 1 or tending to on Large deviations concern "atypical events" whose probability tends to 0. Typical question them are : · How fast is the convergence (rate of decay) ? · Given this atypical event, what are typical events of the system under the conditional low (known as the gibbs conditioning principle in physics) ?

Der Korkhemski
En cerre Ars Abdebility Sumer Stod
Conclensation phenomena in random brees A one-big-jamp

authore: 1) A local estimate 2) One big jump principle. 3) An opplication

We present a framewah tailored to su application to raudan trees, but what follows can be extended to a more general context.

1) A local estimate

Let $(X_i)_{i_{2i}}$ be id real-valued sandan veriables. Set $S_o = o$ and $S_n = X_1 + \cdots + X_n$ for $n \ge 1$. $/M_{SSumption (H)}$ $E[X_i^2] < \infty$ and there exist ∞ and $p > 2$ such that $R(X_i e \sqcup u + \overline{u})_{u \to \infty}$ It is not difficult to check that under (H) , $\mathbb{R}\times$, $\geqslant u$) $\sim \frac{c/\beta}{u}$ and that $E[X_i^2]<\infty$.

Theorem (Boney 189, Nagaev 157)
\nAssume that X₁ satisfies CH) end that EEX₁ = 0. For x
$$
\infty
$$
 then, uniformly in m \neq in
\n
$$
\mathbb{R}(S_n \in \mathbb{M}, m)
$$
\n
$$
\mathbb{R}(S_n \in \mathbb{M})
$$
\n
$$
\mathbb{R}(S_n \in \mathbb{M}, m)
$$
\n
$$
\mathbb{R}(S_n \in \mathbb{M}, m)
$$
\n
$$
\mathbb{R}(S_n \in \mathbb{M})
$$
\n

Theorem (one big jump principle, Armentaris al loolabis '11) Assume (H) and EEX.I=0.
Fix ezo and e Equance (an) such that
$$
x_0 \geq \varepsilon n
$$
 for all n xuficiently large.
We have $d_{ry}((\hat{X}_{1},...,\hat{X}_{n-1})$ under $\mathbb{N} \cdot |S_n \in [x_n x_n + 1)})(x_1,...,x_{n-1})$ $\overrightarrow{n \rightarrow \infty}$ of $\overrightarrow{n \rightarrow \infty}$

This near that under D (. (S. E[a., 2,+1)), once the bigget jump is removed, the remaining in are esymptotically ind with same law as x_i !

Thus
$$
(S_{0}, S_{1}, \ldots, S_{n})
$$
 under $\mathbb{P}(\cdot | S_{n} \in \mathbb{E}x_{n}, x_{n+1})$ looks like:
\n $\frac{1}{2}$
\n $\frac{1}{2}$

In practice, to show that a property holds with probability tending to 8 or 1 for (i, ..., \tilde{x}_{n}) under D (. (Sn E [34, 24) one can show that it holds for $C \times C_1$, X_{n-1} (which are ind!)

Proof	Hint	ke	law	ag	$(\hat{X}_1, ..., \hat{X}_{n-1})$ <i>t</i> and $B(-1.5, \in \mathbb{C}[x_n, x_{n+1}))$	
det	μ_n	κ	κ	$(X_1, ..., X_{n-1})$		
To show that	λ and	$ \mu_n(A) - \hat{\mu}_n(A) \longrightarrow 0$	λ	λ	λ	λ
(1) $ \mu_n(E_n) \longrightarrow 0$	λ	λ	λ			
(2) $2\mu_{X}(E_n) \longrightarrow 0$	λ					
(3) $2\mu_{X}(E_n) \longrightarrow 0$	λ					
3) λ and	$ \mu_n(A) - \hat{\mu}_n(A) \longrightarrow 0$					
3) λ and	λ and	λ				
4) λ and	λ and	λ	λ			
5) λ and	λ and	λ				
6) λ and	λ and	λ				
7) λ and	λ and	λ				
8) λ and	λ and	$\$				

To do the
$$
3x
$$
, but $E_{n-3} = 2e - (4, 1, 2, 1)$ if $h = 1$ for 3 and $2x + 1$ if $2x + 1$

 \bigcirc