Der Korkhunski
En der ernems Robebility Sumer Stud
Condensation phenomene in random brees IBienagné trees and randon walley Outline: 1) Coding trees 2) Connection with conditioned random walks 3) The Vervact transform. 1) Coding trees Recall that we work with plane trees \int_{6}^{∞} example:
 $T_1 = 2\phi_1 4, z, z_1 z_2 z$ $T_{2} = 8\phi, 1, 2, 11, 128$ Formally, they an be defered as actain sets of Kabals (sequences of integens), we skip the found definition Informally, a plane kree can be seen as a genealogical bree where individuals are the vertices Verties of a plane kree can be equiped with the lepth-forst search order (informally, label vertices as soon as possible when doing the "contour" of the kree from left to right) Definition Set T be a free with size n, with verties ordered in depth-first search order: u_0 and e and The dubasieurs puth UD CT)= (200 CT),--; 25 n CT) is defined by: $\cdot \sqrt[3]{\mathcal{N}_{\circ}(\tau)} = 0$. $2\mathcal{S}_{i+1}(T) = 2\mathcal{S}_{i}(T) + k_{u_{i}}(T) - 1$ for $0 \le i \le |T| - 1$. Example $u_1 = \sqrt{\frac{41}{3}}$
 $u_2 = \sqrt{\frac{41}{3}}$
 $u_3 = \sqrt{\frac{41}{3}}$
 $u_4 = \sqrt{\frac{41}{3}}$
 $u_5 = \frac{8}{3}$
 $u_6 = \frac{1}{3}$
 $u_7 = \frac{1}{3}$
 $u_8 = \frac{1}{3}$
 $u_9 = \frac{1}{3}$
 $u_1 = \frac{1}{3}$

Representation: The map 2 these with a vector \overline{A} is a bijection, where $\overline{A} = \sum_{n=1}^{\infty} (k_{A_n}(n)-1) \circ s \circ s \circ n$
As a bijection, where $\overline{S}_n = \sum_{n=1}^{\infty} (x_1, y_1, y_1, y_1, y_2, \dots, y_n)$ is a <i>n</i> -axis $x_1 + x_2 + x_1 + x_2 + \dots + x_n$
This can be readily shown by another. The complete proof is a bit follows to write out if is being the <i>in</i> x_1 and x_2 is a <i>in</i> x_2 and \overline{a} is a <i>in</i> x_2 and \overline{a} is x_1 and x_2 are x_1 and \overline{a} is x_1 and x_2 are x_1 and x_2

In perticular 500 a.s.

The pood is straightforward using (s) by computing the probability threat the 2 rendom vectors are equal to (wo,..., w.).

In the sequel,
$$
W
$$
 denotes a B_{μ} secondthened on having n vertices C we
implicitely useful to Values of n such that $BC(19)=n)>0$).
(orollacy . [11 = 5
. $(206(9n),...,10n(9n)) \stackrel{law}{=} (W_{0,1}, W_{0,1})$ under $BC(3=n)$

The main hafficially is that this conditioning is "non local" To make it "local" we
we are poing to use the so-called cycle launa.

We first introduce some notation. Set $S_n = \frac{5}{2}$ (x_1, y_1, y_2, z_3) \in $\{-1, 0, 1, 0, \frac{3}{2}\}$. $x_1 + \cdots + x_n = -1\}$. Recall that $\overline{S}_n = \frac{1}{2} (x_1,...,x_n) \in \frac{1}{2} - 1, 0, 1, ...$ $\frac{n}{2}$: $x_1 + ... + x_n = -1$ and $x_1 + ... + x_n > -1$ for $1 \leq i \leq n$ \geq We identify $\mathbb{Z}/n\mathbb{Z}$ with $\{0,1,\ldots,n-1\}$ For $x=(x_1, ..., x_n) \in B$ and $i \in \mathbb{Z}/n\mathbb{Z}$, we define $x^{(i)}=(x_{i+1}, x_{i+2}, ..., x_{i+n})$ with addition considered modulo n.