Door Kortsbunski 2024 CETT- PHIS Robebility Sumer Shod Condensation phenomene in random tras I Bienayme trees and random walks Outline: 1) Coding trees 2) Connection with conditioned random welks 3) The Vervaat transform. 1) (oding trees Recall that we work with plane trees, for example: $T_1 = 2 \not(\beta_1, 2, 21, 22)$ Tz = Sp, 2, 2, 11, 12 Z Formally, they can be defined as action sets of Kasels (sequences of integers), we ship the formal definition Informally, a plane tree can be seen as a generalogical tree where individuals are the vertices Vertices of a plane tree can be equiped with the hepth-first search order (informally, label vertices as soon as possible when doing the "contour" of the tree from left to right) Definition Let T be a free with size n, with vertices or dered in depth-first search order: 110<11, ---<11, . The dubasieurs path 25 (T)= (20, (T1, -; 25, (T)) is defined by: • W_(T)=0 · 215 in (T)= 25; (T) + kui (T) - (for osis ITI-1. Example u_{1} u_{2} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7} u_{7

Proposition the map of here with a vertice
$$T \longrightarrow S_{R}$$

 $T \longrightarrow (k_{R}(T) - 1:05 is n-1)$
is a bijedien, where $S_n = S(z_{n-1}, z_n) \in S^{-1}(0), \dots e^{T}: z_{n+1} + z_{n-1}, z_{n+1} + z_{n-1})$ for as is $n = S$.
This can be readily, shown by induction the complete proof is a bit tellions to unite
and it is shipped here (the reader shall convert here then that this is howe)
2) Connection with conditioned random wells
let $\mu = (\mu(1):i>0)$ be a probability distribution on Z_{+} , called the offspring distribution.
Assume had $\mu(0) \neq s$ and \tilde{Z} -igened
let T is she as a full fruite trees (T is constable)
Recall that for $T \in T$, $\mathbb{R}_{\mu}(T) \stackrel{m}{=} \prod_{N \in T} \mu(E_{N}(T))$ defines a probability means a T .
A \mathbb{R}_{μ} random free will be a T -valued random variable, with low \mathbb{R}_{μ}
To make the connection with the life indegreezes path, we introdue the random wells
 $(Wn)_{n>0}: W(X_{n})_{iso}$ is in a random variable with low $\mathcal{B}(X_{n} \in R) = \mu(Rn)$ for $k_{0} = s$.
So the $S = i m \in S$ is $X_{n} = -1 \le C = (N \circ 2 + m \le S)$
Typoded sense that $\mathbb{E}[X_{1}] = \mathbb{Z} + \mu(e_{1}) = \mathbb{Z}$ is $\mu(e_{1}) = \mathbb{Z}$.
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le C > 0 > 2 + m \le S]$
 $\mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = 0 \le \mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = -1 \le W_{n} > 0 \le \mathbb{E}[W_{n} + m] \le \mathbb{E}[W_{n} = 0 \le \mathbb$

In pedicular 500 a.s.

the pool is straightforward resing (3) by computing the probability that the 2 rendom vectors are equal to (wo,..., wn).

In the sequel,
$$\mathcal{N}_n$$
 denotes a \mathcal{B}_μ remaind tree conditioned on having n vertices (we implicitly restrict to values of n such that $\mathcal{B}(\{\mathcal{N}\}=n\}>0$).

$$(arollary \cdot 171 = 3$$

 $(2v_0(r_n), ..., v_n(r_n)) \stackrel{low}{=} (W_0, ..., W_n)$ under $\mathcal{B}(\cdot (3=n))$

The main hafficulty is that this conditioning is "non local". To make it "local" we we doe poing to use the so-called cycle lemme.

We first introduce some notation. Set $S_n = \frac{1}{2} (x_{1,\dots,x_n}) \in \frac{1}{2}, 0, 1, \dots, \frac{n}{2}$: $x_i + \dots + x_n = -1 \frac{1}{2}$. Recall that $\overline{S}_n = \frac{1}{2} (x_{1,\dots,x_n}) \in \frac{1}{2}, -1, 0, 1, \dots, \frac{n}{2}$: $\overline{x}_i + \dots + \overline{x}_n = -1$ and $\overline{x}_1 + \dots + \overline{x}_i > -1$ for $1 \leq i \leq n \frac{1}{2}$. We identify $\frac{1}{2}n \frac{1}{2}$ with $\frac{1}{2} 0, 1, \dots, n-1 \frac{1}{2}$. For $x = (x_1, \dots, x_n) \in \mathbb{B}^n$ and $i \in \frac{1}{2}n \frac{1}{2}$, we define $x^{(i)} = (x_{i+1}, x_{i+2}, \dots, x_{i+n})$ with addition considered modulo n.

$$\frac{\sum_{x \text{ angle}} x = (1, -1, -1, 1, -1, 2, -1, -1)}{x} = (2, -1, -1, 1, -1, -1, -1, -1).$$
Welles with jumps given by x and $x^{(S)}$:
$$\int_{0}^{1} \frac{1}{(2, 3, 4)} \int_{0}^{1} \frac{1}{(2, 3, 4)} \int_{0}^{1$$